The exact feedback linearization method implies an accurate knowledge of the model and its parameters.This assumption is an inherent limitation of the method,suffering from robustness issues.In general,the model struc...The exact feedback linearization method implies an accurate knowledge of the model and its parameters.This assumption is an inherent limitation of the method,suffering from robustness issues.In general,the model structure is only partially known and its parameters present uncertainties.The current paper extends the classical exact feedback linearization to the robust feedback linearization by adding an appropriatelydesigned robust control layer.This is then able to ensure robust stability and robust performance for the given uncertain system in a desired region of attraction.We consider the case of full relative degree input-affine nonlinear systems,which are of great practical importance in the literature.The inner loop contains the feedback linearization input for the nominal system and the resulting residual nonlinearities can always be characterized as inverse additive uncertainties.The constructive proofs provide exact representations of the uncertainty models in three considered scenarios:unmatched,fully-matched,and partially-matched uncertainties.The uncertainty model will be a descriptor system,which also represents one of the novelties of the paper.Our approach leads to a simplified control structure and a less conservative coverage of the uncertainty set compared to current alternatives.The end-to-end procedure is emphasized on an illustrative example,in two different hypotheses.展开更多
Aim To present a simple and effective method for the design of nonlinear and time varying control system. Methods A new concept of dynamic equilibrium of a system and its stability were presented first. It was poin...Aim To present a simple and effective method for the design of nonlinear and time varying control system. Methods A new concept of dynamic equilibrium of a system and its stability were presented first. It was pointed out that what is controlled directly by the input of a control system is the system's dynamic equilibrium rather than the states. Based on it, a new feedback linearization method for nonlinear system based on the Lyapunov direct method was given. Simulation studies were also carried out. Results The example and simulation show that by use of the method, the controller design becomes very simple and the control effect is quite satisfying. Conclusion The new method unifies the stabilizing problem(regulating problem) with the tracking problem. It is a very simple and effective method for the design of nonlinear and time varying control system.展开更多
基金funded by the project new smart and adaptive robotics solutions for personalized minimally invasive surgery in cancer treatment−ATHENA,European Union-NextGenerationEU and Romanian Government,under National Recovery and Resilience Plan for Romania(CF116/15.11.2022)through the Romanian Ministry of Research,Innovation and Digitalization(within Component 9,investment I8)。
文摘The exact feedback linearization method implies an accurate knowledge of the model and its parameters.This assumption is an inherent limitation of the method,suffering from robustness issues.In general,the model structure is only partially known and its parameters present uncertainties.The current paper extends the classical exact feedback linearization to the robust feedback linearization by adding an appropriatelydesigned robust control layer.This is then able to ensure robust stability and robust performance for the given uncertain system in a desired region of attraction.We consider the case of full relative degree input-affine nonlinear systems,which are of great practical importance in the literature.The inner loop contains the feedback linearization input for the nominal system and the resulting residual nonlinearities can always be characterized as inverse additive uncertainties.The constructive proofs provide exact representations of the uncertainty models in three considered scenarios:unmatched,fully-matched,and partially-matched uncertainties.The uncertainty model will be a descriptor system,which also represents one of the novelties of the paper.Our approach leads to a simplified control structure and a less conservative coverage of the uncertainty set compared to current alternatives.The end-to-end procedure is emphasized on an illustrative example,in two different hypotheses.
文摘Aim To present a simple and effective method for the design of nonlinear and time varying control system. Methods A new concept of dynamic equilibrium of a system and its stability were presented first. It was pointed out that what is controlled directly by the input of a control system is the system's dynamic equilibrium rather than the states. Based on it, a new feedback linearization method for nonlinear system based on the Lyapunov direct method was given. Simulation studies were also carried out. Results The example and simulation show that by use of the method, the controller design becomes very simple and the control effect is quite satisfying. Conclusion The new method unifies the stabilizing problem(regulating problem) with the tracking problem. It is a very simple and effective method for the design of nonlinear and time varying control system.