The design synthesis is the key issue in the mechanical conceptual design to generate the design candidates that meet the design requirements.This paper devotes to propose a novel and computable synthesis approach of ...The design synthesis is the key issue in the mechanical conceptual design to generate the design candidates that meet the design requirements.This paper devotes to propose a novel and computable synthesis approach of mechanisms based on graph theory and polynomial operation.The graph framework of the synthesis approach is built firstly,and it involves:(1)the kinematic function units extracted from mechanisms;(2)the kinematic link graph that transforms the synthesis problem from mechanical domain into graph domain;(3)two graph representations,i.e.,walk representation and path representation,of design candidates;(4)a weighted matrix theorem that transforms the synthesis process into polynomial operation.Then,the formulas and algorithm to the polynomial operation are presented.Based on them,the computational flowchart to the synthesis approach is summarized.A design example is used to validate and illustrate the synthesis approach in detail.The proposed synthesis approach is not only supportive to enumerate the design candidates to the conceptual design of a mechanical system exhaustively and automatically,but also helpful to make that enumeration process computable.展开更多
Satellite networks have many inherent advantages over terrestrial networks and have become an important part of the global network infrastructure.Routing aimed at satellite networks has become a hot and challenging re...Satellite networks have many inherent advantages over terrestrial networks and have become an important part of the global network infrastructure.Routing aimed at satellite networks has become a hot and challenging research topic.Satellite networks,which are special kind of Delay Tolerant Networks(DTN),can also adopt the routing solutions of DTN.Among the many routing proposals,Contact Graph Routing(CGR) is an excellent candidate,since it is designed particularly for use in highly deterministic space networks.The applicability of CGR in satellite networks is evaluated by utilizing the space oriented DTN gateway model based on OPNET(Optimized Network Engineering Tool).Link failures are solved with neighbor discovery mechanism and route recomputation.Earth observation scenario is used in the simulations to investigate CGR's performance.The results show that the CGR performances are better in terms of effectively utilizing satellite networks resources to calculate continuous route path and alternative route can be successfully calculated under link failures by utilizing fault tolerance scheme.展开更多
How to find these communities is an important research work. Recently, community discovery are mainly categorized to HITS algorithm, bipartite cores algorithm and maximum flow/minimum cut framework. In this paper, we ...How to find these communities is an important research work. Recently, community discovery are mainly categorized to HITS algorithm, bipartite cores algorithm and maximum flow/minimum cut framework. In this paper, we proposed a new method to extract communities. The MCL algorithm, which is short for the Markov Cluster Algorithm, a fast and scalable unsupervised cluster algorithm is used to extract communities. By putting mirror deleting procedure behind graph clustering, we decrease comparing cost considerably. After MCL and mirror deletion, we use community member select algorithm to produce the sets of community candidates. The experiment and results show the new method works effectively and properly.展开更多
Identifying composite crosscutting concerns(CCs) is a research task and challenge of aspect mining.In this paper,we propose a scatter-based graph clustering approach to identify composite CCs.Inspired by the state-o...Identifying composite crosscutting concerns(CCs) is a research task and challenge of aspect mining.In this paper,we propose a scatter-based graph clustering approach to identify composite CCs.Inspired by the state-of-the-art link analysis tech-niques,we propose a two-state model to approximate how CCs tangle with core modules.According to this model,we obtain scatter and centralization scores for each program element.Espe-cially,the scatter scores are adopted to select CC seeds.Further-more,to identify composite CCs,we adopt a novel similarity measurement and develop an undirected graph clustering to group these seeds.Finally,we compare it with the previous work and illustrate its effectiveness in identifying composite CCs.展开更多
基金Supported by State Key Program of National Natural Science Foundation of China(Grant No.51535009)111 Project of China(Grant No.B13044).
文摘The design synthesis is the key issue in the mechanical conceptual design to generate the design candidates that meet the design requirements.This paper devotes to propose a novel and computable synthesis approach of mechanisms based on graph theory and polynomial operation.The graph framework of the synthesis approach is built firstly,and it involves:(1)the kinematic function units extracted from mechanisms;(2)the kinematic link graph that transforms the synthesis problem from mechanical domain into graph domain;(3)two graph representations,i.e.,walk representation and path representation,of design candidates;(4)a weighted matrix theorem that transforms the synthesis process into polynomial operation.Then,the formulas and algorithm to the polynomial operation are presented.Based on them,the computational flowchart to the synthesis approach is summarized.A design example is used to validate and illustrate the synthesis approach in detail.The proposed synthesis approach is not only supportive to enumerate the design candidates to the conceptual design of a mechanical system exhaustively and automatically,but also helpful to make that enumeration process computable.
基金Supported by the open project of Communication network transmission and distribution technologies Key Laboratory(ITD-12005/K1260011)the National Natural Science Foundation of China(61371126) and the National Natural Science Foundation of China(60903195)
文摘Satellite networks have many inherent advantages over terrestrial networks and have become an important part of the global network infrastructure.Routing aimed at satellite networks has become a hot and challenging research topic.Satellite networks,which are special kind of Delay Tolerant Networks(DTN),can also adopt the routing solutions of DTN.Among the many routing proposals,Contact Graph Routing(CGR) is an excellent candidate,since it is designed particularly for use in highly deterministic space networks.The applicability of CGR in satellite networks is evaluated by utilizing the space oriented DTN gateway model based on OPNET(Optimized Network Engineering Tool).Link failures are solved with neighbor discovery mechanism and route recomputation.Earth observation scenario is used in the simulations to investigate CGR's performance.The results show that the CGR performances are better in terms of effectively utilizing satellite networks resources to calculate continuous route path and alternative route can be successfully calculated under link failures by utilizing fault tolerance scheme.
基金Supported bythe 211 Project of Ministry of Educa-tion of China
文摘How to find these communities is an important research work. Recently, community discovery are mainly categorized to HITS algorithm, bipartite cores algorithm and maximum flow/minimum cut framework. In this paper, we proposed a new method to extract communities. The MCL algorithm, which is short for the Markov Cluster Algorithm, a fast and scalable unsupervised cluster algorithm is used to extract communities. By putting mirror deleting procedure behind graph clustering, we decrease comparing cost considerably. After MCL and mirror deletion, we use community member select algorithm to produce the sets of community candidates. The experiment and results show the new method works effectively and properly.
基金Supported by the National Pre-research Project (513150601)
文摘Identifying composite crosscutting concerns(CCs) is a research task and challenge of aspect mining.In this paper,we propose a scatter-based graph clustering approach to identify composite CCs.Inspired by the state-of-the-art link analysis tech-niques,we propose a two-state model to approximate how CCs tangle with core modules.According to this model,we obtain scatter and centralization scores for each program element.Espe-cially,the scatter scores are adopted to select CC seeds.Further-more,to identify composite CCs,we adopt a novel similarity measurement and develop an undirected graph clustering to group these seeds.Finally,we compare it with the previous work and illustrate its effectiveness in identifying composite CCs.