When only a portion of the shield lining structures in a full-line tunnel are overloaded,their bearing and failure characteristics are significantly different from those in the full-line overloaded case.In existing st...When only a portion of the shield lining structures in a full-line tunnel are overloaded,their bearing and failure characteristics are significantly different from those in the full-line overloaded case.In existing studies,one or several segmental lining rings have been studied,with overload applied to selected lining rings to analyze the performance evolution of the lining structures;however,this approach fails to reveal the bearing and failure characteristics of shield lining rings under localized overload.To address this research gap,we employ 3D finite element modeling to investigate the mechanical performance and failure mechanisms of shield segmental linings under localized overload conditions,and compare the results with full-line overload scenarios.Additionally,the impact of reinforcing shield segmental linings with steel rings is studied to address issues arising from localized overloads.The results indicate that localized overloads lead to significant ring joint dislocation and higher stress on longitudinal bolts,potentially causing longitudinal bolt failure.Furthermore,the overall deformation of lining rings,segmental joint opening,and stress in circumferential bolts and steel bars is lower compared to full-line overloads.For the same overload level,the convergence deformation of the lining under full-line overload is 1.5 to 2.0 times higher than that under localized overload.For localized overload situations,a reinforcement scheme with steel rings spanning across two adjacent lining rings is more effective than installing steel rings within individual lining rings.This spanning ring reinforcement strategy not only enhances the structural rigidity of each ring,but also limits joint dislocation and reduces stress on longitudinal bolts,with the reduction in maximum ring joint dislocation ranging from 70%to 82%and the reduction in maximum longitudinal bolt stress ranging from 19%to 57%compared to reinforcement within rings.展开更多
This study aims to assess the comprehensive strengthening effect of a steel-ultra high performance concrete(UHPC)composite strengthening method.The axial force-moment interaction curve(N-M curve)was calculated in a no...This study aims to assess the comprehensive strengthening effect of a steel-ultra high performance concrete(UHPC)composite strengthening method.The axial force-moment interaction curve(N-M curve)was calculated in a novel way,using cross-sectional strains at ultimate states as well as real-time stress measurements for each material.The enclosed area of the N-M curve was defined as a comprehensive performance index for the system.We validate our approach with comparisons to numerical modeling and full-scale four-point bending experiments.Additionally,strengthening effects were compared for different sagging and hogging moments based on material stress responses,and the impact of various strengthening parameters was analyzed.We find that the N-M curve of the strengthened cross-section envelops that of the un-strengthened cross-section.Notably,improvements in flexural capacity are greater under sagging moments during the large eccentric failure stage,and greater under hogging moments during the small eccentric failure stage.This discrepancy is attributed to the strength utilization of strengthening materials.These findings provide a reference for understanding the strengthening effects and parameters of steel-UHPC composite.展开更多
Regular detection and repair for lining cracks are necessary to guarantee the safety and stability of tunnels.The development of computer vision has greatly promoted structural health monitoring.This study proposes a ...Regular detection and repair for lining cracks are necessary to guarantee the safety and stability of tunnels.The development of computer vision has greatly promoted structural health monitoring.This study proposes a novel encoder–decoder structure,CrackRecNet,for semantic segmentation of lining segment cracks by integrating improved VGG-19 into the U-Net architecture.An image acquisition equipment is designed based on a camera,3-dimensional printing(3DP)bracket and two laser rangefinders.A tunnel concrete structure crack(TCSC)image data set,containing images collected from a double-shield tunnel boring machines(TBM)tunnel in China,was established.Through data preprocessing operations,such as brightness adjustment,pixel resolution adjustment,flipping,splitting and annotation,2880 image samples with pixel resolution of 448×448 were prepared.The model was implemented by Pytorch in PyCharm processed with 4 NVIDIA TITAN V GPUs.In the experiments,the proposed CrackRecNet showed better prediction performance than U-Net,TernausNet,and ResU-Net.This paper also discusses GPU parallel acceleration effect and the crack maximum width quantification.展开更多
Based on the first unde rwater railway shield tunnel, the Shiziyang shield tunnel of Guangzhou Zhu- jiang River, the prototype test was carried out against its segmental lining structure by using "multi-function shie...Based on the first unde rwater railway shield tunnel, the Shiziyang shield tunnel of Guangzhou Zhu- jiang River, the prototype test was carried out against its segmental lining structure by using "multi-function shield tunnel structure test system". And the mechanical characteristics of segmental lining structure using straight assembling and staggered assembling were studied deeply. The results showed that, the mechanical characteristics of segmental lining structure varied with the water pressures; especially after cracking, the high water pressure played a significant role in slowing down the growing inner force and deformation. It also testi- fied that the failure characteristics varied with straight assembling structure and staggered assembling structure. Shear thilurc often occurred near longitudinal seam when using straight assembling.展开更多
The uniform ring model and the shell-spring model for segmental lining design are reviewed in thisarticle. The former is the most promising means to reflect the real behavior of segmental lining, while thelatter is th...The uniform ring model and the shell-spring model for segmental lining design are reviewed in thisarticle. The former is the most promising means to reflect the real behavior of segmental lining, while thelatter is the most popular means in practice due to its simplicity. To understand the relationship and thedifference between these two models, both of them are applied to the engineering practice of FuzhouMetro Line I, where the key parameters used in both models are described and compared. The effectiveratio of bending rigidity h reflecting the relative stiffness between segmental lining and surroundingground and the transfer ratio of bending moment x reflecting the relative stiffness between segment andjoint, which are two key parameters used in the uniform ring model, are especially emphasized. Thereasonable values for these two key parameters are calibrated by comparing the bending momentscalculated from both two models. Through case studies, it is concluded that the effective ratio of bendingrigidity h increases significantly with good soil properties, increases slightly with increasing overburden,and decreases slightly with increasing water head. Meanwhile, the transfer ratio of bending moment xseems to only relate to the properties of segmental lining itself and has a minor relation with the groundconditions. These results could facilitate the design practice for Fuzhou Metro Line I, and could alsoprovide some references to other projects with respect to similar scenarios.展开更多
A series of full-scale loading tests are performed for a prospective subway tunnel with a rectangular shape including two reliability tests: one stagger-jointed three-ring reliability test, and one ultimate failure te...A series of full-scale loading tests are performed for a prospective subway tunnel with a rectangular shape including two reliability tests: one stagger-jointed three-ring reliability test, and one ultimate failure test on a single ring. Comprehensive measuring programs are designed to record the deformation of both lining structure and joints and the stresses of concrete, bolts and reinforcements. Experimental results show that in both the single-ring and three-ring loading cases, the long sides of tunnel cross section bend inwards while the short sides of tunnel cross section bend outwards. The inner part of joints opens while the outer part of joints closes at places experiencing positive moment and vice versa. Joint's rotational stiffness varies at different locations. Concrete cracking and crushing are the chief damage modes, and they are closely related to the distribution of bending moment. Stagger-jointed fabrication significantly increases the overall rigidity of lining system, which thereby greatly reduces the deformation of both concrete lining and joints in comparison with the single-ring case. It is shown that the routinely-used uniform rigidity model is conservative and the preliminary design can be optimized by applying an effective rigidity ratio(ERR) of 0.5.展开更多
Grain weight, one of the major factors determining rice yield, is a typical quantitative trait control ed by multiple genes. With Guangluai 4 as recipient and Nipponbare as donor, a population of 119 chromosome single...Grain weight, one of the major factors determining rice yield, is a typical quantitative trait control ed by multiple genes. With Guangluai 4 as recipient and Nipponbare as donor, a population of 119 chromosome single segment substitution lines had been developed. Correlation analysis between grain weight and grain shape by SPSS revealed that 1 000-grain weight shared extremely significant posi-tive correlation with grain length and length-width ratio, but no significant correlation with grain width and thickness. The QTL analysis of grain weight was carried out using one-way analysis of variance and Dunnett's test. Nineteen stable QTLs re-sponsible for grain weight were identified over two years. Al 19 QTLs were identi-fied on al chromosomes except for chromosome 10 and 12 at a significance level of P≤0.001. Among them, 10 QTLs had a positive effect and were derived from the Nipponbare al ele, the additive effect of these QTLs ranged from 0.49 to 2.74 g, and the contributions of the additive effects ranged from 2.00% to 11.05%. Another 9 QTLs had a negative effect and were al derived from Guangluai 4 al ele, the ad-ditive effect of these QTLs ranged from 0.60 to 2.35 g, and the contributions of the additive effects ranged from 2.40% to 9.84%. The results provide a basis for the fine mapping and gene cloning of novel locus associated with rice grain weight.展开更多
In this study, a population of chromosome segment substitution lines (CSSLs) derived from the cross between 9311 (indica) and Nipponbare (japonica) was employed to map the quantitative trait loci (QTLs) for sa...In this study, a population of chromosome segment substitution lines (CSSLs) derived from the cross between 9311 (indica) and Nipponbare (japonica) was employed to map the quantitative trait loci (QTLs) for salt tolerance under the salt stress simulated with 0.5% NaCI, using survival rate as the index. The data were analyzed by QTL IciMapping v3.1, and the results showed that one QTL (QSsr3) related to salt tolerance was located in the vicinity of the marker RM1350 on chromosome 3, into a genetic interval of 113.2-132.8 cM, with a contribution rate of 17.75%. The additive effect was 10.9, indicating that the QTL derived from the parent Nipponbare improved the salt tolerance of rice at seedling stage. This study will provide a theoretical basis for the selection of salt tolerant rice germplasm.展开更多
In this study, a population of 119 chromosome segment substitution lines (CSSLs) derived from backcross between indica 9311 and japonica Nipponbare was employed to map quantitative trait loci (QTL) associated with...In this study, a population of 119 chromosome segment substitution lines (CSSLs) derived from backcross between indica 9311 and japonica Nipponbare was employed to map quantitative trait loci (QTL) associated with sheath blight resis-tance in rice with toothpick inoculation method. A total of three sheath blight resis-tance-associated QTLs (qsb8-1, qsb8-2 and qsb8-3) were identified, which were lo-cated on adjacent molecular markers RM3262, RM5485 and RM3496 of chromo-some 8; the genetic interval was 81.7cM-91.7cM, 91.7cM-108.1cM and 108.1cM-119.6cM, respectively. The additive effect of qsb8-2 was negative, indicating that sheath blight resistance of susceptible parent harboring qsb8-2 fragment was en-hanced; additive effects of qsb8-1 and qsb8-3 were positive, indicating that sheath blight resistance of susceptible parent harboring qsb8-1 and qsb8-3 fragments was reduced.展开更多
Introducing the inherent genetic diversity of wild species into cultivars has become one of the hot topics in crop genetic breeding and genetic resource research.Fiber-and seed-related traits,which are critical to the...Introducing the inherent genetic diversity of wild species into cultivars has become one of the hot topics in crop genetic breeding and genetic resource research.Fiber-and seed-related traits,which are critical to the global economy and people's livelihoods,are the principal focus of cotton breeding.Here,the wild cotton species Gossypium tomentosum was used to broaden the genetic basis of G.hirsutum and identify QTLs for fiber-and seed-related traits.A population of 559 chromosome segment substitution lines(CSSLs)was established with various chromosome segments from G.tomentosum in a G.hirsutum cultivar background.Totals of 72,89,and 76 QTLs were identified for three yield traits,five fiber quality traits,and six cottonseed nutrient quality traits,respectively.Favorable alleles of 104 QTLs were contributed by G.tomentosum.Sixty-four QTLs were identified in two or more environments,and candidate genes for three of them were further identified.The results of this study contribute to further studies on the genetic basis of the morphogenesis of these economic traits,and indicate the great breeding potential of G.tomentosum for improving the fiber-and seed-related traits in G.hirsutum.展开更多
Heading date is one of the most important agronomic traits that directly affect rice yield and determines the regional adaptability in specific growing environments.As a short-day plant,rice can grow under long-day(LD...Heading date is one of the most important agronomic traits that directly affect rice yield and determines the regional adaptability in specific growing environments.As a short-day plant,rice can grow under long-day(LD)conditions due to the synergistic regulation of many photosensitive genes.Using a set of chromosome segment substitution lines(CSSLs)with the indica cultivar Huanghuazhan(HHZ)as the recipient parent and Basmati Surkh 89-15(BAS)as the donor parent,we identified a QTL locus.展开更多
Chromosome segment substitution lines(CSSLs) are useful for the precise mapping of quantitative trait loci(QTLs) and dissection of the genetic basis of complex traits.In this study,two whole-genome sequenced rice ...Chromosome segment substitution lines(CSSLs) are useful for the precise mapping of quantitative trait loci(QTLs) and dissection of the genetic basis of complex traits.In this study,two whole-genome sequenced rice cultivars,the japonica Nipponbare and indica 9311 were used as recipient and donor,respectively.A population with 57 CSSLs was developed after crossing and back-crossing assisted by molecular markers, and genotypes were identified using a high-throughput resequencing strategy.Detailed graphical genotypes of 38 lines were constructed based on resequencing data.These CSSLs had a total of 95 substituted segments derived from indica 9311,with an average of about 2.5 segments per CSSL and eight segments per chromosome,and covered about 87.4%of the rice whole genome.A multiple linear regression QTL analysis mapped four QTLs for 1000-grain weight.The largest-effect QTL was located in a region on chromosome 5 that contained a cloned major QTL GW5/qSW5 for grain size in rice.These CSSLs with a background of Nipponbare may provide powerful tools for future whole-genome展开更多
QTLs for plant height and its components on the substituted segments of fifty-two single segment substitution lines (SSSLs) in rice were identified through t-test (P〈0.001) for comparison between each SSSL and re...QTLs for plant height and its components on the substituted segments of fifty-two single segment substitution lines (SSSLs) in rice were identified through t-test (P〈0.001) for comparison between each SSSL and recipient parent Huajingxian 74. On the 14 substituted segments, 24 QTLs were detected, 10 for plant height, 2 for panicle length, 4 for length of the first internode from the top, 5 for length of the second internode from the top and 3 for length of the third internode from the top, respectively. All these QTLs were distributed on nine rice chromosomes except chromosomes 5, 9 and 11. The additive effect ranged from -4.08 to 3.98 cm, and the additive effect percentages varied from -19.35% to 10.43%.展开更多
Tiller is one of the most important agronomic traits which influences quantity and quality of effective panicles and finally influences yield in rice. It is important to understand "static" and "dynamic" informati...Tiller is one of the most important agronomic traits which influences quantity and quality of effective panicles and finally influences yield in rice. It is important to understand "static" and "dynamic" information of the QTLs for tillers in rice. This work was the first time to simultaneously map unconditional and conditional QTLs for tiller numbers at various stages by using single segment substitution lines in rice. Fourteen QTLs for tiller number, distributing on the corresponding substitution segments of chromosomes 1, 2, 3, 4, 6, 7 and 8 were detected. Both the number and the effect of the QTLs for tiller number were various at different stages, from 6 to 9 in the number and from 1.49 to 3.49 in the effect, respectively. Tiller number QTLs expressed in a time order, mainly detected at three stages of 0-7 d, 14-21 d and 35-42 d after transplanting with 6 positive, 9 random and 6 negative expressing QTLs, respectively. Each of the QTLs expressed one time at least during the whole duration of rice. The tiller number at a specific stage was determined by sum of QTL effects estimated by the unconditional method, while the increasing or decreasing number in a given time interval was controlled by the total of QTL effects estimated by the conditional method. These results demonstrated that it is highly effective and accurate for mapping of the QTLs by using single segment substitution lines and the conditional analysis methodology.展开更多
The microsatellite markers 484/485 and 484/W2R were used to identify the multiple alleles at the Wx locus in rice germplasm. Fifteen alleles were identified in 278 accessions by using microsatellite class and G-T poly...The microsatellite markers 484/485 and 484/W2R were used to identify the multiple alleles at the Wx locus in rice germplasm. Fifteen alleles were identified in 278 accessions by using microsatellite class and G-T polymorphism. Among these alleles, (CT)12-G, (CT)15-G, (CT)16-G, (CT)17-G, (CT)18-G and (CT)21-G have not been reported. Seventy-two single-segment substitution lines (SSSLs) carrying different alleles at the Wx locus were developed by using Huajingxian 74 with the (CT)11-G allele as a recipient and 20 accessions containing 12 different alleles at the Wx locus as donors. The estimated length of the substituted segments ranged from 2.2 to 77.3 cM with an average of 17.4 cM.展开更多
In most studies of tunnel boring machine(TBM)tunnelling, the groundwater pressure was not considered, or was simplified and exerted on the boundary of lining structure. Meanwhile, the leakage, which mainly occurs in t...In most studies of tunnel boring machine(TBM)tunnelling, the groundwater pressure was not considered, or was simplified and exerted on the boundary of lining structure. Meanwhile, the leakage, which mainly occurs in the segment joints, was often ignored in the relevant studies of TBM tunnelling. Additionally, the geological models in these studies were simplified to different extents, and mostly were simplified as homogenous bodies. Considering the deficiencies above, a 3D refined model of the surrounding rock of a tunnel is firstly established using NURBS-TIN-BRe P hybrid data structure in this paper. Then the seepage field of the surrounding rock considering the leakage in the segment joints is simulated. Finally, the stability of TBM water diversion tunnel is studied coupled with the seepage simulation, to analyze the stress-strain conditions, the axial force and the bending moment of tunnel segment considering the leakage in the segment joints. The results illustrate that the maximum radial displacement, the minimum principal stress, the maximum principal stress and the axial force of segment lining considering the seepage effect are all larger than those disregarding the seepage effect.展开更多
Ab The cold tolerance at the bud bursting stage (CTB) was evaluated at 5℃ by using a set of 95 chromosome segment substitution lines (CSSLs) derived from an indica rice 9311 and a japonica rice Nipponbare with a ...Ab The cold tolerance at the bud bursting stage (CTB) was evaluated at 5℃ by using a set of 95 chromosome segment substitution lines (CSSLs) derived from an indica rice 9311 and a japonica rice Nipponbare with a genetic background of 9311. The result showed that six CSSLs had slightly stronger effect on CTB than 9311. Total four quantitative trait loci (QTLs) for CTB were preliminary mapped on chromosomes 5 and 7 by substitution mapping, qCTB-5-1, qCTB-5-2 and qCTB-5-3 were mapped in the region of RM267-RM1237, RM2422-RM6054 and RM3321-RM1054, which were 21.3 cM, 27.4 cM and 12.7 cM in genetic distance on rice chromosome 5, respectively, qCTB-7 was mapped in a 6.8-cM region of RM11-RM2752 on rice chromosome 7.展开更多
Rice grain shape is one of the important factors affecting grain quality and yield,but it is liable to be influenced by genetic backgrounds and environments.The chromosome single segment substitution lines(SSSLs) in r...Rice grain shape is one of the important factors affecting grain quality and yield,but it is liable to be influenced by genetic backgrounds and environments.The chromosome single segment substitution lines(SSSLs) in rice have been considered as ideal populations to identify the quantitative trait loci(QTLs).In this study,22 QTLs affecting rice grain shape were detected to be distributed on eight chromosomes except chromosomes 6,9,11 and 12 by using SSSLs.Among them,seven QTLs conditioned grain length,six conditioned grain width,five affected grain length-width ratio and four controlled grain thickness.展开更多
A backcross recombinant inbred line population consisting of 202 lines was developed from Xieqingzao B//Xieqingzao B / Dongxiang wild rice. The population was assayed with DNA markers and phenotyped on planthopper res...A backcross recombinant inbred line population consisting of 202 lines was developed from Xieqingzao B//Xieqingzao B / Dongxiang wild rice. The population was assayed with DNA markers and phenotyped on planthopper resistance and yield traits. A linkage map consisting of 119 DNA markers and spanned for 1188 cM over the 12 rice chromosomes was constructed. Thirty-two chromosomal segment substitution lines were selected based on the percentage of Xieqingzao B allele at marker loci. These lines are of great potential for gene mapping and alien gene introgression.展开更多
Heading date in rice is a typical quantitative trait controlled by multiple quantitative trait loci (QTLs). It is mainly regulated by environmental factors such as photoperiod and temperature (Izawa, 2007). Many Q...Heading date in rice is a typical quantitative trait controlled by multiple quantitative trait loci (QTLs). It is mainly regulated by environmental factors such as photoperiod and temperature (Izawa, 2007). Many QTLs for heading date have been identified using different mapping populations and methods (http:// www.gramene.org/qtl). Up to date, several major heading date QTLs have been cloned by map-based cloning strategy (Yano et al., 2000; Takahashi et al., 2001; Kojima et al., 2002; Doi et al., 2004; Xue et al., 2008; Wei et al., 2010; Yan et al.,展开更多
基金supported by the National Natural Science Foundation of China(No.52008308).
文摘When only a portion of the shield lining structures in a full-line tunnel are overloaded,their bearing and failure characteristics are significantly different from those in the full-line overloaded case.In existing studies,one or several segmental lining rings have been studied,with overload applied to selected lining rings to analyze the performance evolution of the lining structures;however,this approach fails to reveal the bearing and failure characteristics of shield lining rings under localized overload.To address this research gap,we employ 3D finite element modeling to investigate the mechanical performance and failure mechanisms of shield segmental linings under localized overload conditions,and compare the results with full-line overload scenarios.Additionally,the impact of reinforcing shield segmental linings with steel rings is studied to address issues arising from localized overloads.The results indicate that localized overloads lead to significant ring joint dislocation and higher stress on longitudinal bolts,potentially causing longitudinal bolt failure.Furthermore,the overall deformation of lining rings,segmental joint opening,and stress in circumferential bolts and steel bars is lower compared to full-line overloads.For the same overload level,the convergence deformation of the lining under full-line overload is 1.5 to 2.0 times higher than that under localized overload.For localized overload situations,a reinforcement scheme with steel rings spanning across two adjacent lining rings is more effective than installing steel rings within individual lining rings.This spanning ring reinforcement strategy not only enhances the structural rigidity of each ring,but also limits joint dislocation and reduces stress on longitudinal bolts,with the reduction in maximum ring joint dislocation ranging from 70%to 82%and the reduction in maximum longitudinal bolt stress ranging from 19%to 57%compared to reinforcement within rings.
基金supported by the National Natural Science Foundation of China(Nos.51938005,52090082,and 52378395)the National Key Research and Development Program of China(No.2023YFB2604402).
文摘This study aims to assess the comprehensive strengthening effect of a steel-ultra high performance concrete(UHPC)composite strengthening method.The axial force-moment interaction curve(N-M curve)was calculated in a novel way,using cross-sectional strains at ultimate states as well as real-time stress measurements for each material.The enclosed area of the N-M curve was defined as a comprehensive performance index for the system.We validate our approach with comparisons to numerical modeling and full-scale four-point bending experiments.Additionally,strengthening effects were compared for different sagging and hogging moments based on material stress responses,and the impact of various strengthening parameters was analyzed.We find that the N-M curve of the strengthened cross-section envelops that of the un-strengthened cross-section.Notably,improvements in flexural capacity are greater under sagging moments during the large eccentric failure stage,and greater under hogging moments during the small eccentric failure stage.This discrepancy is attributed to the strength utilization of strengthening materials.These findings provide a reference for understanding the strengthening effects and parameters of steel-UHPC composite.
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.52179105 and 41941019)Science and Technology Innovation Project of Quanmutang Engineering.
文摘Regular detection and repair for lining cracks are necessary to guarantee the safety and stability of tunnels.The development of computer vision has greatly promoted structural health monitoring.This study proposes a novel encoder–decoder structure,CrackRecNet,for semantic segmentation of lining segment cracks by integrating improved VGG-19 into the U-Net architecture.An image acquisition equipment is designed based on a camera,3-dimensional printing(3DP)bracket and two laser rangefinders.A tunnel concrete structure crack(TCSC)image data set,containing images collected from a double-shield tunnel boring machines(TBM)tunnel in China,was established.Through data preprocessing operations,such as brightness adjustment,pixel resolution adjustment,flipping,splitting and annotation,2880 image samples with pixel resolution of 448×448 were prepared.The model was implemented by Pytorch in PyCharm processed with 4 NVIDIA TITAN V GPUs.In the experiments,the proposed CrackRecNet showed better prediction performance than U-Net,TernausNet,and ResU-Net.This paper also discusses GPU parallel acceleration effect and the crack maximum width quantification.
基金Joint Funds of National Natural Science Foundation of China(No.U1134208)National Key Basic Research Program of China(No.2010CB732105)National Natural Science Foundation of China(No.50925830,No.51208432)
文摘Based on the first unde rwater railway shield tunnel, the Shiziyang shield tunnel of Guangzhou Zhu- jiang River, the prototype test was carried out against its segmental lining structure by using "multi-function shield tunnel structure test system". And the mechanical characteristics of segmental lining structure using straight assembling and staggered assembling were studied deeply. The results showed that, the mechanical characteristics of segmental lining structure varied with the water pressures; especially after cracking, the high water pressure played a significant role in slowing down the growing inner force and deformation. It also testi- fied that the failure characteristics varied with straight assembling structure and staggered assembling structure. Shear thilurc often occurred near longitudinal seam when using straight assembling.
基金sponsored by the Natural Science Foundation of China(Grant No.51008082)
文摘The uniform ring model and the shell-spring model for segmental lining design are reviewed in thisarticle. The former is the most promising means to reflect the real behavior of segmental lining, while thelatter is the most popular means in practice due to its simplicity. To understand the relationship and thedifference between these two models, both of them are applied to the engineering practice of FuzhouMetro Line I, where the key parameters used in both models are described and compared. The effectiveratio of bending rigidity h reflecting the relative stiffness between segmental lining and surroundingground and the transfer ratio of bending moment x reflecting the relative stiffness between segment andjoint, which are two key parameters used in the uniform ring model, are especially emphasized. Thereasonable values for these two key parameters are calibrated by comparing the bending momentscalculated from both two models. Through case studies, it is concluded that the effective ratio of bendingrigidity h increases significantly with good soil properties, increases slightly with increasing overburden,and decreases slightly with increasing water head. Meanwhile, the transfer ratio of bending moment xseems to only relate to the properties of segmental lining itself and has a minor relation with the groundconditions. These results could facilitate the design practice for Fuzhou Metro Line I, and could alsoprovide some references to other projects with respect to similar scenarios.
基金the National Natural Science Foundation of China(No.41372276)the Shanghai SASAC Technology Innovation and Energy Level Promotion Project(No.2013017)
文摘A series of full-scale loading tests are performed for a prospective subway tunnel with a rectangular shape including two reliability tests: one stagger-jointed three-ring reliability test, and one ultimate failure test on a single ring. Comprehensive measuring programs are designed to record the deformation of both lining structure and joints and the stresses of concrete, bolts and reinforcements. Experimental results show that in both the single-ring and three-ring loading cases, the long sides of tunnel cross section bend inwards while the short sides of tunnel cross section bend outwards. The inner part of joints opens while the outer part of joints closes at places experiencing positive moment and vice versa. Joint's rotational stiffness varies at different locations. Concrete cracking and crushing are the chief damage modes, and they are closely related to the distribution of bending moment. Stagger-jointed fabrication significantly increases the overall rigidity of lining system, which thereby greatly reduces the deformation of both concrete lining and joints in comparison with the single-ring case. It is shown that the routinely-used uniform rigidity model is conservative and the preliminary design can be optimized by applying an effective rigidity ratio(ERR) of 0.5.
基金Supported by National Natural Science Foundation of China(31101131)National Key Technology Research and Development Program(2011BAD16B03)+1 种基金Agricultural Science Independent Innovation Foundation of Jiangsu Province[CX(12)1003]Key Technology Research and Development Program of Jiangsu Province(BE2012309)~~
文摘Grain weight, one of the major factors determining rice yield, is a typical quantitative trait control ed by multiple genes. With Guangluai 4 as recipient and Nipponbare as donor, a population of 119 chromosome single segment substitution lines had been developed. Correlation analysis between grain weight and grain shape by SPSS revealed that 1 000-grain weight shared extremely significant posi-tive correlation with grain length and length-width ratio, but no significant correlation with grain width and thickness. The QTL analysis of grain weight was carried out using one-way analysis of variance and Dunnett's test. Nineteen stable QTLs re-sponsible for grain weight were identified over two years. Al 19 QTLs were identi-fied on al chromosomes except for chromosome 10 and 12 at a significance level of P≤0.001. Among them, 10 QTLs had a positive effect and were derived from the Nipponbare al ele, the additive effect of these QTLs ranged from 0.49 to 2.74 g, and the contributions of the additive effects ranged from 2.00% to 11.05%. Another 9 QTLs had a negative effect and were al derived from Guangluai 4 al ele, the ad-ditive effect of these QTLs ranged from 0.60 to 2.35 g, and the contributions of the additive effects ranged from 2.40% to 9.84%. The results provide a basis for the fine mapping and gene cloning of novel locus associated with rice grain weight.
文摘In this study, a population of chromosome segment substitution lines (CSSLs) derived from the cross between 9311 (indica) and Nipponbare (japonica) was employed to map the quantitative trait loci (QTLs) for salt tolerance under the salt stress simulated with 0.5% NaCI, using survival rate as the index. The data were analyzed by QTL IciMapping v3.1, and the results showed that one QTL (QSsr3) related to salt tolerance was located in the vicinity of the marker RM1350 on chromosome 3, into a genetic interval of 113.2-132.8 cM, with a contribution rate of 17.75%. The additive effect was 10.9, indicating that the QTL derived from the parent Nipponbare improved the salt tolerance of rice at seedling stage. This study will provide a theoretical basis for the selection of salt tolerant rice germplasm.
基金Supported by Specific Fund for the Independent Innovation of Agricultural Science and Technology[CX(11)1020]~~
文摘In this study, a population of 119 chromosome segment substitution lines (CSSLs) derived from backcross between indica 9311 and japonica Nipponbare was employed to map quantitative trait loci (QTL) associated with sheath blight resis-tance in rice with toothpick inoculation method. A total of three sheath blight resis-tance-associated QTLs (qsb8-1, qsb8-2 and qsb8-3) were identified, which were lo-cated on adjacent molecular markers RM3262, RM5485 and RM3496 of chromo-some 8; the genetic interval was 81.7cM-91.7cM, 91.7cM-108.1cM and 108.1cM-119.6cM, respectively. The additive effect of qsb8-2 was negative, indicating that sheath blight resistance of susceptible parent harboring qsb8-2 fragment was en-hanced; additive effects of qsb8-1 and qsb8-3 were positive, indicating that sheath blight resistance of susceptible parent harboring qsb8-1 and qsb8-3 fragments was reduced.
基金supported by the National Natural Science Foundation of China(32172064)。
文摘Introducing the inherent genetic diversity of wild species into cultivars has become one of the hot topics in crop genetic breeding and genetic resource research.Fiber-and seed-related traits,which are critical to the global economy and people's livelihoods,are the principal focus of cotton breeding.Here,the wild cotton species Gossypium tomentosum was used to broaden the genetic basis of G.hirsutum and identify QTLs for fiber-and seed-related traits.A population of 559 chromosome segment substitution lines(CSSLs)was established with various chromosome segments from G.tomentosum in a G.hirsutum cultivar background.Totals of 72,89,and 76 QTLs were identified for three yield traits,five fiber quality traits,and six cottonseed nutrient quality traits,respectively.Favorable alleles of 104 QTLs were contributed by G.tomentosum.Sixty-four QTLs were identified in two or more environments,and candidate genes for three of them were further identified.The results of this study contribute to further studies on the genetic basis of the morphogenesis of these economic traits,and indicate the great breeding potential of G.tomentosum for improving the fiber-and seed-related traits in G.hirsutum.
基金supported by the Zhejiang Provincial Natural Science Foundation of China(Grant Nos.LZ24C130004 and LQ24C130008)。
文摘Heading date is one of the most important agronomic traits that directly affect rice yield and determines the regional adaptability in specific growing environments.As a short-day plant,rice can grow under long-day(LD)conditions due to the synergistic regulation of many photosensitive genes.Using a set of chromosome segment substitution lines(CSSLs)with the indica cultivar Huanghuazhan(HHZ)as the recipient parent and Basmati Surkh 89-15(BAS)as the donor parent,we identified a QTL locus.
基金supported in part by the National Basic Research Program(Nos.2012CB944803 and 2011CB 100202)the National Natural Science Foundation(No.31071383)+1 种基金the National Special Program for Transgenic Research(No. 2009ZX08009-008B)the Priority Academic Program Development from Jiangsu Government of China
文摘Chromosome segment substitution lines(CSSLs) are useful for the precise mapping of quantitative trait loci(QTLs) and dissection of the genetic basis of complex traits.In this study,two whole-genome sequenced rice cultivars,the japonica Nipponbare and indica 9311 were used as recipient and donor,respectively.A population with 57 CSSLs was developed after crossing and back-crossing assisted by molecular markers, and genotypes were identified using a high-throughput resequencing strategy.Detailed graphical genotypes of 38 lines were constructed based on resequencing data.These CSSLs had a total of 95 substituted segments derived from indica 9311,with an average of about 2.5 segments per CSSL and eight segments per chromosome,and covered about 87.4%of the rice whole genome.A multiple linear regression QTL analysis mapped four QTLs for 1000-grain weight.The largest-effect QTL was located in a region on chromosome 5 that contained a cloned major QTL GW5/qSW5 for grain size in rice.These CSSLs with a background of Nipponbare may provide powerful tools for future whole-genome
基金the key project ofNational Natural Science Foundation of China(30330370) the team project of Natural ScienceFoundation of Guangdong Province (20003023).
文摘QTLs for plant height and its components on the substituted segments of fifty-two single segment substitution lines (SSSLs) in rice were identified through t-test (P〈0.001) for comparison between each SSSL and recipient parent Huajingxian 74. On the 14 substituted segments, 24 QTLs were detected, 10 for plant height, 2 for panicle length, 4 for length of the first internode from the top, 5 for length of the second internode from the top and 3 for length of the third internode from the top, respectively. All these QTLs were distributed on nine rice chromosomes except chromosomes 5, 9 and 11. The additive effect ranged from -4.08 to 3.98 cm, and the additive effect percentages varied from -19.35% to 10.43%.
基金supported by the grants from the National.Basic Research Program of China(2006CB 101700)the National Natural Science Foundation of China(30330370).
文摘Tiller is one of the most important agronomic traits which influences quantity and quality of effective panicles and finally influences yield in rice. It is important to understand "static" and "dynamic" information of the QTLs for tillers in rice. This work was the first time to simultaneously map unconditional and conditional QTLs for tiller numbers at various stages by using single segment substitution lines in rice. Fourteen QTLs for tiller number, distributing on the corresponding substitution segments of chromosomes 1, 2, 3, 4, 6, 7 and 8 were detected. Both the number and the effect of the QTLs for tiller number were various at different stages, from 6 to 9 in the number and from 1.49 to 3.49 in the effect, respectively. Tiller number QTLs expressed in a time order, mainly detected at three stages of 0-7 d, 14-21 d and 35-42 d after transplanting with 6 positive, 9 random and 6 negative expressing QTLs, respectively. Each of the QTLs expressed one time at least during the whole duration of rice. The tiller number at a specific stage was determined by sum of QTL effects estimated by the unconditional method, while the increasing or decreasing number in a given time interval was controlled by the total of QTL effects estimated by the conditional method. These results demonstrated that it is highly effective and accurate for mapping of the QTLs by using single segment substitution lines and the conditional analysis methodology.
基金supported by the key project of National Natural Science Foundation of China(30330370).
文摘The microsatellite markers 484/485 and 484/W2R were used to identify the multiple alleles at the Wx locus in rice germplasm. Fifteen alleles were identified in 278 accessions by using microsatellite class and G-T polymorphism. Among these alleles, (CT)12-G, (CT)15-G, (CT)16-G, (CT)17-G, (CT)18-G and (CT)21-G have not been reported. Seventy-two single-segment substitution lines (SSSLs) carrying different alleles at the Wx locus were developed by using Huajingxian 74 with the (CT)11-G allele as a recipient and 20 accessions containing 12 different alleles at the Wx locus as donors. The estimated length of the substituted segments ranged from 2.2 to 77.3 cM with an average of 17.4 cM.
基金Supported by the Foundation for Innovation Research Groups of the National Natural Science Foundation of China(No.51321065)Tianjin Research Program of Application Foundation and Advanced Technology(No.12JCZDJC29200)Tianjin Natural Science Foundation(No.13JCYBJC19500)
文摘In most studies of tunnel boring machine(TBM)tunnelling, the groundwater pressure was not considered, or was simplified and exerted on the boundary of lining structure. Meanwhile, the leakage, which mainly occurs in the segment joints, was often ignored in the relevant studies of TBM tunnelling. Additionally, the geological models in these studies were simplified to different extents, and mostly were simplified as homogenous bodies. Considering the deficiencies above, a 3D refined model of the surrounding rock of a tunnel is firstly established using NURBS-TIN-BRe P hybrid data structure in this paper. Then the seepage field of the surrounding rock considering the leakage in the segment joints is simulated. Finally, the stability of TBM water diversion tunnel is studied coupled with the seepage simulation, to analyze the stress-strain conditions, the axial force and the bending moment of tunnel segment considering the leakage in the segment joints. The results illustrate that the maximum radial displacement, the minimum principal stress, the maximum principal stress and the axial force of segment lining considering the seepage effect are all larger than those disregarding the seepage effect.
基金supported by the Special Program for Rice Scientific Research in Ministry of Agriculture, China (Grant No.nyhyzx 07-001-006)Special Funds for Construction of Modern Agricultural Industry R & D SystemSelf-directed Innovation Fund of Agricultural Science and Technology in Jiangsu Province, China (Grant No. CX [09] 634)
文摘Ab The cold tolerance at the bud bursting stage (CTB) was evaluated at 5℃ by using a set of 95 chromosome segment substitution lines (CSSLs) derived from an indica rice 9311 and a japonica rice Nipponbare with a genetic background of 9311. The result showed that six CSSLs had slightly stronger effect on CTB than 9311. Total four quantitative trait loci (QTLs) for CTB were preliminary mapped on chromosomes 5 and 7 by substitution mapping, qCTB-5-1, qCTB-5-2 and qCTB-5-3 were mapped in the region of RM267-RM1237, RM2422-RM6054 and RM3321-RM1054, which were 21.3 cM, 27.4 cM and 12.7 cM in genetic distance on rice chromosome 5, respectively, qCTB-7 was mapped in a 6.8-cM region of RM11-RM2752 on rice chromosome 7.
基金supported by the National Basic Research Program of China(Grant No.2005CB120807)
文摘Rice grain shape is one of the important factors affecting grain quality and yield,but it is liable to be influenced by genetic backgrounds and environments.The chromosome single segment substitution lines(SSSLs) in rice have been considered as ideal populations to identify the quantitative trait loci(QTLs).In this study,22 QTLs affecting rice grain shape were detected to be distributed on eight chromosomes except chromosomes 6,9,11 and 12 by using SSSLs.Among them,seven QTLs conditioned grain length,six conditioned grain width,five affected grain length-width ratio and four controlled grain thickness.
文摘A backcross recombinant inbred line population consisting of 202 lines was developed from Xieqingzao B//Xieqingzao B / Dongxiang wild rice. The population was assayed with DNA markers and phenotyped on planthopper resistance and yield traits. A linkage map consisting of 119 DNA markers and spanned for 1188 cM over the 12 rice chromosomes was constructed. Thirty-two chromosomal segment substitution lines were selected based on the percentage of Xieqingzao B allele at marker loci. These lines are of great potential for gene mapping and alien gene introgression.
基金supported by grants from the Ministry of Science and Technology of China(No. 2010CB125901)the National Natural Science Foundation of China(No.31271315)the Bill & Melinda Gates Foundation
文摘Heading date in rice is a typical quantitative trait controlled by multiple quantitative trait loci (QTLs). It is mainly regulated by environmental factors such as photoperiod and temperature (Izawa, 2007). Many QTLs for heading date have been identified using different mapping populations and methods (http:// www.gramene.org/qtl). Up to date, several major heading date QTLs have been cloned by map-based cloning strategy (Yano et al., 2000; Takahashi et al., 2001; Kojima et al., 2002; Doi et al., 2004; Xue et al., 2008; Wei et al., 2010; Yan et al.,