The peak elastic strain energy consumption ratio(PEECR)is a rock brittleness index proposed by Gong and Wang.In the present study,based on the linear energy storage law of rock under triaxial compression,a new method ...The peak elastic strain energy consumption ratio(PEECR)is a rock brittleness index proposed by Gong and Wang.In the present study,based on the linear energy storage law of rock under triaxial compression,a new method was proposed to calculate the PEECR.The PEECR uses a simplified method to calculate the peak elastic strain energy.To solve this problem accurately,triaxial cyclic loading-unloading compression tests were carried out on shale.Strain energy parameters were calculated from the test curves.The results show that there is a linear relationship between the elastic strain energy and input strain energy,indicating that the linear energy storage law in rock is applicable to triaxial compression state.The universality of the linear energy storage law of rock under triaxial compression is also verified by the data in the published literature.Then,the peak elastic strain energy can be accurately determined using the linear energy storage law,and the PEECR is improved based on this.Finally,the PEECR and the improved PEECR were compared using the triaxial cyclic loading-unloading compression tests on three rocks(shale,red sandstone and granite),and the improved PEECR was compared with 11 existing energy-based brittleness indexes.The results show that the improved PEECR can further reflect the rock brittleness more accurately.展开更多
The rationality of using strain energy storage index(Wet)for evaluating rockburst proneness was theoretically verified based on linear energy storage(LES)law in this study.The LES law is defined as the linear relation...The rationality of using strain energy storage index(Wet)for evaluating rockburst proneness was theoretically verified based on linear energy storage(LES)law in this study.The LES law is defined as the linear relationship between the elastic strain energy stored inside the solid material and the input strain energy during loading.It is used to determine the elastic strain energy and dissipated strain energy of rock specimens at various loading/unloading stress levels.The results showed that the Wetvalue obtained from experiments was close to the corresponding theoretical one from the LES law.Furthermore,with an increase in the loading/unloading stress level,the ratio of elastic strain energy to dissipated strain energy converged to the peak-strength strain energy storage index(Wp et).This index is stable and can better reflect the relative magnitudes of the stored energy and the dissipated energy of rocks at the whole pre-peak stage than the strain energy storage index.The peak-strength strain energy storage index can replace the conventional strain energy storage index as a new index for evaluating rockburst proneness.展开更多
Rocks will suffer different degree of damage under freeze-thaw(FT)cycles,which seriously threatens the long-term stability of rock engineering in cold regions.In order to study the mechanism of rock FT damage,energy c...Rocks will suffer different degree of damage under freeze-thaw(FT)cycles,which seriously threatens the long-term stability of rock engineering in cold regions.In order to study the mechanism of rock FT damage,energy calculation method and energy self-inhibition model are introduced to explore their energy characteristics in this paper.The applicability of the energy self-inhibition model was verified by combining the data of FT cycles and uniaxial compression tests of intact and pre-cracked sandstone samples,as well as published reference data.In addition,the energy evolution characteristics of FT damaged rocks were discussed accordingly.The results indicate that the energy self-inhibition model perfectly characterizes the energy accumulation characteristics of FT damaged rocks under uniaxial compression before the peak strength and the energy dissipation characteristics before microcrack unstable growth stage.Taking the FT damaged cyan sandstone sample as an example,it has gone through two stages dominated by energy dissipation mechanism and energy accumulation mechanism,and the energy rate curve of the pre-cracked sample shows a fall-rise phenomenon when approaching failure.Based on the published reference data,it was found that the peak total input energy and energy storage limit conform to an exponential FT decay model,with corresponding decay constants ranging from 0.0021 to 0.1370 and 0.0018 to 0.1945,respectively.Finally,a linear energy storage equation for FT damaged rocks was proposed,and its high reliability and applicability were verified by combining published reference data,the energy storage coefficient of different types of rocks ranged from 0.823 to 0.992,showing a negative exponential relationship with the initial UCS(uniaxial compressive strength).In summary,the mechanism by which FT weakens the mechanical properties of rocks has been revealed from an energy perspective in this paper,which can provide reference for related issues in cold regions.展开更多
To study the energy storage and dissipation characteristics of deep rock under two-dimensional compression with constant confining pressure,the single cyclic loading-unloading two-dimensional compression tests were pe...To study the energy storage and dissipation characteristics of deep rock under two-dimensional compression with constant confining pressure,the single cyclic loading-unloading two-dimensional compression tests were performed on granite specimens with two height-to-width(H/W)ratios under five confining pressures.Three energy density parameters(input energy density,elastic energy density and dissipated energy density)in the axial and lateral directions of granite specimens under different confining pressures were calculated using the area integral method.The experimental results show that,for the specimens with a specific H/W ratio,these three energy density parameters in the axial and lateral directions increase nonlinearly with the confining pressure as quadratic polynomial functions.Under constant confining pressure compression,the linear energy storage law of granite specimens in the axial and lateral directions was founded.Using the linear energy storage law in different directions,the elastic energy density in various directions(axial elastic energy density,lateral elastic energy density and total elastic energy density)of granite under any specific confining pressures can be calculated.When the H/W ratio varies from 1:1 to 2:1,the lateral compression energy storage coefficient increases and the corresponding axial compression energy storage coefficient decreases,while the total compression energy storage coefficient is almost independent of the H/W ratio.展开更多
Many underground engineering projects show that rockburst can occur in rocks at great depth and high temperature, and temperature is a critical factor affecting the intensity of rockburst. In general, temperature can ...Many underground engineering projects show that rockburst can occur in rocks at great depth and high temperature, and temperature is a critical factor affecting the intensity of rockburst. In general, temperature can affect the energy storage, dissipation, and surplus in rock. To explore the influence of temperature on the energy storage and dissipation characteristics and rockburst proneness, the present study has carried out a range of the uniaxial compression(UC) and single-cyclic loading-unloading uniaxial compression(SCLUC) tests on pre-heated granite specimens at 20℃-700℃. The results demonstrate that the rockburst proneness of pre-heated granite initially increases and subsequently decreases with the increase of temperature. The temperature of 300℃ has been found to be the threshold for rockburst proneness. Meanwhile, it is found that the elastic strain energy density increases linearly with the total input strain energy density for the pre-heated granites, confirming that the linear energy property of granite has not been altered by temperature. According to this inherent property, the peak elastic strain energy of pre-heated granites can be calculated accurately. On this basis, utilising the residual elastic energy index, the rockburst proneness of pre-heated granite can be determined quantitatively. The obtained results from high to low are: 317.9 k J/m^(3)(300℃), 264.1 k J/m^(3)(100℃), 260.6 k J/m^(3)(20℃), 235.5 k J/m^(3)(500℃), 158.9 k J/m^(3)(700℃), which are consistent with the intensity of actual rockburst for specimens. In addition, the relationship between temperature and energy storage capacity(ESC) of granite was discussed, revealing that high temperature impairs ESC of rocks, which is essential for reducing the rockburst proneness. This study provides some new insights into the rockburst proneness evaluation in high-temperature rock engineering.展开更多
To evaluate the coal burst proneness more precisely,a new energy criterion namely the residual elastic energy index was proposed.This study begins by performing the single-cyclic loading-unloading uniaxial compression...To evaluate the coal burst proneness more precisely,a new energy criterion namely the residual elastic energy index was proposed.This study begins by performing the single-cyclic loading-unloading uniaxial compression tests with five pre-peak unloading stress levels to explore the energy storage characteristics of coal.Five types of coals from different mines were tested,and the instantaneous destruction process of the coal specimens under compression loading was recorded using a high speed camera.The results showed a linear relationship between the elastic strain energy density and input energy density,which confirms the linear energy storage law of coal.Based on this linear energy storage law,the peak elastic strain energy density of each coal specimen was obtained precisely.Subsequently,a new energy criterion of coal burst proneness was established,which was called the residual elastic energy index(defined as the difference between the peak elastic strain energy density and post peak failure energy density).Considering the destruction process and actual failure characteristics of coal specimens,the accuracy of evaluating coal burst proneness based on the residual elastic energy index was examined.The results indicated that the residual elastic energy index enables reliable and precise evaluations of the coal burst proneness.展开更多
The strain energy storage index WET was widely used to evaluate coal burst liability,but the scientific evidence for selecting the unloading stress level interval(around 80%of peak strength)remains lacking,and WET can...The strain energy storage index WET was widely used to evaluate coal burst liability,but the scientific evidence for selecting the unloading stress level interval(around 80%of peak strength)remains lacking,and WET can not reflect the energy storage and dissipation ratio(ESD ratio)of the whole pre-peak stage for coal materials.In this study,these two key problems in WET calculation and application were solved based on the linear energy storage(LES)law.The LES law was defined as the linear relationship between the elastic strain energy and input strain energy for solid material during loading.Using the LES law,the elastic strain energy and dissipated strain energy of at 10 types of coals were calculated precisely,and ideal ESD ratio and general ESD ratio at any stress level will be obtained subsequently.The results also show that WET is extremely close to the ideal and general ESD ratio,which proves that the selecting stress level of WET calculation is scientific and reasonable.Furthermore,the general ESD ratio converges to the peak ESD ratio(namely peak strain energy storage index WET P)as stress level increases.Compared with WET,Wp ET not only reflects the ESD ratio of coal materials over the whole pre-peak loading stage,but also exhibits excellent stability.Consequently,Wp ET is suggested as a new evaluation index of coal burst liability.展开更多
This paper introduces the principle of space vector pulse width modulation (SVPWM), and discusses a method for implementing the SVPWM based on MATLAB/SIMULINK, as well as modeling of AC servo system with permanent m...This paper introduces the principle of space vector pulse width modulation (SVPWM), and discusses a method for implementing the SVPWM based on MATLAB/SIMULINK, as well as modeling of AC servo system with permanent magnet synchronous motor (PMSM). Simulation results show that the model is effective, and the method provides a frame of reference for software and hardware designs which can be applied in high temperature superconducting (HTS) flywheel energy storage system (FESS) and linear motor (LM).展开更多
To examine the effect of bedding angle upon burst proneness in terms of energy,phyllites with seven various bedding angles are selected for conventional uniaxial compression and single-cyclic loading eunloading uniaxi...To examine the effect of bedding angle upon burst proneness in terms of energy,phyllites with seven various bedding angles are selected for conventional uniaxial compression and single-cyclic loading eunloading uniaxial compression tests.The ejection and failure during compression process of phyllites are monitored in real-time by high-speed camera system.The results demonstrate that the phyllites with different bedding angles all consistently follow the linear energy storage and dissipation(LESD)law during compression.The ultimate energy storage of phyllites with varying bedding angles can be calculated precisely via using the LESD law.Based on this,four kinds of energy-based rockburst indices are applied to quantitatively assess the burst proneness for phyllites.Combined with the recorded images of high-speed camera system,ejection distance,and mass of rock fragments and powder,the burst proneness for phyllites with various bedding angles is qualitatively evaluated adopting the far-field ejection mass ratio.Next,burst proneness of anisotropic phyllites is assessed quantitatively and qualitatively.It is found that phyllites with bedding angles of 0°,15°,and 90°have a high burst proneness,and that with bedding angle of 30°has a medium burst proneness,whereas the ones with bedding angles of 45°,60°,and 75°have a low burst proneness.Finally,the published experimental data of shale and sandstone specimens with different bedding angles are extracted,and it is preliminarily verified that the bedding angle does not change the LESD law of rocks.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.42077244).
文摘The peak elastic strain energy consumption ratio(PEECR)is a rock brittleness index proposed by Gong and Wang.In the present study,based on the linear energy storage law of rock under triaxial compression,a new method was proposed to calculate the PEECR.The PEECR uses a simplified method to calculate the peak elastic strain energy.To solve this problem accurately,triaxial cyclic loading-unloading compression tests were carried out on shale.Strain energy parameters were calculated from the test curves.The results show that there is a linear relationship between the elastic strain energy and input strain energy,indicating that the linear energy storage law in rock is applicable to triaxial compression state.The universality of the linear energy storage law of rock under triaxial compression is also verified by the data in the published literature.Then,the peak elastic strain energy can be accurately determined using the linear energy storage law,and the PEECR is improved based on this.Finally,the PEECR and the improved PEECR were compared using the triaxial cyclic loading-unloading compression tests on three rocks(shale,red sandstone and granite),and the improved PEECR was compared with 11 existing energy-based brittleness indexes.The results show that the improved PEECR can further reflect the rock brittleness more accurately.
基金supported by the National Natural Science Foundation of China(Grant Nos.42077244 and 41877272)the Fundamental Research Funds for the Central Universities(Grant No.2242022k30054)。
文摘The rationality of using strain energy storage index(Wet)for evaluating rockburst proneness was theoretically verified based on linear energy storage(LES)law in this study.The LES law is defined as the linear relationship between the elastic strain energy stored inside the solid material and the input strain energy during loading.It is used to determine the elastic strain energy and dissipated strain energy of rock specimens at various loading/unloading stress levels.The results showed that the Wetvalue obtained from experiments was close to the corresponding theoretical one from the LES law.Furthermore,with an increase in the loading/unloading stress level,the ratio of elastic strain energy to dissipated strain energy converged to the peak-strength strain energy storage index(Wp et).This index is stable and can better reflect the relative magnitudes of the stored energy and the dissipated energy of rocks at the whole pre-peak stage than the strain energy storage index.The peak-strength strain energy storage index can replace the conventional strain energy storage index as a new index for evaluating rockburst proneness.
基金Project(52174088)supported by the National Natural Science Foundation of ChinaProject(104972024JYS0007)supported by the Independent Innovation Research Fund Graduate Free Exploration,Wuhan University of Technology,China。
文摘Rocks will suffer different degree of damage under freeze-thaw(FT)cycles,which seriously threatens the long-term stability of rock engineering in cold regions.In order to study the mechanism of rock FT damage,energy calculation method and energy self-inhibition model are introduced to explore their energy characteristics in this paper.The applicability of the energy self-inhibition model was verified by combining the data of FT cycles and uniaxial compression tests of intact and pre-cracked sandstone samples,as well as published reference data.In addition,the energy evolution characteristics of FT damaged rocks were discussed accordingly.The results indicate that the energy self-inhibition model perfectly characterizes the energy accumulation characteristics of FT damaged rocks under uniaxial compression before the peak strength and the energy dissipation characteristics before microcrack unstable growth stage.Taking the FT damaged cyan sandstone sample as an example,it has gone through two stages dominated by energy dissipation mechanism and energy accumulation mechanism,and the energy rate curve of the pre-cracked sample shows a fall-rise phenomenon when approaching failure.Based on the published reference data,it was found that the peak total input energy and energy storage limit conform to an exponential FT decay model,with corresponding decay constants ranging from 0.0021 to 0.1370 and 0.0018 to 0.1945,respectively.Finally,a linear energy storage equation for FT damaged rocks was proposed,and its high reliability and applicability were verified by combining published reference data,the energy storage coefficient of different types of rocks ranged from 0.823 to 0.992,showing a negative exponential relationship with the initial UCS(uniaxial compressive strength).In summary,the mechanism by which FT weakens the mechanical properties of rocks has been revealed from an energy perspective in this paper,which can provide reference for related issues in cold regions.
基金Projects(41877272,51974359)supported by the National Natural Science Foundation of China。
文摘To study the energy storage and dissipation characteristics of deep rock under two-dimensional compression with constant confining pressure,the single cyclic loading-unloading two-dimensional compression tests were performed on granite specimens with two height-to-width(H/W)ratios under five confining pressures.Three energy density parameters(input energy density,elastic energy density and dissipated energy density)in the axial and lateral directions of granite specimens under different confining pressures were calculated using the area integral method.The experimental results show that,for the specimens with a specific H/W ratio,these three energy density parameters in the axial and lateral directions increase nonlinearly with the confining pressure as quadratic polynomial functions.Under constant confining pressure compression,the linear energy storage law of granite specimens in the axial and lateral directions was founded.Using the linear energy storage law in different directions,the elastic energy density in various directions(axial elastic energy density,lateral elastic energy density and total elastic energy density)of granite under any specific confining pressures can be calculated.When the H/W ratio varies from 1:1 to 2:1,the lateral compression energy storage coefficient increases and the corresponding axial compression energy storage coefficient decreases,while the total compression energy storage coefficient is almost independent of the H/W ratio.
基金supported by the National Natural Science Foundation of China (Grant No. 41877272)the Fundamental Research Funds for the Central Universities (Grant No.2242022k30054)the Fundamental Research Funds for the Central Universities of Central South University (Grant No.2021zzts0861)。
文摘Many underground engineering projects show that rockburst can occur in rocks at great depth and high temperature, and temperature is a critical factor affecting the intensity of rockburst. In general, temperature can affect the energy storage, dissipation, and surplus in rock. To explore the influence of temperature on the energy storage and dissipation characteristics and rockburst proneness, the present study has carried out a range of the uniaxial compression(UC) and single-cyclic loading-unloading uniaxial compression(SCLUC) tests on pre-heated granite specimens at 20℃-700℃. The results demonstrate that the rockburst proneness of pre-heated granite initially increases and subsequently decreases with the increase of temperature. The temperature of 300℃ has been found to be the threshold for rockburst proneness. Meanwhile, it is found that the elastic strain energy density increases linearly with the total input strain energy density for the pre-heated granites, confirming that the linear energy property of granite has not been altered by temperature. According to this inherent property, the peak elastic strain energy of pre-heated granites can be calculated accurately. On this basis, utilising the residual elastic energy index, the rockburst proneness of pre-heated granite can be determined quantitatively. The obtained results from high to low are: 317.9 k J/m^(3)(300℃), 264.1 k J/m^(3)(100℃), 260.6 k J/m^(3)(20℃), 235.5 k J/m^(3)(500℃), 158.9 k J/m^(3)(700℃), which are consistent with the intensity of actual rockburst for specimens. In addition, the relationship between temperature and energy storage capacity(ESC) of granite was discussed, revealing that high temperature impairs ESC of rocks, which is essential for reducing the rockburst proneness. This study provides some new insights into the rockburst proneness evaluation in high-temperature rock engineering.
基金This work was supported by the National Natural Science Foundation of China(No.41877272)the Fundamental Research Funds for the Central Universities of Southeast University(No.2242021R10080).
文摘To evaluate the coal burst proneness more precisely,a new energy criterion namely the residual elastic energy index was proposed.This study begins by performing the single-cyclic loading-unloading uniaxial compression tests with five pre-peak unloading stress levels to explore the energy storage characteristics of coal.Five types of coals from different mines were tested,and the instantaneous destruction process of the coal specimens under compression loading was recorded using a high speed camera.The results showed a linear relationship between the elastic strain energy density and input energy density,which confirms the linear energy storage law of coal.Based on this linear energy storage law,the peak elastic strain energy density of each coal specimen was obtained precisely.Subsequently,a new energy criterion of coal burst proneness was established,which was called the residual elastic energy index(defined as the difference between the peak elastic strain energy density and post peak failure energy density).Considering the destruction process and actual failure characteristics of coal specimens,the accuracy of evaluating coal burst proneness based on the residual elastic energy index was examined.The results indicated that the residual elastic energy index enables reliable and precise evaluations of the coal burst proneness.
基金supported by the National Natural Science Foundation of China (Grant No.41877272,42077244).
文摘The strain energy storage index WET was widely used to evaluate coal burst liability,but the scientific evidence for selecting the unloading stress level interval(around 80%of peak strength)remains lacking,and WET can not reflect the energy storage and dissipation ratio(ESD ratio)of the whole pre-peak stage for coal materials.In this study,these two key problems in WET calculation and application were solved based on the linear energy storage(LES)law.The LES law was defined as the linear relationship between the elastic strain energy and input strain energy for solid material during loading.Using the LES law,the elastic strain energy and dissipated strain energy of at 10 types of coals were calculated precisely,and ideal ESD ratio and general ESD ratio at any stress level will be obtained subsequently.The results also show that WET is extremely close to the ideal and general ESD ratio,which proves that the selecting stress level of WET calculation is scientific and reasonable.Furthermore,the general ESD ratio converges to the peak ESD ratio(namely peak strain energy storage index WET P)as stress level increases.Compared with WET,Wp ET not only reflects the ESD ratio of coal materials over the whole pre-peak loading stage,but also exhibits excellent stability.Consequently,Wp ET is suggested as a new evaluation index of coal burst liability.
基金This workis supported by the Chinese High Technology Development Plan Projectunder Grant No. 2007AA03Z208.
文摘This paper introduces the principle of space vector pulse width modulation (SVPWM), and discusses a method for implementing the SVPWM based on MATLAB/SIMULINK, as well as modeling of AC servo system with permanent magnet synchronous motor (PMSM). Simulation results show that the model is effective, and the method provides a frame of reference for software and hardware designs which can be applied in high temperature superconducting (HTS) flywheel energy storage system (FESS) and linear motor (LM).
基金supported by the National Natural Science Foundation of China(Grant No.42077244).
文摘To examine the effect of bedding angle upon burst proneness in terms of energy,phyllites with seven various bedding angles are selected for conventional uniaxial compression and single-cyclic loading eunloading uniaxial compression tests.The ejection and failure during compression process of phyllites are monitored in real-time by high-speed camera system.The results demonstrate that the phyllites with different bedding angles all consistently follow the linear energy storage and dissipation(LESD)law during compression.The ultimate energy storage of phyllites with varying bedding angles can be calculated precisely via using the LESD law.Based on this,four kinds of energy-based rockburst indices are applied to quantitatively assess the burst proneness for phyllites.Combined with the recorded images of high-speed camera system,ejection distance,and mass of rock fragments and powder,the burst proneness for phyllites with various bedding angles is qualitatively evaluated adopting the far-field ejection mass ratio.Next,burst proneness of anisotropic phyllites is assessed quantitatively and qualitatively.It is found that phyllites with bedding angles of 0°,15°,and 90°have a high burst proneness,and that with bedding angle of 30°has a medium burst proneness,whereas the ones with bedding angles of 45°,60°,and 75°have a low burst proneness.Finally,the published experimental data of shale and sandstone specimens with different bedding angles are extracted,and it is preliminarily verified that the bedding angle does not change the LESD law of rocks.