期刊文献+
共找到139,340篇文章
< 1 2 250 >
每页显示 20 50 100
Aqueous Ionic Liquid Mediated Hydrolysis of Native Corn Starch to Obtain Different Low Molecular Weight Starch
1
作者 YANG Rui WANG Xiaolin +1 位作者 DANG Qian LIU Zhengping 《高等学校化学学报》 北大核心 2026年第1期153-161,共9页
In this work,we proposed a strategy for the hydrolysis of native corn starch after the treatment of corn starch in an ionic liquid aqueous solution,and it is an awfully“green”and simple means to obtain starch with l... In this work,we proposed a strategy for the hydrolysis of native corn starch after the treatment of corn starch in an ionic liquid aqueous solution,and it is an awfully“green”and simple means to obtain starch with low molecular weight and amorphous state.X-ray diffraction results revealed that the natural starch crystalline region was largely disrupted by ionic liquid owing to the broken intermolecular and intramolecular hydrogen bonds.After hydrolysis,the morphology of starch changed from particles of native corn starch into little pieces,and their molecular weight could be effectively regulated during the hydrolysis process,and also the hydrolyzed starch samples exhibited decreased thermal stability with the extension of hydrolysis time.This work would counsel as a powerful tool for the development of native starch in realistic applications. 展开更多
关键词 Native corn starch Ionic liquid HYDROLYSIS Molecular weight
在线阅读 下载PDF
Advancing pediatric cancer diagnosis: the promise of single-cell liquid biopsy for early detection and surveillance
2
作者 Pavithra Ayyadurai Chinnasamy Ragavendran 《Biomedical Engineering Communications》 2026年第1期13-25,共13页
Pediatric cancers are particularly significant due to their uncommon occurrence in children,driven by a variety of underlying factors.Because of their distinct molecular and genetic makeup,which makes early detection ... Pediatric cancers are particularly significant due to their uncommon occurrence in children,driven by a variety of underlying factors.Because of their distinct molecular and genetic makeup,which makes early detection challenging,they are linked to problems.Diagnostic methods like imaging and tissue biopsy are only effective when the tumor has reached a size that can be identified.The liquid biopsy technique,the least intrusive and most convenient diagnostic method,is the subject of this review.It focuses on the significance of single cell analysis in examining uncommon cancer types.The many biomarkers found in bodily fluids and the cancer types they are linked to in children have been assessed,as has the potential route towards early detection and cancer recurrence forecasting.Combining the single cell liquid biopsy with the newest technologies,such as computational and multi-omics approaches,which have improved the efficiency of processing massive and unique genetic data,appears promising.This article discusses on a number of case reports for uncommon pediatric malignancies,such as Neuroblastoma,Medulloblastoma,Wilms Tumor,Rhabdomyosarcoma,Ewing Sarcoma,and Retinoblastoma,as well as their liquid biopsy profiles.Furthermore,the findings raise ethical questions regarding the therapeutic application of the technology as well as possible difficulties related to clinical translation.The likelihood that this single cell liquid biopsy will be clinically validated and eventually used as a routine diagnostic tool for uncommon pediatric cancers will rise with the realistic approach to sensitivity monitoring,specificity upgrading,and optimization. 展开更多
关键词 pediatric cancer single cell liquid biopsy biomarkers NEUROBLASTOMA MEDULLOBLASTOMA wilms tumor
暂未订购
Nature-Inspired Upward Hanging Evaporator with Photothermal 3D Spacer Fabric for Zero-Liquid-Discharge Desalination
3
作者 Ye Peng Yang Shao +3 位作者 Longqing Zheng Haoxuan Li Meifang Zhu Zhigang Chen 《Nano-Micro Letters》 2026年第1期545-561,共17页
While desalination is a key solution for global freshwater scarcity,its implementation faces environmental challenges due to concentrated brine byproducts mainly disposed of via coastal discharge systems.Solar interfa... While desalination is a key solution for global freshwater scarcity,its implementation faces environmental challenges due to concentrated brine byproducts mainly disposed of via coastal discharge systems.Solar interfacial evaporation offers sustainable management potential,yet inevitable salt nucleation at evaporation interfaces degrades photothermal conversion and operational stability via light scattering and pathway blockage.Inspired by the mangrove leaf,we propose a photothermal 3D polydopamine and polypyrrole polymerized spacer fabric(PPSF)-based upward hanging model evaporation configuration with a reverse water feeding mechanism.This design enables zero-liquiddischarge(ZLD)desalination through phase-separation crystallization.The interconnected porous architecture and the rough surface of the PPSF enable superior water transport,achieving excellent solar-absorbing efficiency of 97.8%.By adjusting the tilt angle(θ),the evaporator separates the evaporation and salt crystallization zones via controlled capillary-driven brine transport,minimizing heat dissipation from brine discharge.At an optimal tilt angle of 52°,the evaporator reaches an evaporation rate of 2.81 kg m^(−2) h^(−1) with minimal heat loss(0.366 W)under 1-sun illumination while treating a 7 wt%waste brine solution.Furthermore,it sustains an evaporation rate of 2.71 kg m^(−2) h^(−1) over 72 h while ensuring efficient salt recovery.These results highlight a scalable,energy-efficient approach for sustainable ZLD desalination. 展开更多
关键词 DESALINATION Solar interfacial evaporation Biomimetic design Zero liquid discharge Thermal management
在线阅读 下载PDF
Grain boundary engineered bifunctional PtCuMo aerogel for anodizing reactions in broad-spectrum direct liquid fuel cells
4
作者 Jingxiu Liu Qianzhuo Lei +5 位作者 Jin Zhang Lishou Ban Yanyi Liu Longchao Zhuo Xijun Liu Jia He 《Nano Research》 2026年第1期290-300,共11页
The operational efficiency of membrane electrode assemblies in direct liquid fuel cells is critically dependent on the fuel purity in the anode compartment.To address the inherent challenge of fuel mixing problem in a... The operational efficiency of membrane electrode assemblies in direct liquid fuel cells is critically dependent on the fuel purity in the anode compartment.To address the inherent challenge of fuel mixing problem in alcohol systems,we propose a rational catalyst design strategy focusing on morphological and compositional optimization.Sodium borohydride-derived PtCuMo alloy aerogels(AA)exhibit abundant grain boundary defects,while solvothermally prepared nanowire arrays(NA)maintain excellent single-crystalline characteristics.Density functional theory calculations demonstrate that engineered grain boundaries can effectively broaden the adsorption energy window for key reaction intermediates,enabling superior adaptability to diverse catalytic pathways.By precisely controlling Cu content,we identified Pt_(3)Cu_(3)Mo_(0.5)AA as the optimal catalyst configuration,demonstrating 150% enhancement in methanol oxidation reaction activity compared to Pt_(3)Cu_(6)Mo_(0.5)NA(1.5 vs.0.6 A·mg_(Pt)^(-1))and 17% improvement in ethanol oxidation reaction performance versus Pt_(3)Cu_(1)Mo_(0.5)NA(0.82 vs.0.70 A·mg_(Pt)^(-1)).Practical application testing using gas diffusion electrodes(anode loading:0.85 mg_(Pt)·cm^(-2))achieved a mass-specific power density of 14.14 W·g_(Pt)^(-1)in 1:1 methanol/ethanol blends,representing a 3.5-fold improvement over commercial Pt/C benchmarks.This work establishes a fundamental framework for developing highperformance,broad-spectrum electrocatalysts in advanced fuel cell systems. 展开更多
关键词 grain boundary engineering PtCuMo nanowires methanol oxidation reaction ethanol oxidation reaction broad-spectrum direct liquid fuel cells
原文传递
Liquid biopsies in psychiatric disorders:Identifying peripheral biomarkers of brain health
5
作者 Jennifer L.Payne Sarven Sabunciyan 《Neural Regeneration Research》 2026年第2期691-692,共2页
The inability to access brain tissue has greatly hindered our ability to study and care for individuals suffering from psychiatric and neurological conditions.Critics have questioned efforts to develop peripheral bloo... The inability to access brain tissue has greatly hindered our ability to study and care for individuals suffering from psychiatric and neurological conditions.Critics have questioned efforts to develop peripheral blood biomarkers in neurological and psychiatric disorders based on the assertion that disease pathology is limited to the brain.The discovery that all tissues,including the brain,release extracellular vesicles(Raposo and Stoorvogel,2013)and cell free DNAs(Chan et al.,2013)into various body fluids has provided a potential way to measure activity from inaccessible tissues like the central nervous system(CNS)and has given rise to the term“liquid biopsy.”The development of liquid biopsies that can diagnose and predict the course of psychiatric and neurological disorders would be transformative.The ability to predict episodic events such as mania,depression,and risk for suicide would be particularly useful for psychiatric care as it would enable the development of interventions that prevent mortality and improve outcomes.Additionally,biomarkers that are informative about drug response and aid in treatment decisions would be a significant advance in psychiatric care as it would prevent patients from having to endure multiple courses of ineffective treatments and side effects. 展开更多
关键词 develop peripheral blood biomarkers liquid biopsies study care individuals cell free dnas chan extracellular vesicles raposo body fluids neurological psychiatric disorders peripheral biomarkers
暂未订购
[BMPyrr][NTf_(2)]ionic liquid functionalized Au/Pd heterostructure with charge redistribution as effective electrocatalyst for CO_(2)reduction
6
作者 Yu Shi Hao Tang +7 位作者 Dechao Chen Peng Li Teng Wang Haoyang Wu Mingxia Gao Wenping Sun Chu Liang Xiaoyu Zhang 《Nano Research》 2026年第1期377-386,共10页
Electrocatalytic CO_(2)reduction reaction(CO_(2)RR)into value-added products has been regarded as an effective way to achieve the goal of carbon neutrality.The intrinsic activity of electrocatalysts,as well as the rea... Electrocatalytic CO_(2)reduction reaction(CO_(2)RR)into value-added products has been regarded as an effective way to achieve the goal of carbon neutrality.The intrinsic activity of electrocatalysts,as well as the reaction microenvironment,play an important role in improving the conversion efficiency of CO_(2).Herein,we report an ionic liquidfunctionalized Au/Pd heterostructure as the electrocatalyst for CO_(2)RR via introducing 1-butyl-1-methylpyrrolidine bis(trifluoromethylsulfonyl)imide([BMPyrr][NTf_(2)])ionic liquid.Au nanoclusters are epitaxially confined on Pd nanosheets in heterostructure,resulting in abundant and well-defined heterointerfaces that work as highly active catalytic sites.Notably,the[BMPyrr][NTf_(2)]achieves charge redistribution at the Au-Pd heterointerfaces,which helps to stabilize*CO_(2)^(˙-)intermediate and further reduce the energy barrier of *COOH formation.Furthermore,the[BMPyrr][NTf_(2)]molecules with high CO_(2)adsorption ability is beneficial to construct a CO_(2)-rich reaction microenvironment at the gas-liquid-solid three-phase interface.The hybrid electrocatalyst exhibits greatly improved CO Faradaic efficiency in a broad potential range and CO partial current density.This work provides a novel strategy for designing robust CO_(2)RR electrocatalysts via ionic liquid-mediated surface modification. 展开更多
关键词 CO_(2)reduction reaction(CO_(2)RR) ionic liquids(ILs) ELECTROCATALYST electron redistribution reaction microenvironment
原文传递
Physicochemical design of magneto-responsive confined interfaces for manipulation of nonmagnetic liquids
7
作者 Jing Liu Ming Li +3 位作者 Jian Zhang Xinyu Li Yuqing Zheng Xu Hou 《Chinese Chemical Letters》 2025年第8期231-239,共9页
Controllable liquid manipulation is of paramount scientific and technological importance in various fields,such as the chemical industry,biomedicine,and agricultural production.Magnetic actuation,characterized by rapi... Controllable liquid manipulation is of paramount scientific and technological importance in various fields,such as the chemical industry,biomedicine,and agricultural production.Magnetic actuation,characterized by rapid,contactless,and environmentally benign operation,has emerged as a promising approach for precise liquid control.However,conventional magnetic strategies typically govern droplet movement on open surfaces,facing limitations such as restricted liquid volumes,uncertain flow paths,and inevitable evaporation,thereby constraining their broader practical applications.Recently,a variety of magneticdriven strategies have been developed to dynamically regulate liquids within enclosed spaces,especially through physicochemical mechanisms.These approaches provide efficient control over liquid behavior by leveraging magnetically induced chemical changes,structural deformations,and dragging motions,opening new opportunities for flexible and versatile fluid management.This review explores the design and mechanisms of magneto-responsive confined interfaces for the manipulation of nonmagnetic liquids,highlighting key advancements and potential applications including liquid valves,liquid mixing,liquid flow regulation,and liquid pumping.Finally,the existing challenges and future prospects in this field are presented. 展开更多
关键词 Physicochemical design Magnetic response Confinedinterfaces liquid manipulation Nonmagnetic liquids
原文传递
Quantum flutter from the nonlinear Luttinger liquid perspective
8
作者 Sheng Wang Zhehao Zhang Xi-Wen Guan 《Communications in Theoretical Physics》 2025年第5期153-158,共6页
Quantum flutter is a ubiquitous phenomenon which can be observed from the fast moving impurity injected into a fermionic or bosonic medium of quantum liquid.In this scenario,one usually considers a medium of a fully p... Quantum flutter is a ubiquitous phenomenon which can be observed from the fast moving impurity injected into a fermionic or bosonic medium of quantum liquid.In this scenario,one usually considers a medium of a fully polarized state and injects a spin-flipped impurity as the initial state.When the initial velocity of the impurity is beyond the intrinsic sound velocity of the medium,the impurity momentum dramatically exhibits a long-lived periodic oscillation with the periodicity remaining invariant with respect to the initial velocity.In this paper,we show that such a novel phenomenon can be explained by a linear Luttinger liquid coupled to a deep hole in the Fermi sea.Once the deep hole excitations are involved and the impurity momentum surpasses the Fermi momentum,the propagator thus displays a periodic oscillation after a quick relaxation decay.The oscillation periodicity is solely determined by the energy of the deepest hole excitation.Our result provides deep insights into the dynamical behavior of quantum impurities immersed into one-dimensional quantum liquids. 展开更多
关键词 quantum flutter Yang-Gaudin model Luttinger liquid nonlinear Luttinger liquid
原文传递
Soft Crawling and Flipping Robots Based on Liquid Metal-Liquid Crystal Elastomer Composites
9
作者 Ling-Xin Yuan Chang-Yue Liu +1 位作者 Ji-Ping Yang Zhi-Jian Wang 《Chinese Journal of Polymer Science》 2025年第4期588-596,共9页
Soft robots have shown great advantages with simple structure,high degree of freedom,continuous deformation,and benign human-machine interaction.In the past decades,a variety of soft robots,including crawling,jumping,... Soft robots have shown great advantages with simple structure,high degree of freedom,continuous deformation,and benign human-machine interaction.In the past decades,a variety of soft robots,including crawling,jumping,swimming,and climbing robots,have been developed inspired by living creatures.However,most of the reported bionic soft robots have only a single mode of motion,which limits their practical application.Herein,we report a fully 3D printed crawling and flipping soft robot using liquid metal incorporated liquid crystal elastomer(LM-LCE)composite as the actuator.With the application of voltage,liquid metal works as the conductive Joule heating material to induce the contraction of the LCE layer.The bending angle of the LM-LCE composite actuator highly depends on the applied voltage.We further demonstrate that the soft robot can exhibit distinct moving behaviors,such as crawling or flipping,by applying different voltages.The fully 3D printed LM-LCE composite structure provides a strategy for the fast construction of soft robots with diverse motion modes. 展开更多
关键词 liquid crystal elastomer liquid metal Soft actuator 3D printing
原文传递
Liquid Crystalline Hydrogel Capable of Thermally-induced Dual Actuation
10
作者 Yi-Ming Chen Yue Zhao 《Chinese Journal of Polymer Science》 2025年第4期563-571,共9页
Stimuli-responsive shape-changing materials,particularly hydrogel and liquid crystal elastomer(LCE),have demonstrated significant potential for applications across various fields.Although intricate deformation and act... Stimuli-responsive shape-changing materials,particularly hydrogel and liquid crystal elastomer(LCE),have demonstrated significant potential for applications across various fields.Although intricate deformation and actuation behaviors have been obtained in either hydrogels or LCEs,they typically undergo reversible shape change only once(e.g.,one expansion plus one contraction)during one heating/cooling cycle.Herein,we report a study of a novel liquid crystalline hydrogel(LCH)and the achievement of dual actuation in a single heating/cooling cycle by integrating the characteristics of thermoresponsive hydrogel and LCE.The dual actuation behavior arises from the reversible volume phase transition of poly(N-isopropylacrylamide)(PNIPAM)and the reversible order-disorder phase transition of LC mesogens in the LCH.Due to a temperature window separating the two transitions belonging to PNIPAM and LCE,LCH actuator can sequentially execute their respective actuation,thus deforming reversibly twice,during a heating/cooling cycle.The relative actuation degree of the two mechanisms is influenced by the mass ratio of PNIPAM to LCE in the LCH.Moreover,the initial shape of a bilayer actuator made with an active LCH layer and a passive polymer layer can be altered through hydration or dehydration of PNIPAM,which further modifies the dual actuation induced deformation.This work provides an example that shows the interest of developing LCH actuators. 展开更多
关键词 liquid crystalline hydrogel Dual actuation Thermoresponsive hydrogel liquid crystal elastomer
原文传递
Tunable emission from spatially confined luminescent dye blending cholesteric liquid crystals within Au-nanocages
11
作者 Yang Liu Jiawei Chen +2 位作者 Xiyang Wei Xiaohui Gong Yongfang Zhang 《Nano Research》 2025年第12期1177-1186,共10页
Liquid crystals(LCs)have been widely employed in laser applications,with their performance often enhanced through the incorporation of nanomaterials.In this study,we investigated cholesteric liquid crystals(CLCs)exhib... Liquid crystals(LCs)have been widely employed in laser applications,with their performance often enhanced through the incorporation of nanomaterials.In this study,we investigated cholesteric liquid crystals(CLCs)exhibiting a UVtunable photonic bandgap(PBG),and demonstrated a notable enhancement in the emission of the embedded luminescent dye(4-(dicyanomethylene)-2-methyl-6-(4-dimethylaminostyryl)-4H-pyran(DCM))by progressively red-shifting the PBG.When confined within hollow nanocages,the CLCs exhibited a substantial nano-confinement effect,particularly under UV irradiation.Accordingly,Au-nanocages(Au-NCs)were incorporated into the CLCs.The resulting hybrids exhibited the PBG characteristics of the pristine CLCs,while displaying a substantially broadened reflection diagram and an accelerated rate of PBG shifting.Moreover,the gold-nanocages(Au-NCs)blending CLCs-hosts required significantly lower pumping energy to excite the DCM dye compared to pure CLCs.It also enabled an augmentation of the tunable emission intensity subjected to PBG modulation.With the incorporation of 0.10 wt.%Au-NCs,the threshold pumping energy of DCM in such hybrid was reduced to 0.432μJ/pulse,corresponding to a 4.63%decrease,while the tunable range of emission intensity was expanded by 16.02%.Additionally,the DCM emission demonstrated improved long-term stability over an eight-week period,thereby substantiating the viability of such hybrids for the fabrication of high-performance LC-lasers. 展开更多
关键词 Au-nanocage cholesteric liquid crystal nano confinement effect liquid crystal laser
原文传递
Recent Advances in Quantum Spin Liquids in Two-Dimensional Kagome System YCu_(3)(OH)_(6+x)X_(3-x)(X=Cl,Br)
12
作者 Shiliang Li 《Chinese Physics Letters》 2025年第7期419-427,共9页
The two-dimensional kagome lattice serves as a prototypical platform for exploring quantum spin liquids owing to its pronounced geometric frustration.Substantial advancements have been achieved in herbertsmithite and ... The two-dimensional kagome lattice serves as a prototypical platform for exploring quantum spin liquids owing to its pronounced geometric frustration.Substantial advancements have been achieved in herbertsmithite and its structural analogs.These quantum spin liquid candidates exhibit large superexchange interactions yet resist magnetic ordering down to the lowest measurable temperatures,which are typically three or four orders of magnitude below the energy scale of the primary exchange energies.Nevertheless,the existence of unavoidable intrinsic interlayer magnetic impurities leads to persistent debates on their ground states.A breakthrough emerged with the discovery of YCu_(3)(OH)_(6+x)X_(3-x)(X=Cl,Br),a novel material family rigorously verifed to eliminate magnetic impurity interference.This short review highlights critical advances in these materials,emphasizing experimental signatures consistent with a Dirac quantum spin liquid and the observation of a oneninth magnetization plateau and possible quantum oscillations.Local structural characteristics play a crucial role in clarifying the complex emergent quantum phenomena of these materials.Collectively,these fndings establish this material class as a promising platform for investigating quantum spin liquid behavior in two-dimensional kagome lattices. 展开更多
关键词 two dimensional kagome system magnetic impurities superexchange interactions quantum spin liquid ycu oh x x x quantum spin liquids kagome lattice magnetic ordering
原文传递
Hyperbolic Plasmons in Coupled Luttinger Liquids of Homochiral Carbon Nanotube Arrays
13
作者 Saiqun Ma Jiajun Chen +17 位作者 Cheng Hu Kunqi Xu Yufeng Xie Xingdong Luo Zhenghan Wu Yi Chen Xianliang Zhou Shuo Lou Bosai Lyu Peiyue Shen Zhichun Zhang Aolin Deng Chengjia Zhang Qi Liang Ming Tian Neng Wan Ji-Hun Kang Zhiwen Shi 《Chinese Physics Letters》 2025年第9期224-245,共22页
A Luttinger liquid is a theoretical model describing interacting electrons in one-dimensional(1D)conductors.While individual 1D conductors have shown interesting Luttinger-liquid behaviors such as spin-charge separati... A Luttinger liquid is a theoretical model describing interacting electrons in one-dimensional(1D)conductors.While individual 1D conductors have shown interesting Luttinger-liquid behaviors such as spin-charge separation and power-law spectral density,the more interesting phenomena predicted in coupled Luttinger liquids of neighboring 1D conductors have been rarely observed due to the difficulty in creating such structures.Recently,we have successfully grown close-packed carbon nanotube(CNT)arrays with uniform chirality,providing an ideal material system for studying the coupled Luttinger liquids.Here,we report on the observation of tunable hyperbolic plasmons in the coupled Luttinger liquids of CNT arrays using scanning near-field optical microscopy.These hyperbolic plasmons,resulting from the conductivity anisotropy in the CNT array,exhibit strong spatial confinement,in situ tunability,and a wide spectral range.Despite their hyperbolic wavefronts,the plasmon propagation in the axial direction still adheres to the Luttinger-liquid theory.Our work not only demonstrates a fascinating phenomenon in coupled Luttinger liquids for fundamental physics exploration,but also provides a highly confined and in situ tunable hyperbolic plasmon in close-packed CNT arrays for future nanophotonic devices and circuits. 展开更多
关键词 interacting electrons carbon nanotube arrays hyperbolic plasmons luttinger liquid scanning near field optical microscopy d conductors carbon nanotube cnt arrays coupled Luttinger liquids
原文传递
The influence mechanism of liquid sedimentary layers in urban underground spaces on the characteristics of natural gas explosions and damage risk
14
作者 Qi Jing Zi-Yu Fan +1 位作者 Rui Zhou Yun-Tao Li 《Petroleum Science》 2025年第6期2619-2629,共11页
Gas explosions are a frequent hazard in underground confined spaces in the process of urban development.Liquid sedimentary layers,commonly present in these environments,have not been sufficiently studied in terms of t... Gas explosions are a frequent hazard in underground confined spaces in the process of urban development.Liquid sedimentary layers,commonly present in these environments,have not been sufficiently studied in terms of their impact on explosion dynamics.This study aims to investigate how gas-liquid two-phase environments in confined underground spaces affect the explosion characteristics of natural gas.To achieve this,experiments are conducted to examine the propagation of natural gas explosions in water and diesel layers,focusing on the influence of liquid properties and the liquid fullness degree(Lx)on explosion behavior.The results indicate that the presence of a liquid layer after the initial ignition stage significantly attenuates both the peak overpressure and the rise speed of pressure,in comparison to the natural gas conditions.During the subsequent explosive reaction,the evaporation and combustion of the diesel surface resulted in a distinct double-peak pressure rise profile in the diesel layer,with the second peak notably exceeding the first peak.Under conditions with a liquid sedimentary layer,the flame propagation velocities range from 6.53 to 34.1 m/s,while the overpressure peaks vary between 0.157 and 0.255 MPa.The explosion duration in both the water and diesel layer environments is approximately twice as long as that of the natural gas explosion,although the underlying mechanisms differ.In the diesel layer,the prolonged explosion time is attributed to the evaporation and combustion of the diesel,while in the water layer,the flame propagation velocity is significantly reduced.Under the experimental conditions,the maximum explosion energy reached 7.15×10~6J,corresponding to a TNT equivalent of 1.7.The peak overpressure surpassed the threshold for human fatality as defined by overpressure standards,posing a potential risk of damage to large steel-frame structures.The explosion shockwave in diesel layer conditions(L_(d)=0%,5%,7.5%,12.5%)and water layer(L_(w)=12.5%)conditions is observed to be sufficient to damage earthquake-resistant reinforced concrete.This study investigates the impact of sediment layer thickness and composition on gas explosions,and evaluates the associated explosion energy to assess human injuries and structural damage in underground environments.The findings of this study provide a scientific reference for urban underground safety. 展开更多
关键词 Underground space liquid fullness degree Gas-liquid coexistence Peak overpressure Explosive risk
原文传递
Axial emission characteristics of an ionic liquid electrospray thruster with a circular emitter 被引量:2
15
作者 Cheng YANG Jiawei LUO +1 位作者 Xiangbei WU Yan SHEN 《Chinese Journal of Aeronautics》 2025年第1期297-305,共9页
Ionic Liquid Electrospray Thrusters(ILETs)are well suited for micro-nano satellite applications due to their small size,low power consumption,and high specific impulse.However,the limited thrust of a single-emitter IL... Ionic Liquid Electrospray Thrusters(ILETs)are well suited for micro-nano satellite applications due to their small size,low power consumption,and high specific impulse.However,the limited thrust of a single-emitter ILET restricts its use in space missions.To optimize the performance of ILETs and make them suitable for a wider range of space missions,we designed a Circular-emitter ILET(CILET)to convert a one-dimensional(point)emission into a twodimensional(line)emission.The CILET can self-organize multiple Taylor cones simultaneously.The cones were photographed and the axial emission currents were measured under different voltage and pressure difference conditions with a CILET experimental system.The emission can be divided into two stable states and one unstable state based on the flow and current characteristics.The current in Stable state Ⅰ increases non-linearly with the voltage,while that in Stable state Ⅱ is nearly linear with respect to the voltage.The number of cones increases with the voltage in stable states,while the cones become short and crowded under high-voltage conditions.The variation law of the number of cones can be explained with the self-organization theory.The variation in the current exhibits a good correlation with the number of cones.This study demonstrates the feasibility of circular emitters and experimentally indicates that the emission current is improved by approximately two orders of magnitude compared to that of a single capillary. 展开更多
关键词 ELECTROSPRAY Ionic liquid thruster Self-organize EMITTER Taylor cone
原文传递
MOFs-based porous liquids for CO_(2) capture and utilization 被引量:2
16
作者 Xun Wang Yuxi Liu +3 位作者 Hongxing Dai Zhen Wei Shaohua Xie Jiguang Deng 《Green Energy & Environment》 2025年第8期1674-1691,共18页
Due to the greenhouse effect caused by carbon dioxide(CO_(2))emission,much attention has been paid for the removal of CO_(2).Porous liquids(PLs),as new type of liquid materials,have obvious advantages in mass and heat... Due to the greenhouse effect caused by carbon dioxide(CO_(2))emission,much attention has been paid for the removal of CO_(2).Porous liquids(PLs),as new type of liquid materials,have obvious advantages in mass and heat transfer,which are widely used in gas adsorption and sep-aration.Metal–organic frameworks(MOFs)with merits like large surface area,inherent porous structure and adjustable topology have been considered as one of the best candidates for PLs construction.This review presents the state-of-the-art status on the fabrication strategy of MOFs-based PLs and their CO_(2) absorption and utilization performance,and the positive effects of porosity and functional modification on the absorption-desorption property,selectivity of target product,and regeneration ability are well summarized.Finally,the challenges and prospects for MOFs-based PLs in the optimization of preparation,the coupling of multiple removal techniques,the in situ characterization methods,the regeneration and cycle stability,the environmental impact as well as expansion of application are proposed. 展开更多
关键词 MOFs-based porous liquids Carbon dioxide CAPTURE Catalytic conversion
在线阅读 下载PDF
Investigation of the formation processes of CO_(2) hydrate films on the interface of liquid carbon dioxide with humic acids solutions 被引量:1
17
作者 Aleksey K.Sagidullin Sergey S.Skiba +1 位作者 Tatyana P.Adamova Andrey Y.Manakov 《Chinese Journal of Chemical Engineering》 2025年第3期53-61,共9页
Morphology and growth rate of carbon dioxide hydrate on the interface between liquid carbon dioxide and humic acid solutions were studied in this work.It was found that after the growth of the hydrate film at the inte... Morphology and growth rate of carbon dioxide hydrate on the interface between liquid carbon dioxide and humic acid solutions were studied in this work.It was found that after the growth of the hydrate film at the interface,further growth of hydrate due to the suction of water in the capillary system formed between the wall of the cuvette and the end boundary of the hydrate layer occurs.Most probably,substantial effects on the formation of this capillary system may be caused by variations in reactor wall properties,for example,hydrophobic-hydrophilic balance,roughness,etc.We found,that the rate of CO_(2) hydrate film growth on the surface of the humic acid aqueous solution is 4-fold to lower in comparison with the growth rate on the surface of pure water.We suppose that this is caused by the adsorption of humic acid associates on the surface of hydrate particles and,as a consequence,by the deceleration of the diffusion of dissolved carbon dioxide to the growing hydrate particle. 展开更多
关键词 HYDRATES Carbon dioxide Humic acids solutions Reaction kinetics liquid liquid reaction Film growth
在线阅读 下载PDF
Liquid metal composites:Recent advances and applications 被引量:1
18
作者 Chunghyeon Choi Liyang Liu Byungil Hwang 《International Journal of Minerals,Metallurgy and Materials》 2025年第5期1008-1024,共17页
Liquid metals(LMs),because of their ability to remain in a liquid state at room temperature,render them highly versatile for applications in electronics,energy storage,medicine,and robotics.Among various LMs,Ga-based ... Liquid metals(LMs),because of their ability to remain in a liquid state at room temperature,render them highly versatile for applications in electronics,energy storage,medicine,and robotics.Among various LMs,Ga-based LMs exhibit minimal cytotoxicity,low viscosity,high thermal and electrical conductivities,and excellent wettability.Therefore,Ga-based LM composites(LMCs)have emerged as a recent research focus.Recent advancements have focused on novel fabrication techniques and applications spanning energy storage,flexible electronics,and biomedical devices.Particularly noteworthy are the developments in wearable sensors and electronic skins,which hold promise for healthcare monitoring and human-machine interfaces.Despite their potential,challenges,such as oxidative susceptibil-ity and biocompatibility,remain.Creating bio-based LMC materials is a promising approach to address these issues while exploring new avenues to optimize LMC performance and broaden its application domains.This review provides a concise overview of the recent trends in LMC research,highlights their transformative impacts,and outlines key directions for future investigation and development. 展开更多
关键词 COMPOSITES liquid metal POLYMER APPLICATIONS ALLOYS
在线阅读 下载PDF
Liquid-metal-electrode-assisted electrolysis for the production of sodium and magnesium 被引量:1
19
作者 Lei Guo Huayi Yin +5 位作者 Wenmiao Li Shiyu Wang Kaifa Du Hao Shi Xu Wang Dihua Wang 《Journal of Magnesium and Alloys》 2025年第4期1579-1591,共13页
Sodium(Na)and magnesium(Mg)are becoming important for making energy-storage batteries and structural materials.Herein,we develop a liquid-metal-electrode-assisted electrolysis route to producing Na and Mg with low-car... Sodium(Na)and magnesium(Mg)are becoming important for making energy-storage batteries and structural materials.Herein,we develop a liquid-metal-electrode-assisted electrolysis route to producing Na and Mg with low-carbon emissions and no chlorine gas evolution.The clean production stems from the choice of a molten NaCl-Na_(2)CO_(3) electrolyte to prevent chlorine gas evolution,an inert nickel-based anode to produce oxygen,and a liquid metal cathode to make the cathodic product sit at the bottom of the electrolytic cell.We achieve a current efficiency of>90%for the electrolytic production of liquid Na-Sn alloy.Later,Mg-Sn alloy is prepared using the obtained Na-Sn alloy to displace Mg from molten NaCl-MgCl_(2) with a displacement efficiency of>96%.Further,Na and Mg are separated from the electrolytic Na-Sn and displaced Mg-Sn alloys by vacuum distillation with a recovery rate of>92%and Sn can be reused.Using this electrolysisdisplacement-distillation(EDD)approach,we prepare Mg from seawater.The CO_(2)emission of the EDD approach is~20.6 kg CO_(2)per kg Mg,which is less than that of the Australian Magnesium(AM)electrolysis process(~25.0 kg CO_(2)per kg Mg)and less than half that of the Pidgeon process(~45.2 kg CO_(2)per kg Mg). 展开更多
关键词 Molten-salt electrolysis Inert anode liquid metal electrodes SODIUM MAGNESIUM
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部