This paper is devoted to studying the superconvergence of streamline diffusion finite element methods for convection-diffusion problems. In [8], under the condition that ε ≤ h^2 the optimal finite element error esti...This paper is devoted to studying the superconvergence of streamline diffusion finite element methods for convection-diffusion problems. In [8], under the condition that ε ≤ h^2 the optimal finite element error estimate was obtained in L^2-norm. In the present paper, however, the same error estimate result is gained under the weaker condition that ε≤h.展开更多
Using Stricklin Melhod ̄[5],we have this paper has derived the formulas for the ge-neration of non-linear element stiffness matrix of a triangle element when considering both the bending and the in-plane membrane forc...Using Stricklin Melhod ̄[5],we have this paper has derived the formulas for the ge-neration of non-linear element stiffness matrix of a triangle element when considering both the bending and the in-plane membrane forces. A computer programme for the calculation of large deflection and inner forces of shallow shells is designed on theseformulas. The central deflection curve computed by this programme is compared with other pertaining results.展开更多
A highly efficient H1-Galerkin mixed finite element method (MFEM) is presented with linear triangular element for the parabolic integro-differential equation. Firstly, some new results about the integral estimation ...A highly efficient H1-Galerkin mixed finite element method (MFEM) is presented with linear triangular element for the parabolic integro-differential equation. Firstly, some new results about the integral estimation and asymptotic expansions are studied. Then, the superconvergence of order O(h^2) for both the original variable u in H1 (Ω) norm and the flux p = u in H(div, Ω) norm is derived through the interpolation post processing technique. Furthermore, with the help of the asymptotic expansions and a suitable auxiliary problem, the extrapolation solutions with accuracy O(h^3) are obtained for the above two variables. Finally, some numerical results are provided to confirm validity of the theoretical analysis and excellent performance of the proposed method.展开更多
基金Supported by the National Natural Science Foundation of China(10471103)
文摘This paper is devoted to studying the superconvergence of streamline diffusion finite element methods for convection-diffusion problems. In [8], under the condition that ε ≤ h^2 the optimal finite element error estimate was obtained in L^2-norm. In the present paper, however, the same error estimate result is gained under the weaker condition that ε≤h.
文摘Using Stricklin Melhod ̄[5],we have this paper has derived the formulas for the ge-neration of non-linear element stiffness matrix of a triangle element when considering both the bending and the in-plane membrane forces. A computer programme for the calculation of large deflection and inner forces of shallow shells is designed on theseformulas. The central deflection curve computed by this programme is compared with other pertaining results.
基金Project supported by the National Natural Science Foundation of China(Nos.10971203,11271340,and 11101381)the Specialized Research Fund for the Doctoral Program of Higher Education(No.20094101110006)
文摘A highly efficient H1-Galerkin mixed finite element method (MFEM) is presented with linear triangular element for the parabolic integro-differential equation. Firstly, some new results about the integral estimation and asymptotic expansions are studied. Then, the superconvergence of order O(h^2) for both the original variable u in H1 (Ω) norm and the flux p = u in H(div, Ω) norm is derived through the interpolation post processing technique. Furthermore, with the help of the asymptotic expansions and a suitable auxiliary problem, the extrapolation solutions with accuracy O(h^3) are obtained for the above two variables. Finally, some numerical results are provided to confirm validity of the theoretical analysis and excellent performance of the proposed method.
基金Supported by the National Natural Science Foundation of China(11971416)the Key Scientific Research Projects in Universities of Henan Province(21B110007,22A110022)+1 种基金the Foundation for University Key Young Teacher of Henan Province(2019GGJS214)the Scientific Research Innovation Team of Xuchang University(2022CXTD002)。