期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
引入时间效应的SVD++线性回归推荐算法 被引量:4
1
作者 苏庆 章静芳 李小妹 《计算机工程》 CAS CSCD 北大核心 2020年第2期65-71,共7页
针对传统协同过滤算法中的数据稀疏问题,在SVD++算法和线性回归模型的基础上引入时间效应属性,提出一种推荐算法timeSVD++LR。采用SVD++算法将用户和项目信息与隐式反馈信息相融合映射到隐语义空间,将用户和项目之间的交互作用建模为该... 针对传统协同过滤算法中的数据稀疏问题,在SVD++算法和线性回归模型的基础上引入时间效应属性,提出一种推荐算法timeSVD++LR。采用SVD++算法将用户和项目信息与隐式反馈信息相融合映射到隐语义空间,将用户和项目之间的交互作用建模为该空间中的内积。通过描述用户和物品在各因子上的特征来解释评分值,在此基础上对时间效应建模,进一步提高预测结果的准确度。根据预测评分矩阵构造特征向量,将原始训练数据作为线性回归模型的输入,采用梯度下降算法优化最终代价函数,生成使得代价函数值最小的参数向量,同时将特征向量和参数向量代入预测模型求解预测评分。在MovieLens数据集上的实验结果表明,与RSVD、SVD++和timeSVD++算法相比,该算法的平均绝对误差和均方根误差均较低,其推荐准确性较高。 展开更多
关键词 svd++模型 时间效应 特征向量 线性回归 推荐算法
在线阅读 下载PDF
基于低秩矩阵恢复的视频背景建模 被引量:5
2
作者 杨敏 安振英 《南京邮电大学学报(自然科学版)》 北大核心 2013年第2期86-89,96,共5页
针对传统背景建模存在的问题,文中基于低秩矩阵恢复原理,直接从视频序列中分离出前景物体和背景模型。已有低秩矩阵恢复算法的迭代计算过程中涉及大量的奇异值分解,而这些奇异值分解一般非常耗时且不够简洁,文中在非精确增广拉格朗日乘... 针对传统背景建模存在的问题,文中基于低秩矩阵恢复原理,直接从视频序列中分离出前景物体和背景模型。已有低秩矩阵恢复算法的迭代计算过程中涉及大量的奇异值分解,而这些奇异值分解一般非常耗时且不够简洁,文中在非精确增广拉格朗日乘子法中引入线性时间奇异值分解算法,以得到更加有效的背景建模算法。基于实际视频序列实验,结果表明该改进算法具有更好的建模效果和较少的运算时间。 展开更多
关键词 低秩矩阵恢复 视频背景建模 增广拉格朗日乘子法 线性时间奇异值分解算法
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部