期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
Residual rock deformation of lined caverns for underground energy storage after air deflation considering stress path 被引量:1
1
作者 Chen Xu Caichu Xia +3 位作者 Gecheng Zhang Sheng Wang Hui Lu Yingjun Xu 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第7期4160-4178,共19页
This study investigates the mechanical response of an underground cavern subjected to cyclic high gas pressure,aiming to establish a theoretical foundation for the design of lined rock caverns(LRCs)for energy storage ... This study investigates the mechanical response of an underground cavern subjected to cyclic high gas pressure,aiming to establish a theoretical foundation for the design of lined rock caverns(LRCs)for energy storage with high internal pressure,e.g.compressed air energy storage(CAES)underground caverns or hydrogen storage caverns.Initially,the stress paths of the surrounding rock during the excavation,pressurization,and depressurization processes are delineated.Analytical expressions for the stress and deformation of the surrounding rock are derived based on the MohreCoulomb criterion.These expressions are then employed to evaluate the displacement of cavern walls under varying qualities of surrounding rock,the contact pressure between the steel lining and the surrounding rock subject to different gas storage pressures,the load-bearing ratio of the surrounding rock,and the impact of lining thickness on the critical gas pressure.Furthermore,the deformation paths of the surrounding rock are evaluated,along with the effects of tunnel depth and diameter on residual deformation of the surrounding rock,and the critical minimum gas pressure at which the surrounding rock and the lining do not detach.The results indicate that residual deformation of the surrounding rock occurs after depressurization under higher internal pressure for higher-quality rock masses,leading to detachment between the surrounding rock and the steel lining.The findings indicate that thicker linings correspond to higher critical minimum gas pressures.However,for lower-quality surrounding rock,thicker linings correspond to lower critical minimum gas pressures.These findings will provide invaluable insights for the design of LRCs for underground energy storage caverns. 展开更多
关键词 Underground energy storage Lined rock cavern(LRC) Cyclic high pressure Mechanical response Stress path
在线阅读 下载PDF
Investigation of damage impact on stability and airtightness of lined rock caverns for compressed air energy storage
2
作者 Hui Zhou Shuo Zhao +5 位作者 Yang Gao Muhammad Usman Azhar Mingming Hu Songhua Mei Feng Xiao Hongliang Tu 《Deep Underground Science and Engineering》 2025年第4期597-611,共15页
The lined rock cavern(LRC)compressed air energy storage(CAES)system is currently regarded as one of the most promising methods for large-scale energy storage.However,the safety of LRC under high internal pressure has ... The lined rock cavern(LRC)compressed air energy storage(CAES)system is currently regarded as one of the most promising methods for large-scale energy storage.However,the safety of LRC under high internal pressure has emerged as a critical issue that restricts their development.While scholars have focused on the safety of LRC under multiphysics field coupling,few have noticed the inevitable damage sustained by the primary load-bearing components—the surrounding rock and concrete lining—under high internal pressure,compromising their strength and permeation resistance.This study investigates the impact of damage to the surrounding rock and lining concrete on the stability and airtightness of the CAES cavern.First,a damagepermeability evolution model was established by analyzing cyclic loading and unloading test data on concrete samples.Then,a thermo-hydro-mechanical damage(THM-D)coupling model for the CAES cavern was developed and validated against operational data from the Huntorf plant.The coupling responses of both the surrounding rock and lining were compared and analyzed under three different schemes of the first charging and discharging operation.The results revealed the correlation between the air temperature in the cavern and the injection rate and the uneven damage evolution of the surrounding rock and lining caused by the geostress distribution coupled with the heat transfer process.Through the analysis,a higher air injection rate causes more lining damage and air leakage,posing greater risks to engineering safety and airtightness.However,the reduction of inflation time will weaken this effect to some extent.These findings offer valuable insights into the design,construction,and safe operation of LRC compressed air energy storage systems. 展开更多
关键词 AIRTIGHTNESS compressed air energy storage DAMAGE lined rock cavern thermo-hydro-mechanical
原文传递
Comparative analysis of thermodynamic and mechanical responses between underground hydrogen storage and compressed air energy storage in lined rock caverns 被引量:2
3
作者 Bowen Hu Liyuan Yu +5 位作者 Xianzhen Mi Fei Xu Shuchen Li Wei Li Chao Wei Tao Zhang 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第4期531-543,共13页
Underground hydrogen storage(UHS)and compressed air energy storage(CAES)are two viable largescale energy storage technologies for mitigating the intermittency of wind and solar power.Therefore,it is meaningful to comp... Underground hydrogen storage(UHS)and compressed air energy storage(CAES)are two viable largescale energy storage technologies for mitigating the intermittency of wind and solar power.Therefore,it is meaningful to compare the properties of hydrogen and air with typical thermodynamic storage processes.This study employs a multi-physical coupling model to compare the operations of CAES and UHS,integrating gas thermodynamics within caverns,thermal conduction,and mechanical deformation around rock caverns.Gas thermodynamic responses are validated using additional simulations and the field test data.Temperature and pressure variations of air and hydrogen within rock caverns exhibit similarities under both adiabatic and diabatic simulation modes.Hydrogen reaches higher temperature and pressure following gas charging stage compared to air,and the ideal gas assumption may lead to overestimation of gas temperature and pressure.Unlike steel lining of CAES,the sealing layer(fibre-reinforced plastic FRP)in UHS is prone to deformation but can effectively mitigates stress in the sealing layer.In CAES,the first principal stress on the surface of the sealing layer and concrete lining is tensile stress,whereas UHS exhibits compressive stress in the same areas.Our present research can provide references for the selection of energy storage methods. 展开更多
关键词 Underground hydrogen storage Compressed air energy storage Mechanical response Thermodynamic response Lined rock caverns
在线阅读 下载PDF
Compressed air and hydrogen storage experimental facilities for sustainable energy storage technologies at Yunlong Lake Laboratory(CAPABLE)
4
作者 Xiaozhao Li Yukun Ji +5 位作者 Kai Zhang Chengguo Hu Jianguo Wang Lixin He Lihua Hu Bangguo Jia 《Deep Underground Science and Engineering》 2025年第3期341-353,共13页
In March 2022,construction was started at Yunlong Lake Laboratory of Deep Underground Science and Engineering,China,on an underground gas storage experimental facility with the capacity to achieve composite structure ... In March 2022,construction was started at Yunlong Lake Laboratory of Deep Underground Science and Engineering,China,on an underground gas storage experimental facility with the capacity to achieve composite structure design and material development.Underground gas storage can provide a solution to address the intermittency of renewable energy supply.Currently,lined rock caverns(LRCs)are regarded as the best option for compressed air and hydrogen storage,since they have excellent sealing properties and minimum environmental impacts.However,the load transfer,damage,and failure mechanisms of LRCs are not clear.This prevents the design and selection of mechanical structures.Particularly,the gas sealing capacity in specific gas conditions(e.g.,stored hydrogen-induced chemical reaction)remains poorly understood,and advanced materials to adapt the storage conditions of different gases should be developed.This experimental facility aims at providing a solution to these technical issues.This facility has several different types of LRCs,and study of the mechanical behavior of various structures and evaluation of the gas-tight performance of the sealing material can be carried out using a distributed fiberoptic sensing approach.The focus of this study is on the challenges in sealing material development and structure design.This facility facilitates large-scale and long-term energy storage for stable and continuous energy supply,and enables repurposing of underground space and acceleration of the realization of green energy ambitions in the context of Paris Agreement and China's carbon neutralization plan. 展开更多
关键词 compressed air energy storage experimental platform hydrogen storage lined rock cavern
原文传递
Rock mass response for lined rock caverns subjected to high internal gas pressure 被引量:11
5
作者 Davi Rodrigues Damasceno Johan Spross Fredrik Johansson 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第1期119-129,共11页
The storage of hydrogen gas in underground lined rock caverns(LRCs)enables the implementation of the first fossil-free steelmaking process to meet the large demand for crude steel.Predicting the response of rock mass ... The storage of hydrogen gas in underground lined rock caverns(LRCs)enables the implementation of the first fossil-free steelmaking process to meet the large demand for crude steel.Predicting the response of rock mass is important to ensure that gas leakage due to rupture of the steel lining does not occur.Analytical and numerical models can be used to estimate the rock mass response to high internal pressure;however,the fitness of these models under different in situ stress conditions and cavern shapes has not been studied.In this paper,the suitability of analytical and numerical models to estimate the maximum cavern wall tangential strain under high internal pressure is studied.The analytical model is derived in detail and finite element(FE)models considering both two-dimensional(2D)and three-dimensional(3D)geometries are presented.These models are verified with field measurements from the LRC in Skallen,southwestern Sweden.The analytical model is inexpensive to implement and gives good results for isotropic in situ stress conditions and large cavern heights.For the case of anisotropic horizontal in situ stresses,as the conditions in Skallen,the 3D FE model is the best approach. 展开更多
关键词 Lined rock caverns(LRCs) High pressure Rock mass response In situ stress condition cavern shape Gas storage
在线阅读 下载PDF
Effect of rock joints on lined rock caverns subjected to high internal gaspressure 被引量:1
6
作者 Davi Rodrigues Damasceno Johan Spross Fredrik Johansson 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第7期1625-1635,共11页
The storage of hydrogen gas in lined rock caverns(LRCs)may enable the implementation of the firstlarge-scale fossil-free steelmaking process in Sweden,but filling such storage causes joints in the rockmass to open,con... The storage of hydrogen gas in lined rock caverns(LRCs)may enable the implementation of the firstlarge-scale fossil-free steelmaking process in Sweden,but filling such storage causes joints in the rockmass to open,concentrating strains in the lining.The structural interaction between the LRC componentsmust be able to reduce the strain concentration in the sealing steel lining;however,this interaction iscomplex and difficult to predict with analytical methods.In this paper,the strain concentration in LRCsfrom the opening of rock joints is studied using finite element(FE)analyses,where the large-and small-scale deformation behaviors of the LRC are coupled.The model also includes concrete crack initiation anddevelopment with increasing gas pressure and rock joint width.The interaction between the jointed rockmass and the reinforced concrete,the sliding layer,and the steel lining is demonstrated.The results showthat the rock mass quality and the spacing of the rock joints have the greatest influence on the straindistributions in the steel lining.The largest effect of rock joints on the maximum strains in the steellining was observed for geological conditions of“good”quality rock masses. 展开更多
关键词 Lined rock cavern(LRC) Rock joints Strain concentrations lining interaction Finite element(FE)analysis High gas pressure
在线阅读 下载PDF
Impact of fracture networks on the structural deformation of lined rock caverns under high internal gas pressure
7
作者 Chenxi Zhao Qinghua Lei Zixin Zhang 《Underground Space》 2025年第2期252-269,共18页
In this paper,we develop a two-dimensional(2D)numerical model based on the finite element method to analyse the impact of fracture networks on the behaviour of pressurised lined rock caverns(LRCs).We use the discrete ... In this paper,we develop a two-dimensional(2D)numerical model based on the finite element method to analyse the impact of fracture networks on the behaviour of pressurised lined rock caverns(LRCs).We use the discrete fracture network approach to represent the fracture system in rock obeying a power law length distribution.The LRC consisting of an inner steel lining and an outer reinforced concrete is situated within the rock mass characterised by spatially distributed and intersected fractures.An elasto-brittle constitutive relationship is adopted to characterise the deformation/failure of intact rocks,while the classical Mazars damage model is used to simulate the cracking of concrete linings.For pre-existing fractures in rock,a non-linear stress-displacement formulation is implemented to capture their normal and shear deformations.The 2D model,representing the horizontal cross-section of an LRC with its surrounding rock mass,is subject to a prescribed in situ stress condition.We explore various fracture network scenarios associated with different values of power law length exponent and fracture intensity.We analyse the damage evolution in rock/concrete and tangential strain in the concrete/steel linings.It is found that the damage within the rock mass mainly evolves in the form of wing cracks that emanate from the tips of pre-existing fractures.For damage development in the concrete lining,it is primarily induced by tensile cracking under cavern pressurisation.The damage emerges in the lining sections where pre-existing fractures are located in the tensile region around the cavern and either intersect with the cavern wall or could reach the cavern wall by promoting wing crack propagation.The results and insights obtained from our study have significant implications for the design optimisation and performance assessment of LRCs for sustainable hydrogen storage. 展开更多
关键词 Lined rock cavern Discrete fracture network Finite element method Damage mechanics cavern-fracture interaction
暂未订购
Deformation Analysis of LRC Underground Gas Storage 被引量:1
8
作者 Primoz Jelusic Bojan Zlender 《Journal of Civil Engineering and Architecture》 2011年第6期548-554,共7页
The risk during construction and in the operation of the underground gas storage (UGS) was analyzed. One of most important risk which should be prevented is large deformation or destruction of the steel lining. The ... The risk during construction and in the operation of the underground gas storage (UGS) was analyzed. One of most important risk which should be prevented is large deformation or destruction of the steel lining. The specific deformation of the steel lining needs to be inside the acceptable value. This paper presents lined rock cavern (LRC) concept and specific deformations, which can occur under operation of underground gas storage. Analysis is performed with different (3D model and axis symmetrical) FEM models and analytical model. We made a comparison between analytical calculation and FEM calculation. Concrete wall is mechanically not regarded as reinforced concrete structure which means that concrete will crack. Finally, we determined the minimum value of Young's modulus, which satisfies the condition of maximum deformation of steel lining. 展开更多
关键词 Underground gas storage lined rock cavern interaction concrete-rock rock mass properties rock mechanics.
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部