The diffusion coefficients of aqueous solutions ofglycine, L-alanine, L-valine and L-isoleucine at 298.15 K were determined by holographic interferometry with accuracy and promptness while without disturbance. The den...The diffusion coefficients of aqueous solutions ofglycine, L-alanine, L-valine and L-isoleucine at 298.15 K were determined by holographic interferometry with accuracy and promptness while without disturbance. The density and viscosity of these solutions were also determined. According to original Gordon model, a model for correlating the diffusion coefficients of amino acids in aqueous solutions was developed and applied. The results showed that this model provided significant convenience in correlation of diffusion coefficients for amino acids system.展开更多
Ray tracing method is used to study the propagation of collimated beams in a liquid-core cylindrical lens(LCL),which has dual functions of diffusion cell and image formation.The diffusion images on the focal plane of ...Ray tracing method is used to study the propagation of collimated beams in a liquid-core cylindrical lens(LCL),which has dual functions of diffusion cell and image formation.The diffusion images on the focal plane of the used LCL are simulated by establishing and solving both linear and nonlinear ray equations,the calculated results indicate that the complex imaging results of LCL in inhomogeneous media can be treated by the law of ray propagation in homogeneous media under the condition of small refractive index gradient of diffusion solution.Guided by the calculation conditions,the diffusion process of triethylene glycol aqueous solution is experimentally studied at room temperature by using the LCL in this paper.The spatial and temporal concentration profile Ce(z,t)of diffusion solution is obtained by analyzing diffusion image appearing on the focal plane of the LCL;Then,the concentration-dependent diffusion coefficient is assumed to be a polynomial D(C)=D0×(1+α1C+α2C2+α3C3+…).The finite difference method is used to solve the Fick diffusion equation for calculating numerically the concentration profiles Cn(z,t).The D(C)of triethylene glycol aqueous solution is obtained by comparing the Cn(z,t)with Ce(z,t).Finally,the obtained polynomial D(C)is used to calculate the refractive index profiles nn(z,t)s of diffusion solution in the used LCL.Based on the ray propagation law in inhomogeneous media and the calculated n(z,t),the ray tracing method is used again to simulate the dynamic images of the whole experimental diffusion process to varify the correctness of the calculated D(C).The method presented in this work opens up a new way for both measuring and verifying the concentration-dependent liquid diffusion coefficients.展开更多
There is considerable interest in using ionic liquids(ILs) as protic electrolytes. However, the reported proton transfer rate in ILs is quite slow. In this study, we report functionalizing imidazolium ILs with alcohol...There is considerable interest in using ionic liquids(ILs) as protic electrolytes. However, the reported proton transfer rate in ILs is quite slow. In this study, we report functionalizing imidazolium ILs with alcohol hydroxyls, aiming at constructing hydrogen bonding networks in the electrolyte, can stimulate fast proton hopping transfer. For demonstration, the diffusion of proton and Cl. in 1-(3-hydroxypropyl)-3-methylimidazolium tetrafluoroboride(C_3OHmimBF_4) were studied using cyclic voltammetry and potentiostatic method at 30 °C. The diffusion coefficient of proton is about one order of magnitude higher than that of Cl. in the same electrolyte, and about 5 times that of proton in the non-hydydroxyl 1-(butyl)-3-methylimidazolium tetrafluoroboride(BmimBF_4) when normalized to the diffusion coefficients of Cl. in respective ILs. In the meantime, 1H NMR spectra revealed a strong hydrogen bonding interaction between proton and C_3OHmimBF_4 which is absent between proton and BmimBF_4, thus the significantly higher diffusion coefficient of proton in C_3OHmimBF_4 may suggest the formation of effective hydrogen bonding networks, enabling rapid proton hopping via the Grotthuss mechanism.展开更多
基金Supported by the National 973 Program of China (No. 2003CB615701)the National 863 Project of China (No. 2003AA328020)the National Natural Science Foundation of China (No. 200276034)the Educational Ministry Doctor Foundation of China (No 2000005608).
文摘The diffusion coefficients of aqueous solutions ofglycine, L-alanine, L-valine and L-isoleucine at 298.15 K were determined by holographic interferometry with accuracy and promptness while without disturbance. The density and viscosity of these solutions were also determined. According to original Gordon model, a model for correlating the diffusion coefficients of amino acids in aqueous solutions was developed and applied. The results showed that this model provided significant convenience in correlation of diffusion coefficients for amino acids system.
基金the National Natural Science Foundation of China(Grant No.11804296)the Joint Key Project of Yunnan Province,China(Grant Nos.2018FY001-020 and 2018ZI002)the Fund from the Educational Department of Yunnan Province,China(Grant No.2016CYH05).
文摘Ray tracing method is used to study the propagation of collimated beams in a liquid-core cylindrical lens(LCL),which has dual functions of diffusion cell and image formation.The diffusion images on the focal plane of the used LCL are simulated by establishing and solving both linear and nonlinear ray equations,the calculated results indicate that the complex imaging results of LCL in inhomogeneous media can be treated by the law of ray propagation in homogeneous media under the condition of small refractive index gradient of diffusion solution.Guided by the calculation conditions,the diffusion process of triethylene glycol aqueous solution is experimentally studied at room temperature by using the LCL in this paper.The spatial and temporal concentration profile Ce(z,t)of diffusion solution is obtained by analyzing diffusion image appearing on the focal plane of the LCL;Then,the concentration-dependent diffusion coefficient is assumed to be a polynomial D(C)=D0×(1+α1C+α2C2+α3C3+…).The finite difference method is used to solve the Fick diffusion equation for calculating numerically the concentration profiles Cn(z,t).The D(C)of triethylene glycol aqueous solution is obtained by comparing the Cn(z,t)with Ce(z,t).Finally,the obtained polynomial D(C)is used to calculate the refractive index profiles nn(z,t)s of diffusion solution in the used LCL.Based on the ray propagation law in inhomogeneous media and the calculated n(z,t),the ray tracing method is used again to simulate the dynamic images of the whole experimental diffusion process to varify the correctness of the calculated D(C).The method presented in this work opens up a new way for both measuring and verifying the concentration-dependent liquid diffusion coefficients.
基金supported by the National Natural Science Foundation of China(21173161,21673164)the Large-scale Instrument and Equipment Sharing Foundation of Wuhan University
文摘There is considerable interest in using ionic liquids(ILs) as protic electrolytes. However, the reported proton transfer rate in ILs is quite slow. In this study, we report functionalizing imidazolium ILs with alcohol hydroxyls, aiming at constructing hydrogen bonding networks in the electrolyte, can stimulate fast proton hopping transfer. For demonstration, the diffusion of proton and Cl. in 1-(3-hydroxypropyl)-3-methylimidazolium tetrafluoroboride(C_3OHmimBF_4) were studied using cyclic voltammetry and potentiostatic method at 30 °C. The diffusion coefficient of proton is about one order of magnitude higher than that of Cl. in the same electrolyte, and about 5 times that of proton in the non-hydydroxyl 1-(butyl)-3-methylimidazolium tetrafluoroboride(BmimBF_4) when normalized to the diffusion coefficients of Cl. in respective ILs. In the meantime, 1H NMR spectra revealed a strong hydrogen bonding interaction between proton and C_3OHmimBF_4 which is absent between proton and BmimBF_4, thus the significantly higher diffusion coefficient of proton in C_3OHmimBF_4 may suggest the formation of effective hydrogen bonding networks, enabling rapid proton hopping via the Grotthuss mechanism.