期刊文献+
共找到37篇文章
< 1 2 >
每页显示 20 50 100
An interface-reconstruction effect for rechargeable aluminum battery in ionic liquid electrolyte to enhance cycling performances 被引量:4
1
作者 Feng Wu Na Zhu +2 位作者 Ying Bai Yaning Gao Chuan Wu 《Green Energy & Environment》 SCIE 2018年第1期71-77,共7页
Aluminum(Al) metal has been regarded as a promising anode for rechargeable batteries because of its natural abundance and high theoretical specific capacity. However, rechargeable aluminum batteries(RABs) using A1 met... Aluminum(Al) metal has been regarded as a promising anode for rechargeable batteries because of its natural abundance and high theoretical specific capacity. However, rechargeable aluminum batteries(RABs) using A1 metal as anode display poor cycling performances owing to interface problems between anode and electrolyte. The solid-electrolyte interphase(SEI) layer on the anode has been confirmed to be essential for improving cycling performances of rechargeable batteries. Therefore, we immerse the Al metal in ionic liquid electrolyte for some time before it is used as anode to remove the passive film and expose fresh Al to the electrolyte. Then the reactions of exposed Al, acid, oxygen and water in electrolyte are occurred to form an SEI layer in the cycle. Al/electrolyte/V_2 O_5 full batteries with the thin, uniform and stable SEI layer on Al metal anode perform high discharge capacity and coulombic efficiency(CE). This work illustrates that an SEI layer is formed on Al metal anode in the cycle using a simple and effective pretreatment process and results in superior cycling performances for RABs. 展开更多
关键词 Rechargeable aluminum battery Aluminum anode Ionic liquid electrolyte Solid-electrolyte interphase
在线阅读 下载PDF
Specializing liquid electrolytes and carbon-based materials in EDLCs for low-temperature applications
2
作者 Pui-yan Hung Huihui Zhang +3 位作者 Han Lin Qiaoshi Guo Kin-tak Lau Baohua Jia 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第5期580-602,共23页
Electric double-layer capacitors(EDLCs) are emerging technologies to meet the ever-increasing demand for sustainable energy storage devices and systems in the 21 st Century owing to their advantages such as long lifet... Electric double-layer capacitors(EDLCs) are emerging technologies to meet the ever-increasing demand for sustainable energy storage devices and systems in the 21 st Century owing to their advantages such as long lifetime, fast charging speed and environmentally-friendly nature, which play a critical part in satisfying the demand of electronic devices and systems. Although it is generally accepted that EDLCs are suitable for working at low temperatures down to-40℃, there is a lack of comprehensive review to summarize the quantified performance of EDLCs when they are subjected to low-temperature environments. The rapid and growing demand for high-performance EDLCs for auxiliary power systems in the aeronautic and aerospace industries has triggered the urge to extend their operating temperature range,especially at temperatures below-40℃. This article presents an overview of EDLC’s performance and their challenges at extremely low temperatures including the capability of storing a considerable amount of electrical energy and maintaining long-term stability. The selection of electrolytes and electrode materials is crucial to the performance of EDLCs operating at a desired low-temperature range. Strategies to improve EDLC’s performance at extremely low temperatures are discussed, followed by the future perspectives to motivate more future studies to be conducted in this area. 展开更多
关键词 Electric double-layer capacitors(EDLCs) liquid electrolytes Carbon-based materials Low-temperature applications
在线阅读 下载PDF
Designing Advanced Liquid Electrolytes for Alkali Metal Batteries:Principles,Progress,and Perspectives
3
作者 Wanming Teng Junxiong Wu +10 位作者 Qinghua Liang Jiaojiao Deng Yu Xu Qiong Liu Biao Wang Ting Ma Ding Nan Jun Liu Baohua Li Qingsong Weng Xiaoliang Yu 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第2期353-380,共28页
The ever-growing pursuit of high energy density batteries has triggered extensive efforts toward developing alkali metal(Li,Na,and K)battery(AMB)technologies owing to high theoretical capacities and low redox potentia... The ever-growing pursuit of high energy density batteries has triggered extensive efforts toward developing alkali metal(Li,Na,and K)battery(AMB)technologies owing to high theoretical capacities and low redox potentials of metallic anodes.Typically,for new battery systems,the electrolyte design is critical for realizing the battery electrochemistry of AMBs.Conventional electrolytes in alkali ion batteries are generally unsuitable for sustaining the stability owing to the hyper-reactivity and dendritic growth of alkali metals.In this review,we begin with the fundamentals of AMB electrolytes.Recent advancements in concentrated and fluorinated electrolytes,as well as functional electrolyte additives for boosting the stability of Li metal batteries,are summarized and discussed with a special focus on structure-composition-performance relationships.We then delve into the electrolyte formulations for Na-and K metal batteries,including those in which Na/K do not adhere to the Li-inherited paradigms.Finally,the challenges and the future research needs in advanced electrolytes for AMB are highlighted.This comprehensive review sheds light on the principles for the rational design of promising electrolytes and offers new inspirations for developing stable AMBs with high performance. 展开更多
关键词 advanced liquid electrolytes alkali metal batteries concentrated and fluorinated electrolytes functional electrolyte additives
在线阅读 下载PDF
A Mathematic Model of Gas-diffusion Electrodes in Contact with Liquid Electrolytes
4
作者 李俊 奚旦立 +1 位作者 石勇 吴锡慧 《Journal of Donghua University(English Edition)》 EI CAS 2008年第4期463-467,共5页
A mathematic model is developed which is applied to analyze the main factors that affect electrode performance and to account for the process of reaction and mass transfer in gas-diffusion electrodes in contact with l... A mathematic model is developed which is applied to analyze the main factors that affect electrode performance and to account for the process of reaction and mass transfer in gas-diffusion electrodes in contact with liquid electrolytes. Electrochemical Thiele modulus φ^2 and electrochemical effectiveness factor η are introduced to elucidate the effects of diffusion on electrochemical reaction and utilization of the gas-diffusion electrode. Profile of the reactant along axial direction is discussed, dependence of electrode potential V on current density J, are predicated by means of the newly developed mathematical model. 展开更多
关键词 fuel cell fuel cell membrane reactor liquid electrolyte gas-diffusion electrode mathematical model
在线阅读 下载PDF
MOF-driven interaction engineering in solid polymer electrolytes for durable lithium metal batteries
5
作者 Liyang Liu De-Xiang Zhang Tian Wen 《Chinese Journal of Structural Chemistry》 2025年第5期10-12,共3页
Compared to currently commercialized lithium-ion batteries,which use flammable organic liquid electrolytes and low-energy-density graphite anodes,solid-state lithium-metal batteries(SSLMBs)offer enhanced energy densit... Compared to currently commercialized lithium-ion batteries,which use flammable organic liquid electrolytes and low-energy-density graphite anodes,solid-state lithium-metal batteries(SSLMBs)offer enhanced energy density and improved safety,making them promising alternatives for next-generation rechargeable batteries[1].As a crucial component of these batteries,solid-state electrolytes—divided into inorganic solid ceramic electrolytes(SCEs)and organic solid polymer electrolytes(SPEs)—are vital for lithium-ion transport and inhibiting lithium dendrite growth.Among them,SCEs exhibit high ionic conductivity,excellent mechanical properties,and outstanding electrochemical and thermal stability.Nevertheless,their brittleness,interfacial challenges with electrodes,and the requirement for high stacking pressure during battery operation significantly hinder their scalable application.In comparison,SPEs are more favourable for manufacturing due to their flexibility and good interfacial compatibility with electrodes[2].Despite these advantages,SPEs still face significant challenges in achieving practical application.Firstly,typical SPEs,such as poly(ethylene oxide)(PEO),poly(vinylidene fluoride)(PVDF),and poly(ethylene glycol)diacrylate(PEGDA),are characterized by high crystallinity,which causes polymer chains to be tightly packed and rigid.This restricts the segmental motion within the SPEs,resulting in low ionic conductivity.Secondly,compared to lithium ions,anions with large ionic radii and low charge density typically form weaker interactions with the polymer chains,which facilitates their mobility and results in a low lithium-ion transference number(tt).Thirdly,the weak interactions between polymer chains in typical SPEs lead to a low elastic modulus,which in turn compromises their poor mechanical strength. 展开更多
关键词 mof driven interaction engineering inorganic solid ceramic electrolytes sces durable lithium metal batteries flammable organic liquid electrolytes solid polymer electrolytes organic solid polymer electrolytes spes organic liquid electrolytes low energy density graphite anodes
原文传递
A perspective on design principle of solid electrolytes
6
作者 Yingzhi Sun 《Journal of Energy Chemistry》 2025年第6期570-576,I0013,共8页
1.Introduction.The ever-increasing demands for high-energy-density power supply systems have driven the rapid development of conventional lithium-ion batteries,of which properties are approaching to the ceiling.In the... 1.Introduction.The ever-increasing demands for high-energy-density power supply systems have driven the rapid development of conventional lithium-ion batteries,of which properties are approaching to the ceiling.In the meantime,the safety of lithium-ion batteries also grabs more attention as their wide application in consumer electronics and electric vehicles.The safety of battery system can be enhanced inherently by replacing the flammable liquid electrolytes with inorganic solid electrolytes,which makes solid-state battery one of the most promising candidates of next-generation energy storage systems[1-3].Additionally,the improvements in energy density are foreseen as solid electrolytes enable lithium metal anode[4-11]and high-voltage cathodes[12-15]. 展开更多
关键词 inorganic solid electrolyteswhich electric vehiclesthe consumer electronics battery system flammable liquid electrolytes SAFETY lithium ion batteries solid electrolytes
在线阅读 下载PDF
Lithium Diffusion-Efficient Ionogels as Polymer Solid Electrolyte for Next-Gen Lithium-Ion Batteries
7
作者 Boluwatife Igbaroola Yassine Eddahani +4 位作者 Patrick Howlett Maria Forsyth Luke O’Dell Nicolas Dupré Jean Le Bideau 《Energy & Environmental Materials》 2025年第1期106-112,共7页
The search for safer next-generation lithium-ion batteries(LIBs)has driven significant research on non-toxic,non-flammable solid electrolytes.However,their electrochemical performance often falls short.This work prese... The search for safer next-generation lithium-ion batteries(LIBs)has driven significant research on non-toxic,non-flammable solid electrolytes.However,their electrochemical performance often falls short.This work presents a simple,one-step photopolymerization process for synthesizing biphasic liquid–solid ionogel electrolytes using acrylic acid monomer and P_(111i4)FSI ionic liquid.We investigated the impact of lithium salt concentration and temperature on ion diffusion,particularly lithium-ion(Li^(+))mobility,within these ionogels.Pulsed-field gradient nuclear magnetic resonance(PFG-NMR)revealed enhanced Li^(+)diffusion in the acrylic acid(AA)-based ionogels compared to their non-confined ionic liquid counterparts.Remarkably,Li^(+)diffusion remained favorable in the ionogels regardless of salt concentration.These AA-based ionogels demonstrate very good ionic conductivity(>1 mS cm^(-1) at room temperature)and a wide electrochemical window(up to 5.3 V vs Li^(+)/Li^(0)).These findings suggest significant promise for AA-based ionogels as polymer solid electrolytes in future solid-state battery applications. 展开更多
关键词 DIFFUSION ionic liquid electrolytes ionogel lithium-ion batteries solid-state batteries
在线阅读 下载PDF
The sulfolane-based liquid electrolyte with LiClO_(4)additive for the wide-temperature operating high nickel ternary cathode
8
作者 Yixin Zhu Shuang He +2 位作者 Jiayi Ding Guangyu Zhao Fang Lian 《Nano Research》 SCIE EI CSCD 2023年第3期3855-3863,共9页
An adequate wide temperature electrolyte for high nickel ternary cathode is urgent to further develop high energy density batteries.Herein,a comprehensive double-salt local high-concentration sulfolane-based electroly... An adequate wide temperature electrolyte for high nickel ternary cathode is urgent to further develop high energy density batteries.Herein,a comprehensive double-salt local high-concentration sulfolane-based electrolyte(DLi)is proposed with specific sheath structure to build stable interface on the LiNi_(0.8)Co_(0.1)Mn_(0.1O2)(NCM811)cathode at wide operating temperature between−60 and 55℃.Lithium perchlorate(LiClO_(4))in combination with high concentration lithium bis-(trifluoromethanesulfonyl)imide(LiTFSI)strengthens the internal interaction between anion and cation in the solvation structure,increasing Li+transference number of the electrolyte to 0.61.Moreover,the structure and component characteristics of the passive interface layer on NCM811 are modulated,decreasing desolvation energy of Li+ions,benefiting Li+transport dynamics especially at low temperature,and also ensuring the interfacial stability at a wide operating temperature range.As a result,the cathode with DLi exhibits excellent high-temperature storage performance and high capacity retention of 80.5%in 100 cycles at 55℃.Meanwhile,the Li||NCM811 cells can deliver high discharge capacity of 160.1,136.1,and 110.3 mAh·g^(−1)under current density of 0.1 C at−20,−40,and−60℃,maintaining 84.5%,71.8%,and 58.2%of the discharge capacity at 30℃,respectively.Moreover,it enables NCM811 cathode to achieve a reversible capacity of 142.8 mAh·g^(−1)in 200 cycles at−20℃and 0.2 C.Our studies shed light on the molecular strategy of wide operational temperature electrolyte for high nickel ternary cathode. 展开更多
关键词 liquid electrolyte high nickel ternary cathode wide temperature interface sheath structure
原文传递
Observation of high ionic conductivity of polyelectrolyte microgels in salt-free solutions
9
作者 Qiangwei Wang Huijiao Liu +5 位作者 Mengjie Wang Haojie Zhang Jianda Xie Xuanwei Hu Shiming Zhou Weitai Wu 《Chinese Chemical Letters》 SCIE CAS CSCD 2024年第4期255-259,共5页
Here, we report an observation that illustrate the potential of polyelectrolyte microgels in salt-free solutions to display a high ionic conductivity. Laser light scattering and ionic conductivity tests on very dilute... Here, we report an observation that illustrate the potential of polyelectrolyte microgels in salt-free solutions to display a high ionic conductivity. Laser light scattering and ionic conductivity tests on very dilute aqueous dispersions of the microgels indicate that both small size and swollen state of gel particles play vital roles, which should favor the counterions to freely penetrate and leave gel particles, and thus can contribute to the ion-conducting property. Upon discovering this on microgels that are composed of imidazolium-based poly(ionic liquid), we also illustrate the generality of the finding to single lithium-ion polyelectrolyte microgels that are of more technically relevant features for applications, for instance, as injectable liquid “microgel-in-solution” electrolytes of high conductivity(ca. 8.2 × 10^(-2)S/m at 25.0 ℃ for1.0 × 10^(-2)g/m L of microgels in a LiNO_(3)-free 1:1 v/v mixture of 1,2-dioxolane and dimethoxymethane) and high lithium-ion transference number(0.87) for use in the rechargeable lithium-sulfur battery. 展开更多
关键词 Polyelectrolhyte STIMULI-RESPONSIVE Single-ion conducting liquid electrolyte Lithium metal battery
原文传递
Pairing nitroxyl radical and phenazine with electron-withdrawing/-donating substituents in “water-in-ionic liquid” for high-voltage aqueous redox flow batteries
10
作者 Zhifeng Huang Rolf Hempelmann +2 位作者 Yiqiong Zhang Li Tao Ruiyong Chen 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第4期713-722,共10页
Aqueous redox-active organic materials-base electrolytes are sustainable alternatives to vanadium-based electrolyte for redoxflow batteries(RFBs)due to the advantages of high ionic conductivity,environmentally benign,s... Aqueous redox-active organic materials-base electrolytes are sustainable alternatives to vanadium-based electrolyte for redoxflow batteries(RFBs)due to the advantages of high ionic conductivity,environmentally benign,safety and low cost.However,the underexplored redox properties of organic materials and the narrow thermodynamic electrolysis window of water(1.23 V)hinder their wide applications.Therefore,seeking suitable organic redox couples and aqueous electrolytes with a high output voltage is highly suggested for advancing the aqueous organic RFBs.In this work,the functionalized phenazine and nitroxyl radical with electron-donating and electron-withdrawing group exhibit redox potential of-0.88 V and 0.78 V vs.Ag,respectively,in“water-in-ionic liquid”supporting electrolytes.Raman spectra reveal that the activity of water is largely suppressed in“water-in-ionic liquid”due to the enhanced hydrogen bond interactions between ionic liquid and water,enabling an electrochemical stability window above 3 V.“Water-in-ionic liquid”supporting electrolytes help to shift redox potential of nitroxyl radical and enable the redox activity of functionalized phenazine.The assembled aqueous RFB allows a theoretical cell voltage of 1.66 V and shows a practical discharge voltage of 1.5 V in the“water-in-ionic liquid”electrolytes.Meanwhile,capacity retention of 99.91%per cycle is achieved over 500 charge/discharge cycles.A power density of 112 mW cm^(-2) is obtained at a current density of 30 mA cm^(-2).This work highlights the importance of rationally combining supporting electrolytes and organic molecules to achieve high-voltage aqueous RFBs. 展开更多
关键词 Aqueous redoxflow batteries Water-in-ionic liquid electrolytes High-voltage aqueous batteries Organic redox-active materials
在线阅读 下载PDF
Tuning hybrid liquid/solid electrolytes by lowering Li salt concentration for lithium batteries
11
作者 Wei Yang Qi-Di Wang +8 位作者 Yu Lei Zi-Pei Wan Lei Qin Wei Yu Ru-Liang Liu Deng-Yun Zhai Hong Li Bao-Hua Li Fei-Yu Kang 《Chinese Physics B》 SCIE EI CAS CSCD 2018年第6期488-495,共8页
Hybrid liquid/solid electrolytes(HLSEs) consisting of conventional organic liquid electrolyte(LE), polyacrylonitrile(PAN), and ceramic lithium ion conductor Li(1.5)Al(0.5)Ge(1.5)(PO4)3(LAGP) are propos... Hybrid liquid/solid electrolytes(HLSEs) consisting of conventional organic liquid electrolyte(LE), polyacrylonitrile(PAN), and ceramic lithium ion conductor Li(1.5)Al(0.5)Ge(1.5)(PO4)3(LAGP) are proposed and investigated. The HLSE has a high ionic conductivity of over 2.25 × 10^(-3) S/cm at 25?C, and an extended electrochemical window of up to 4.8 V versus Li/Li+. The Li|HLSE|Li symmetric cells and Li|HLSE|Li FePO4 cells exhibit small interfacial area specific resistances(ASRs) comparable to that of LE while much smaller than that of ceramic LAGP electrolyte, and excellent performance at room temperature. Bis(trifluoromethane sulfonimide) salt in HLSE significantly affects the properties and electrochemical behaviors. Side reactions can be effectively suppressed by lowering the concentration of Li salt. It is a feasible strategy for pursuing the high energy density batteries with higher safety. 展开更多
关键词 lithium battery hybrid liquid/solid electrolyte interfacial resistance salt concentration
原文传递
Progress in electrolytes for beyond-lithium-ion batteries 被引量:8
12
作者 Juyan Zhang Xuhui Yao +2 位作者 Ravi KMisra Qiong Cai Yunlong Zhao 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2020年第9期237-257,共21页
The constant increase in global energy demand and stricter environmental standards are calling for advanced energy storage technologies that can store electricity from intermittent renewable sources such as wind,solar... The constant increase in global energy demand and stricter environmental standards are calling for advanced energy storage technologies that can store electricity from intermittent renewable sources such as wind,solar,and tidal power,to allow the broader implementation of the renewables.The gridoriented sodium-ion batteries,potassium ion batteries and multivalent ion batteries are cheaper and more sustainable alternatives to Li-ion,although they are still in the early stages of development.Additional optimisation of these battery systems is required,to improve the energy and power density,and to solve the safety issues caused by dendrites growth in anodes.Electrolyte,one of the most critical components in these batteries,could significantly influence the electrochemical performances and operations of batteries.In this review,the definitions and influences of three critical components(salts,solvents,and additives)in electrolytes are discussed.The significant advantages,challenges,recent progress and future optimisation directions of various electrolytes for monovalent and multivalent ions batteries(i.e.organic,ionic liquid and aqueous liquid electrolytes,polymer and inorganic solid electrolytes)are summarised to guide the practical application for grid-oriented batteries. 展开更多
关键词 electrolytes Organic liquid electrolyte Aqueous electrolyte Ionic liquid electrolyte Solid-state electrolyte Sodium-ion batteries Potassium ion batteries Multivalent ion batteries
原文传递
Face-sharing strategy helps achieve lithium superionic conductivity in face-centred cubic oxides
13
作者 Yepei Li Kun Lin 《Chinese Journal of Structural Chemistry》 2025年第4期9-11,共3页
All-solid-state lithium ion batteries(ASSLIBs)have attracted much attention due to their high safety and increased energy density,which have become a substitute to conventional liquid electrolyte batteries[1].The deve... All-solid-state lithium ion batteries(ASSLIBs)have attracted much attention due to their high safety and increased energy density,which have become a substitute to conventional liquid electrolyte batteries[1].The development of high-performance solid electrolyte is the key to the development of solid-state battery technology.Solid-state electrolyte(SSE)materials should have high ionic conductivity,poor electronic conductivity,wide electrochemical window,and low electrode and electrolyte interface resistance. 展开更多
关键词 lithium superionic conductivity lithium ion batteries asslibs face centred cubic oxides electronic conductivitywide liquid electrolyte batteries electrode electrolyte interface resistance all solid state lithium ion batteries high safety
原文传递
Facilitating ultra-fast lithium ion diffusion in face-centered cubic oxides via over-stoichiometric face-sharing configurations
14
作者 Xiaohan Zhang Bo Xiao 《Chinese Journal of Structural Chemistry》 2025年第2期3-4,共2页
As an important sustainable energy source,Li-ion batteries have been widely used in mobile phones,electric vehicles,large-scale energy storage and aerospace.However,due to the inevitable safety risks of traditional li... As an important sustainable energy source,Li-ion batteries have been widely used in mobile phones,electric vehicles,large-scale energy storage and aerospace.However,due to the inevitable safety risks of traditional liquid Li-ion batteries,the use of all-solid-state batteries to replace organic liquid electrolytes has become one of the most effective ways to solve safety problem.Solid-state electrolyte(SSE)is the core part of allsolid-state Li-ion battery,and ideal SSE has the characteristics of high ionic conductivity,wide enough electrochemical stability window,suitable mechanical strength and excellent chemical stability,the first among which is particularly an essential prerequisite.While,so far only a few SSEs exhibit the Li ionic conductivities higher than 10^(-4) S/cm at room temperature. 展开更多
关键词 ultra fast lithium ion diffusion safety risks safety problemsolid state stoichiometric face sharing configurations all solid state batteries organic liquid electrolytes sustainable energy sourceli ion face centered cubic oxides
原文传递
Research progress on electrolytes for fast-charging lithium-ion batteries 被引量:3
15
作者 Dan Zhang Le Li +3 位作者 Weizhuo Zhang Minghui Cao Hengwei Qiu Xiaohui Ji 《Chinese Chemical Letters》 SCIE CAS CSCD 2023年第1期84-90,共7页
Fast-charging is considered to be a key factor in the successful expansion and use of electric vehicles.Current lithium-ion batteries(LIBs)exhibit high energy density,enabling them to be used in electric vehicles(EVs)... Fast-charging is considered to be a key factor in the successful expansion and use of electric vehicles.Current lithium-ion batteries(LIBs)exhibit high energy density,enabling them to be used in electric vehicles(EVs)over long distances,but they take too long to charge.In addition to modifying the electrode and battery structure,the composition of the electrolyte also affects the fast-charging capability of LIBs.This review provides a comprehensive and in-depth overview of the research progress,basic mechanism,scientific challenges and design strategies of the new fast-charging solution system,focusing on the influences that the compositions of liquid and solid electrolytes have on the fast-charging performance of LIBs.Finally,new insights,promising directions and potential solutions for the electrolytes of fast-charging systems are proposed to stimulate further research on revolutionary next-generation fastcharging LIB chemistry. 展开更多
关键词 Fast charging Lithium-ion battery liquid electrolytes Solid-state electrolytes SALTS ADDITIVE SOLVENT
原文传递
Nanoconfinement effect of nanoporous carbon electrodes for ionic liquid-based aluminum metal anode 被引量:1
16
作者 Juhee Yoon Seongbak Moon +3 位作者 Son Ha Hyung-Kyu Lim Hyoung-Joon Jin Young Soo Yun 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第11期121-127,I0005,共8页
Rechargeable aluminum batteries(RABs),which use earth-abundant and high-volumetric-capacity metal anodes(8040 m Ah cm-3),have great potential as next-generation power sources because they use cheaper resources to deli... Rechargeable aluminum batteries(RABs),which use earth-abundant and high-volumetric-capacity metal anodes(8040 m Ah cm-3),have great potential as next-generation power sources because they use cheaper resources to deliver higher energies,compared to current lithium ion batteries.However,the mechanism of charge delivery in the newly developed,ionic liquid-based electrolytic system for RABs differs from that in conventional organic electrolytes.Thus,targeted research efforts are required to address the large overpotentials and cycling decay encountered in the ionic liquid-based electrolytic system.In this study,a nanoporous carbon(NPC)electrode with well-developed nanopores is used to develop a high-performance aluminum anode.The negatively charged nanopores can provide quenched dynamics of electrolyte molecules in the aluminum deposition process,resulting in an increased collision rate.The fast chemical equilibrium of anionic species induced by the facilitated anionic collisions leads to more favorable reduction reactions that form aluminum metals.The nanoconfinement effect causes separated nucleation and growth of aluminum nanoparticles in the multiple confined nanopores,leading to higher coulombic efficiencies and more stable cycling performance compared with macroporous carbon black and 2D stainless steel electrodes. 展开更多
关键词 Nanoconfinement effect Nanoporous carbon Ionic liquid electrolyte Metal anode Aluminum batteries Multivalent batteries
在线阅读 下载PDF
Electrolyte-dependent formation of solid electrolyte interphase and ion intercalation revealed by in situ surface characterizations 被引量:1
17
作者 Shiwen Li Chao Wang +3 位作者 Caixia Meng Yanxiao Ning Guohui Zhang Qiang Fu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第4期718-726,共9页
The formation of solid electrolyte interphase(SEI) and ion intercalation are two key processes in rechargeable batteries, which need to be explored under dynamic operating conditions. In this work, both planar and san... The formation of solid electrolyte interphase(SEI) and ion intercalation are two key processes in rechargeable batteries, which need to be explored under dynamic operating conditions. In this work, both planar and sandwich model lithium batteries consisting of Li metal | ionic liquid electrolyte | graphite electrode have been constructed and investigated by a series of in situ surface analysis platforms including atomic force microscopy, Raman and X-ray photoelectron spectroscopy. It is found that the choice of electrolyte, including the concentration and contents, has a profound effect on the SEI formation and evolution, and the subsequent ion intercalation. A smooth and compact SEI is preferably produced in highconcentration electrolytes, with FSI^(-) salt superior to TFSI^(-) salt, facilitating the lithiation/delithiation to achieve high capacity and excellent cycle stability, while suppressing the co-intercalation of electrolyte solvent ions. The innovative research scenario of well-defined model batteries in combination with multiple genuinely in situ surface analysis methods presented herein leads to insightful results, which provide valuable strategies for the rational design and optimization of practical batteries, and energy storage devices in general. 展开更多
关键词 Lithium ion batteries Solid electrolyte interphase Ion intercalation In situ surface characterization Ionic liquid electrolyte
在线阅读 下载PDF
Recent research progress on quasi-solid-state electrolytes for dye-sensitized solar cells 被引量:1
18
作者 Asif Mahmood 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2015年第6期686-692,共7页
Dye-sensitized solar cells (DSSCs) are the most promising, low cost and most extensively investigated solar cells. They are famous for their clean and efficient solar energy conversion. Nevertheless this, long-time ... Dye-sensitized solar cells (DSSCs) are the most promising, low cost and most extensively investigated solar cells. They are famous for their clean and efficient solar energy conversion. Nevertheless this, long-time sta- bility is still to be acquired. In recent years research on solid and quasi-solid state electrolytes is extensively in- creased. Various quasi-solid electrolytes, including composites polymer electrolytes, ionic liquid electrolytes, thermoplastic polymer electrolytes and thermosetting polymer electrolytes have been used. Performance and stability of a quasi-solid state electrolyte are between liquid and solid electrolytes. High photovoltaic performances of QS-DSSCs along better long-term stability can be obtained by designing and optimizing quasi-solid electrolytes. It is a prospective candidate for highly efficient and stable DSSCs. 展开更多
关键词 Dye-sensitized solar cells Quasi-solid electrolytes Composites polymer electrolytes Ionic liquid electrolytes Thermoplastic polymer electrolytes and thermosetting polymer electrolytes
在线阅读 下载PDF
Opportunities for ionic liquid-based electrolytes in rechargeable lithium batteries 被引量:6
19
作者 Xingxing Wang Letao Jin +2 位作者 Wenfang Feng Zhibin Zhou Heng Zhang 《Science China Chemistry》 SCIE EI CAS CSCD 2023年第12期3443-3466,共24页
Ionic liquids(ILs)have been deemed as promising electrolyte materials for building safer and highly-performing rechargeable lithium batteries,owing to their negligible volatility,low-flammability,and high thermal stab... Ionic liquids(ILs)have been deemed as promising electrolyte materials for building safer and highly-performing rechargeable lithium batteries,owing to their negligible volatility,low-flammability,and high thermal stability,etc.The profound structural designability of IL cations and anions allows relatively facile regulations of their key physical(e.g.,viscosities,and ionic conductivities)and electrochemical(e.g.,anodic,and cathodic stabilities)properties,and therefore fulfills the critical requirements stipulated by various battery configurations.In this review,a historical overview on the development of ILs for nonaqueous electrolytes is provided,and the correlations between chemical structures and the basic properties of ILs are discussed.Furthermore,the key achievements in the field of IL-based electrolytes are scrutinized,including liquid electrolytes,polymer electrolytes,and composite polymer electrolytes.Based on literature reports and our previous work in this field,possible strategies to improve the performance of IL-based electrolytes and their rechargeable batteries are discussed.The present work not only provides the status quo in the development of IL-based electrolytes but also inspires the structural design of ILs for other kinds of rechargeable batteries(e.g.,sodium,potassium,zinc batteries). 展开更多
关键词 lithium batteries ionic liquids liquid electrolytes polymer electrolytes composite polymer electrolytes
原文传递
Advanced Electrolytes for Rechargeable Lithium Metal Batteries with High Safety and Cycling Stability
20
作者 Yuli Huang Bowei Cao +1 位作者 Zhen Geng Hong Li 《Accounts of Materials Research》 2024年第2期184-193,共10页
CONSPECTUS:With the rapid development of advanced energy storage equipment,particularly lithium-ion batteries(LIBs),there is a growing demand for enhanced battery energy density across various fields.Consequently,an i... CONSPECTUS:With the rapid development of advanced energy storage equipment,particularly lithium-ion batteries(LIBs),there is a growing demand for enhanced battery energy density across various fields.Consequently,an increasing number of high-specificcapacity cathode and anode materials are being rapidly developed.Concurrently,challenges pertaining to insufficient battery safety and stability arising from liquid electrolytes(LEs)with flammability persistently emerge.LEs possess the advantages of exceptional ionic conductivity and can operate within a broader temperature range.After two decades of continuous development in commercial applications,it currently stands as the most widely employed electrolyte material in lithium-ion batteries.However,the existing LE primarily consists of a carbonate electrolyte with a low flash point,low boiling point,and flammable and volatile nature,thereby rendering fire and explosion risks inevitable.Compared with LEs,solid-state electrolytes(SSEs)exhibit relatively good flame retardancy and possess the potential to inhibit lithium dendrite formation,and they are regarded as promising electrolyte materials.Nevertheless,numerous challenges of SSEs still need to be addressed at this stage.The inadequate solid−solid contact between the solid electrolyte and the electrode material,as well as the insufficient contact stability,significantly impact the cycling stability of solid-state batteries.Furthermore,unlike liquid electrolytes,the solid electrolyte lacks fluidity and cannot effectively penetrate the pores of porous electrodes,necessitating additional cathode design considerations.The incompatibility with existing liquid battery production processes and high cost further impede the advancement of solid-state batteries.In response to the challenges associated with solid-state batteries,recent research has introduced in situ solidification solutions.By transformation of the liquid into a solid electrolyte within the battery,this method facilitates excellent interfacial contact between the electrolyte and electrode material while ensuring compatibility with existing production equipment.Consequently,these advantages have propelled in situ solidification to become a prominent research methodology for solid-state batteries.Currently,electrolyte research is undergoing a transitional period from liquid to solid-state,accompanying the emergence of numerous hybrid solid−liquid electrolytes(HSLEs).HSLEs not only exhibit the high ionic conductivity characteristic of liquid electrolytes but also enhance battery safety and stability to a certain extent.HSLEs are found in various forms,including hybrid systems comprising inorganic solid electrolytes and LEs,as well as gel systems consisting of polymer electrolytes and LEs.Additionally,there are in situ solidification technologies that enable the gel electrolyte to be formed internally within the battery.This concept introduces the development status of electrolytes with improved safety and stability from the perspectives of LEs,SSEs,and HSLEs. 展开更多
关键词 liquid electrolytes les rechargeable lithium metal batteries liquid electrolytes solid state electrolytes advanced energy storage equipmentparticularly cycling stability advanced electrolytes high safety
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部