The linear complexity of a new kind of keystream sequences.FCSR sequences,is discussed by use of the properties of cyclotomic polynomials.Based on the results of C.Seo's,an upper bound and a lower bound on the li...The linear complexity of a new kind of keystream sequences.FCSR sequences,is discussed by use of the properties of cyclotomic polynomials.Based on the results of C.Seo's,an upper bound and a lower bound on the linear complexity of a significant kind of FCSR sequences—l-sequences are presented.展开更多
Motivated by representing multidimensional periodic nonlinear and non-stationary signals (functions), we study a class of orthonormal exponential basis for L2(Id) with I := [0, 1), whose exponential parts are pi...Motivated by representing multidimensional periodic nonlinear and non-stationary signals (functions), we study a class of orthonormal exponential basis for L2(Id) with I := [0, 1), whose exponential parts are piecewise linear spectral sequences with p-knots. It is widely applied in time-frequency analysis.展开更多
Let K be a proper cone in R^x,let A be an n×n real matrix that satisfies AK(?)K,letb be a given vector of K,and let λbe a given positive real number.The following two lin-ear equations are considered in this pap...Let K be a proper cone in R^x,let A be an n×n real matrix that satisfies AK(?)K,letb be a given vector of K,and let λbe a given positive real number.The following two lin-ear equations are considered in this paper:(i)(λⅠ_n-A)x=b,x∈K,and(ii)(A-λⅠ_n)x=b,x∈K.We obtain several equivalent conditions for the solvability of the first equation.展开更多
In the current time there is an important problem that is for a received linear or nonlinear binary sequence{z_(n)}how we can find the nonlinear feedback shift register and its linear equivalent which generate this se...In the current time there is an important problem that is for a received linear or nonlinear binary sequence{z_(n)}how we can find the nonlinear feedback shift register and its linear equivalent which generate this sequence.The linear orthogonal sequences,special M-Sequences,play a big role in these methods for solving this problem.In the current research trying give illuminations about the methods which are very useful for solving this problem under short sequences,and study these methods for finding the nonlinear feedback shift register of a multiplication sequence and its linear equivalent feedback shift register of a received multiplication binary sequence{z_(n)}where the multiplication on h degrees of a binary linear sequence{a_(n)},or finding the equivalent linear feedback shift register of{z_(n)},where the sequence{z_(n)}of the form M-sequence,and these methods are very effectively.We can extend these methods for the large sequences using programming and modern computers with large memory.展开更多
This paper introduces two kinds of sequences used in spread spectrum communication system: pseudo-noise (PN) se-quence generated by linear feedback shift register(LFSR), such as m-sequence and Gold sequence...This paper introduces two kinds of sequences used in spread spectrum communication system: pseudo-noise (PN) se-quence generated by linear feedback shift register(LFSR), such as m-sequence and Gold sequence, and the chaotic sequence generated by the determination of the nonlinear system. The characteristics of PN sequence and chaotic sequence are analyzed by simulation, and the advantages and disadvantages of different sequences in spread spectrum communication system are ob-tained. The advantages of sequence can be used to improve signal transmission in a spread spectrum communication system.展开更多
Let Z/(p^e) be the integer residue ring modulo p^e with p an odd prime and integer e ≥ 3. For a sequence a over Z/(p^e), there is a unique p-adic decomposition a- = a-0 +a-1 .p +… + a-e-l .p^e-1 where each a-...Let Z/(p^e) be the integer residue ring modulo p^e with p an odd prime and integer e ≥ 3. For a sequence a over Z/(p^e), there is a unique p-adic decomposition a- = a-0 +a-1 .p +… + a-e-l .p^e-1 where each a-i can be regarded as a sequence over Z/(p), 0 ≤ i ≤ e - 1. Let f(x) be a primitive polynomial over Z/(p^e) and G'(f(x),p^e) the set of all primitive sequences generated by f(x) over Z/(p^e). For μ(x) ∈ Z/(p)[x] with deg(μ(x)) ≥ 2 and gad(1 + deg(μ(x)),p- 1) = 1, setφe-1 (x0, x1,… , xe-1) = xe-1. [μ(xe-2) + ηe-3(x0, X1,…, xe-3)] + ηe-2(x0, X1,…, xe-2) which is a function of e variables over Z/(p). Then the compressing mapφe-1 : G'(f(x),p^e) → (Z/(p))^∞ ,a-→φe-1(a-0,a-1, … ,a-e-1) is injective. That is, for a-,b-∈ G'(f(x),p^e), a- = b- if and only if φe-1 (a-0,a-1, … ,a-e-1) = φe-1(b-0, b-1,… ,b-e-1). As for the case of e = 2, similar result is also given. Furthermore, if functions φe-1 and ψe-1 over Z/(p) are both of the above form and satisfy φe-1(a-0,a-1,…,a-e-1)=ψe-1(b-0, b-1,… ,b-e-1) for a-,b-∈G'(f(x),p^e), the relations between a- and b-, φe-1 and ψe-1 are discussed展开更多
In 1909 the brothers E. and F. Cosserat discovered a new nonlinear group theoretical approach to elasticity (EL), with the only experimental need to measure the EL constants. In a modern framework, they used the nonli...In 1909 the brothers E. and F. Cosserat discovered a new nonlinear group theoretical approach to elasticity (EL), with the only experimental need to measure the EL constants. In a modern framework, they used the nonlinear Spencer sequence instead of the nonlinear Janet sequence for the Lie groupoid defining the group of rigid motions of space. Following H. Weyl, our purpose is to compute for the first time the linear and nonlinear Spencer sequences for the Lie groupoid defining the conformal group of space-time in order to provide the mathematical foundations of both electromagnetism (EM) and gravitation (GR), with the only experimental need to measure the EM and GR constants. With a manifold of dimension n ≥ 3, the difficulty is to deal with the n nonlinear transformations that have been called “elations” by E. Cartan in 1922. Using the fact that dimension n = 4 has very specific properties for the computation of the Spencer cohomology, we also prove that there is no conceptual difference between the (nonlinear) Cosserat EL field or induction equations and the (linear) Maxwell EM field or induction equations. As for gravitation, the dimension n = 4 also allows to have a conformal factor defined everywhere but at the central attractive mass because the inversion law of the isotropy subgroupoid made by second order jets transforms attraction into repulsion. The mathematical foundations of both electromagnetism and gravitation are thus only depending on the structure of the conformal pseudogroup of space-time.展开更多
In 1909 the brothers E. and F. Cosserat discovered a new nonlinear group theoretical approach to elasticity (EL), with the only experimental need to measure the EL constants. In a modern language, their idea has been ...In 1909 the brothers E. and F. Cosserat discovered a new nonlinear group theoretical approach to elasticity (EL), with the only experimental need to measure the EL constants. In a modern language, their idea has been to use the nonlinear Spencer sequence instead of the nonlinear Janet sequence for the Lie groupoid defining the group of rigid motions of space. Following H. Weyl, our purpose is to compute for the first time the nonlinear Spencer sequence for the Lie groupoid defining the conformal group of space-time in order to provide the mathematical foundations of electromagnetism (EM), with the only experimental need to measure the EM constant in vacuum. With a manifold of dimension n, the difficulty is to deal with the n nonlinear transformations that have been called “elations” by E. Cartan in 1922. Using the fact that dimension n=4 has very specific properties for the computation of the Spencer cohomology, we prove that there is thus no conceptual difference between the Cosserat EL field or induction equations and the Maxwell EM field or induction equations. As a byproduct, the well known field/matter couplings (piezzoelectricity, photoelasticity, streaming birefringence, …) can be described abstractly, with the only experimental need to measure the corresponding coupling constants. The main consequence of this paper is the need to revisit the mathematical foundations of gauge theory (GT) because we have proved that EM was depending on the conformal group and not on U(1), with a shift by one step to the left in the physical interpretation of the differential sequence involved.展开更多
Linear recurring sequences over finite fields play an important role in coding theory and cryptography. It is known that subfield subcodes of linear codes yield some good codes. In this paper, we study linear recurrin...Linear recurring sequences over finite fields play an important role in coding theory and cryptography. It is known that subfield subcodes of linear codes yield some good codes. In this paper, we study linear recurring sequences and subfield subcodes. Let Mqm(f(x)) denote the set of all linear recurring sequences over Fqm with characteristic polynomial f(x) over Fqm . Denote the restriction of Mqm(f(x)) to sequences over Fq and the set after applying trace function to each sequence in Mqm(f(x)) by Mqm(f(x)) | Fq and Tr( Mqm(f(x))), respectively. It is shown that these two sets are both complete sets of linear recurring sequences over Fq with some characteristic polynomials over Fq. In this paper, we firstly determine the characteristic polynomials for these two sets. Then, using these results, we determine the generator polynomials of subfield subcodes and trace codes of cyclic codes over Fqm .展开更多
The iterative solution of the sequence of linear systems arising from threetemperature(3-T)energy equations is an essential component in the numerical simulation of radiative hydrodynamic(RHD)problem.However,due to th...The iterative solution of the sequence of linear systems arising from threetemperature(3-T)energy equations is an essential component in the numerical simulation of radiative hydrodynamic(RHD)problem.However,due to the complicated application features of the RHD problems,solving 3-T linear systems with classical preconditioned iterative techniques is challenging.To address this difficulty,a physicalvariable based coarsening two-level(PCTL)preconditioner has been proposed by dividing the fully coupled system into four individual easier-to-solve subsystems.Despite its nearly optimal complexity and robustness,the PCTL algorithm suffers from poor efficiency because of the overhead associatedwith the construction of setup phase and the solution of subsystems.Furthermore,the PCTL algorithm employs a fixed strategy for solving the sequence of 3-T linear systems,which completely ignores the dynamically and slowly changing features of these linear systems.To address these problems and to efficiently solve the sequence of 3-T linear systems,we propose an adaptive two-level preconditioner based on the PCTL algorithm,referred to as αSetup-PCTL.The adaptive strategies of the αSetup-PCTL algorithm are inspired by those of αSetup-AMG algorithm,which is an adaptive-setup-based AMG solver for sequence of sparse linear systems.The proposed αSetup-PCTL algorithm could adaptively employ the appropriate strategies for each linear system,and thus increase the overall efficiency.Numerical results demonstrate that,for 36 linear systems,the αSetup-PCTL algorithm achieves an average speedup of 2.2,and a maximum speedup of 4.2 when compared to the PCTL algorithm.展开更多
Speedometer identification has been researched for many years.The common approaches to that problem are usually based on image subtraction,which does not adapt to image offsets caused by camera vibration.To cope with ...Speedometer identification has been researched for many years.The common approaches to that problem are usually based on image subtraction,which does not adapt to image offsets caused by camera vibration.To cope with the rapidity,robust and accurate requirements of this kind of work in dynamic scene,a fast speedometer identification algorithm is proposed,it utilizes phase correlation method based on regional entire template translation to estimate the offset between images.In order to effectively reduce unnecessary computation and false detection rate,an improved linear Hough transform method with two optimization strategies is presented for pointer line detection.Based on VC++ 6.0 software platform with OpenCV library,the algorithm performance under experiments has shown that it celerity and precision.展开更多
Let F_(q) be a finite field of odd characteristic containing q elements,and n be a positive integer.An important problem in finite field theory is to factorize x^(n)-1 into the product of irreducible factors over a fi...Let F_(q) be a finite field of odd characteristic containing q elements,and n be a positive integer.An important problem in finite field theory is to factorize x^(n)-1 into the product of irreducible factors over a finite field.Beyond the realm of theoretical needs,the availability of coefficients of irreducible factors over finite fields is also very important for applications.In this paper,we introduce second order linear recurring sequences in F_(q) and reformulate the explicit factorization of x^(2nd)-1 over in such a way that the coefficients of its irreducible factors can be determined from these sequences when d is an odd divisor of q+1.展开更多
Properties of third-order recurrence sequences were investigated and a new variant of the GH public-key cryptosystem,which was further improved to be a probabil-istic public-key cryptosystem,was proposed.Then security...Properties of third-order recurrence sequences were investigated and a new variant of the GH public-key cryptosystem,which was further improved to be a probabil-istic public-key cryptosystem,was proposed.Then security analysis of the proposed scheme was provided and it was proved that the one-wayness of the proposed scheme is equivalent to partial discrete logarithm and its semantic se-curity is equivalent to decisional Diffie-Hellman problem in ring extension.Finally,efficiency analysis of the proposed scheme was provided,and that these two encryption schemes need to transfer 2log N and 4log N bits data re-spectively.展开更多
The weight hierarchy of a linear[n;k;q]code C over GF(q) is the sequence(d_1,d_2,…,d_k)where d_r is the smallest support of any r-dimensional subcode of C. "Determining all possible weight hierarchies of general...The weight hierarchy of a linear[n;k;q]code C over GF(q) is the sequence(d_1,d_2,…,d_k)where d_r is the smallest support of any r-dimensional subcode of C. "Determining all possible weight hierarchies of general linear codes" is a basic theoretical issue and has important scientific significance in communication system.However,it is impossible for g-ary linear codes of dimension k when q and k are slightly larger,then a reasonable formulation of the problem is modified as: "Determine almost all weight hierarchies of general g-ary linear codes of dimension k".In this paper,based on the finite projective geometry method,the authors study g-ary linear codes of dimension 5 in class IV,and find new necessary conditions of their weight hierarchies,and classify their weight hierarchies into6 subclasses.The authors also develop and improve the method of the subspace set,thus determine almost all weight hierarchies of 5-dimensional linear codes in class IV.It opens the way to determine the weight hierarchies of the rest two of 5-dimensional codes(classes III and VI),and break through the difficulties.Furthermore,the new necessary conditions show that original necessary conditions of the weight hierarchies of k-dimensional codes were not enough(not most tight nor best),so,it is important to excogitate further new necessary conditions for attacking and solving the fc-dimensional problem.展开更多
基金The work is supported by the Special Fund of National Excellently Doctoral Paper and HAIPURT.
文摘The linear complexity of a new kind of keystream sequences.FCSR sequences,is discussed by use of the properties of cyclotomic polynomials.Based on the results of C.Seo's,an upper bound and a lower bound on the linear complexity of a significant kind of FCSR sequences—l-sequences are presented.
基金Supported in part by the President Fund of GUCASSupported in part by National Natural Foundation of China(Grant No.10631080)National Natural Foundation of Beijing (Grant No.1092004)
文摘Motivated by representing multidimensional periodic nonlinear and non-stationary signals (functions), we study a class of orthonormal exponential basis for L2(Id) with I := [0, 1), whose exponential parts are piecewise linear spectral sequences with p-knots. It is widely applied in time-frequency analysis.
文摘Let K be a proper cone in R^x,let A be an n×n real matrix that satisfies AK(?)K,letb be a given vector of K,and let λbe a given positive real number.The following two lin-ear equations are considered in this paper:(i)(λⅠ_n-A)x=b,x∈K,and(ii)(A-λⅠ_n)x=b,x∈K.We obtain several equivalent conditions for the solvability of the first equation.
文摘In the current time there is an important problem that is for a received linear or nonlinear binary sequence{z_(n)}how we can find the nonlinear feedback shift register and its linear equivalent which generate this sequence.The linear orthogonal sequences,special M-Sequences,play a big role in these methods for solving this problem.In the current research trying give illuminations about the methods which are very useful for solving this problem under short sequences,and study these methods for finding the nonlinear feedback shift register of a multiplication sequence and its linear equivalent feedback shift register of a received multiplication binary sequence{z_(n)}where the multiplication on h degrees of a binary linear sequence{a_(n)},or finding the equivalent linear feedback shift register of{z_(n)},where the sequence{z_(n)}of the form M-sequence,and these methods are very effectively.We can extend these methods for the large sequences using programming and modern computers with large memory.
基金National Natural Science Foundation of China(No.61471325)
文摘This paper introduces two kinds of sequences used in spread spectrum communication system: pseudo-noise (PN) se-quence generated by linear feedback shift register(LFSR), such as m-sequence and Gold sequence, and the chaotic sequence generated by the determination of the nonlinear system. The characteristics of PN sequence and chaotic sequence are analyzed by simulation, and the advantages and disadvantages of different sequences in spread spectrum communication system are ob-tained. The advantages of sequence can be used to improve signal transmission in a spread spectrum communication system.
基金Supported by the National Natural Science Foundation of China(60673081)863 Program(2006AA01Z417)
文摘Let Z/(p^e) be the integer residue ring modulo p^e with p an odd prime and integer e ≥ 3. For a sequence a over Z/(p^e), there is a unique p-adic decomposition a- = a-0 +a-1 .p +… + a-e-l .p^e-1 where each a-i can be regarded as a sequence over Z/(p), 0 ≤ i ≤ e - 1. Let f(x) be a primitive polynomial over Z/(p^e) and G'(f(x),p^e) the set of all primitive sequences generated by f(x) over Z/(p^e). For μ(x) ∈ Z/(p)[x] with deg(μ(x)) ≥ 2 and gad(1 + deg(μ(x)),p- 1) = 1, setφe-1 (x0, x1,… , xe-1) = xe-1. [μ(xe-2) + ηe-3(x0, X1,…, xe-3)] + ηe-2(x0, X1,…, xe-2) which is a function of e variables over Z/(p). Then the compressing mapφe-1 : G'(f(x),p^e) → (Z/(p))^∞ ,a-→φe-1(a-0,a-1, … ,a-e-1) is injective. That is, for a-,b-∈ G'(f(x),p^e), a- = b- if and only if φe-1 (a-0,a-1, … ,a-e-1) = φe-1(b-0, b-1,… ,b-e-1). As for the case of e = 2, similar result is also given. Furthermore, if functions φe-1 and ψe-1 over Z/(p) are both of the above form and satisfy φe-1(a-0,a-1,…,a-e-1)=ψe-1(b-0, b-1,… ,b-e-1) for a-,b-∈G'(f(x),p^e), the relations between a- and b-, φe-1 and ψe-1 are discussed
文摘In 1909 the brothers E. and F. Cosserat discovered a new nonlinear group theoretical approach to elasticity (EL), with the only experimental need to measure the EL constants. In a modern framework, they used the nonlinear Spencer sequence instead of the nonlinear Janet sequence for the Lie groupoid defining the group of rigid motions of space. Following H. Weyl, our purpose is to compute for the first time the linear and nonlinear Spencer sequences for the Lie groupoid defining the conformal group of space-time in order to provide the mathematical foundations of both electromagnetism (EM) and gravitation (GR), with the only experimental need to measure the EM and GR constants. With a manifold of dimension n ≥ 3, the difficulty is to deal with the n nonlinear transformations that have been called “elations” by E. Cartan in 1922. Using the fact that dimension n = 4 has very specific properties for the computation of the Spencer cohomology, we also prove that there is no conceptual difference between the (nonlinear) Cosserat EL field or induction equations and the (linear) Maxwell EM field or induction equations. As for gravitation, the dimension n = 4 also allows to have a conformal factor defined everywhere but at the central attractive mass because the inversion law of the isotropy subgroupoid made by second order jets transforms attraction into repulsion. The mathematical foundations of both electromagnetism and gravitation are thus only depending on the structure of the conformal pseudogroup of space-time.
文摘In 1909 the brothers E. and F. Cosserat discovered a new nonlinear group theoretical approach to elasticity (EL), with the only experimental need to measure the EL constants. In a modern language, their idea has been to use the nonlinear Spencer sequence instead of the nonlinear Janet sequence for the Lie groupoid defining the group of rigid motions of space. Following H. Weyl, our purpose is to compute for the first time the nonlinear Spencer sequence for the Lie groupoid defining the conformal group of space-time in order to provide the mathematical foundations of electromagnetism (EM), with the only experimental need to measure the EM constant in vacuum. With a manifold of dimension n, the difficulty is to deal with the n nonlinear transformations that have been called “elations” by E. Cartan in 1922. Using the fact that dimension n=4 has very specific properties for the computation of the Spencer cohomology, we prove that there is thus no conceptual difference between the Cosserat EL field or induction equations and the Maxwell EM field or induction equations. As a byproduct, the well known field/matter couplings (piezzoelectricity, photoelasticity, streaming birefringence, …) can be described abstractly, with the only experimental need to measure the corresponding coupling constants. The main consequence of this paper is the need to revisit the mathematical foundations of gauge theory (GT) because we have proved that EM was depending on the conformal group and not on U(1), with a shift by one step to the left in the physical interpretation of the differential sequence involved.
基金supported by National Key Basic Research Program of China(973 Program)(Grant No.2013CB834204)National Natural Science Foundation of China(Grant Nos.61171082 and 10990011)
文摘Linear recurring sequences over finite fields play an important role in coding theory and cryptography. It is known that subfield subcodes of linear codes yield some good codes. In this paper, we study linear recurring sequences and subfield subcodes. Let Mqm(f(x)) denote the set of all linear recurring sequences over Fqm with characteristic polynomial f(x) over Fqm . Denote the restriction of Mqm(f(x)) to sequences over Fq and the set after applying trace function to each sequence in Mqm(f(x)) by Mqm(f(x)) | Fq and Tr( Mqm(f(x))), respectively. It is shown that these two sets are both complete sets of linear recurring sequences over Fq with some characteristic polynomials over Fq. In this paper, we firstly determine the characteristic polynomials for these two sets. Then, using these results, we determine the generator polynomials of subfield subcodes and trace codes of cyclic codes over Fqm .
基金financially supported by the National Natural Science Foundation of China(62032023 and 11971414)Hunan National Applied Mathematics Center(2020ZYT003)the Research Foundation of Education Bureau of Hunan(21B0162).
文摘The iterative solution of the sequence of linear systems arising from threetemperature(3-T)energy equations is an essential component in the numerical simulation of radiative hydrodynamic(RHD)problem.However,due to the complicated application features of the RHD problems,solving 3-T linear systems with classical preconditioned iterative techniques is challenging.To address this difficulty,a physicalvariable based coarsening two-level(PCTL)preconditioner has been proposed by dividing the fully coupled system into four individual easier-to-solve subsystems.Despite its nearly optimal complexity and robustness,the PCTL algorithm suffers from poor efficiency because of the overhead associatedwith the construction of setup phase and the solution of subsystems.Furthermore,the PCTL algorithm employs a fixed strategy for solving the sequence of 3-T linear systems,which completely ignores the dynamically and slowly changing features of these linear systems.To address these problems and to efficiently solve the sequence of 3-T linear systems,we propose an adaptive two-level preconditioner based on the PCTL algorithm,referred to as αSetup-PCTL.The adaptive strategies of the αSetup-PCTL algorithm are inspired by those of αSetup-AMG algorithm,which is an adaptive-setup-based AMG solver for sequence of sparse linear systems.The proposed αSetup-PCTL algorithm could adaptively employ the appropriate strategies for each linear system,and thus increase the overall efficiency.Numerical results demonstrate that,for 36 linear systems,the αSetup-PCTL algorithm achieves an average speedup of 2.2,and a maximum speedup of 4.2 when compared to the PCTL algorithm.
基金Supported by the National Natural Science Foundation of China (61004139)Beijing Municipal Natural Science Foundation(4101001)2008 Yangtze Fund Scholar and Innovative Research Team Development Schemes of Ministry of Education
文摘Speedometer identification has been researched for many years.The common approaches to that problem are usually based on image subtraction,which does not adapt to image offsets caused by camera vibration.To cope with the rapidity,robust and accurate requirements of this kind of work in dynamic scene,a fast speedometer identification algorithm is proposed,it utilizes phase correlation method based on regional entire template translation to estimate the offset between images.In order to effectively reduce unnecessary computation and false detection rate,an improved linear Hough transform method with two optimization strategies is presented for pointer line detection.Based on VC++ 6.0 software platform with OpenCV library,the algorithm performance under experiments has shown that it celerity and precision.
文摘Let F_(q) be a finite field of odd characteristic containing q elements,and n be a positive integer.An important problem in finite field theory is to factorize x^(n)-1 into the product of irreducible factors over a finite field.Beyond the realm of theoretical needs,the availability of coefficients of irreducible factors over finite fields is also very important for applications.In this paper,we introduce second order linear recurring sequences in F_(q) and reformulate the explicit factorization of x^(2nd)-1 over in such a way that the coefficients of its irreducible factors can be determined from these sequences when d is an odd divisor of q+1.
基金supported by the National Natural Science Foundation of China(No.90412011)the Hi-Tech Research and Development Program of China(No.2002AA143021)。
文摘Properties of third-order recurrence sequences were investigated and a new variant of the GH public-key cryptosystem,which was further improved to be a probabil-istic public-key cryptosystem,was proposed.Then security analysis of the proposed scheme was provided and it was proved that the one-wayness of the proposed scheme is equivalent to partial discrete logarithm and its semantic se-curity is equivalent to decisional Diffie-Hellman problem in ring extension.Finally,efficiency analysis of the proposed scheme was provided,and that these two encryption schemes need to transfer 2log N and 4log N bits data re-spectively.
基金supported by the National Natural Science Foundation of China under Grant No.11171366"the Fundamental Research Funds for the Central Universities"South-Central University for Nationalities under Grant No.CZY12014
文摘The weight hierarchy of a linear[n;k;q]code C over GF(q) is the sequence(d_1,d_2,…,d_k)where d_r is the smallest support of any r-dimensional subcode of C. "Determining all possible weight hierarchies of general linear codes" is a basic theoretical issue and has important scientific significance in communication system.However,it is impossible for g-ary linear codes of dimension k when q and k are slightly larger,then a reasonable formulation of the problem is modified as: "Determine almost all weight hierarchies of general g-ary linear codes of dimension k".In this paper,based on the finite projective geometry method,the authors study g-ary linear codes of dimension 5 in class IV,and find new necessary conditions of their weight hierarchies,and classify their weight hierarchies into6 subclasses.The authors also develop and improve the method of the subspace set,thus determine almost all weight hierarchies of 5-dimensional linear codes in class IV.It opens the way to determine the weight hierarchies of the rest two of 5-dimensional codes(classes III and VI),and break through the difficulties.Furthermore,the new necessary conditions show that original necessary conditions of the weight hierarchies of k-dimensional codes were not enough(not most tight nor best),so,it is important to excogitate further new necessary conditions for attacking and solving the fc-dimensional problem.