In this paper, we investigate the perturbation problem for the Moore-Penrose bounded quasi-linear projection generalized inverses of a closed linear operaters in Banach space. By the method of the perturbation analysi...In this paper, we investigate the perturbation problem for the Moore-Penrose bounded quasi-linear projection generalized inverses of a closed linear operaters in Banach space. By the method of the perturbation analysis of bounded quasi-linear operators, we obtain an explicit perturbation theorem and error estimates for the Moore-Penrose bounded quasi-linear generalized inverse of closed linear operator under the T-bounded perturbation, which not only extend some known results on the perturbation of the oblique projection generalized inverse of closed linear operators, but also extend some known results on the perturbation of the Moore-Penrose metric generalized inverse of bounded linear operators in Banach spaces.展开更多
Under suitable conditions,the monotone convergence about the projected iteration method for solving linear complementarity problem is proved and the influence of the involved parameter matrix on the convergence rate o...Under suitable conditions,the monotone convergence about the projected iteration method for solving linear complementarity problem is proved and the influence of the involved parameter matrix on the convergence rate of this method is investigated.展开更多
Although the structured light system that uses digital fringe projection has been widely implemented in three-dimensional surface profile measurement, the measurement system is susceptible to non-linear error. In this...Although the structured light system that uses digital fringe projection has been widely implemented in three-dimensional surface profile measurement, the measurement system is susceptible to non-linear error. In this work, we propose a convenient look-up-table-based (LUT-based) method to compensate for the non-linear error in captured fringe patterns. Without extra calibration, this LUT-based method completely utilizes the captured fringe pattern by recording the full-field differences. Then, a phase compensation map is established to revise the measured phase. Experimental results demonstrate that this method works effectively.展开更多
Motivated by the count sketch maximal weighted residual Kaczmarz (CS-MWRK) method presented by Zhang and Li (Appl. Math. Comput., 410, 126486), we combine the count sketch tech with the maximal weighted residual Kaczm...Motivated by the count sketch maximal weighted residual Kaczmarz (CS-MWRK) method presented by Zhang and Li (Appl. Math. Comput., 410, 126486), we combine the count sketch tech with the maximal weighted residual Kaczmarz Method with Oblique Projection (MWRKO) constructed by Wang, Li, Bao and Liu (arXiv: 2106.13606) to develop a new method for solving highly overdetermined linear systems. The convergence rate of the new method is analyzed. Numerical results demonstrate that our method performs better in computing time compared with the CS-MWRK and MWRKO methods.展开更多
In this paper, we study the contraction linearity for metric projection in L p spaces. A geometrical property of a subspace Y of L p is given on which P Y is a contraction projection.
Let Bs (7-/) be the real linear space of all self-adjoint operators on a complex Hilbert spae 7-/ with dimT/〉 2. It is proved that a linear surjective map on Bs(T/) preserves the nonzero projections of Jordan pro...Let Bs (7-/) be the real linear space of all self-adjoint operators on a complex Hilbert spae 7-/ with dimT/〉 2. It is proved that a linear surjective map on Bs(T/) preserves the nonzero projections of Jordan products of two operators if and only if there is a unitary or an anti-unitary operator U on T/such that ^(X) = AU*XU, VX E Bs(TI) for some constant ~ with k E {1,-1}.展开更多
In this paper, we present a modified projection method for the linear feasibility problems (LFP). Compared with the existing methods, the new method adopts a surrogate technique to obtain new iteration instead of th...In this paper, we present a modified projection method for the linear feasibility problems (LFP). Compared with the existing methods, the new method adopts a surrogate technique to obtain new iteration instead of the line search procedure with fixed stepsize. For the new method, we first show its global convergence under the condition that the solution set is nonempty, and then establish its linear convergence rate. Preliminary numerical experiments show that this method has good performance.展开更多
In this three-part paper, an observer based projective synchronization method for a class of chaotic system is proposed. At the transmitter, a general observer is used to create the scalar signal for synchronizing. In...In this three-part paper, an observer based projective synchronization method for a class of chaotic system is proposed. At the transmitter, a general observer is used to create the scalar signal for synchronizing. In this part, the structure of the projective synchronization method is presented. And the condition of projection synchronization is theoretically analyzed when the synchronization subsystem is linear.展开更多
This paper gives the definition of function projective synchronization with less conservative demand for a scaling function, and investigates the function projective synchronization in partially linear drive-response ...This paper gives the definition of function projective synchronization with less conservative demand for a scaling function, and investigates the function projective synchronization in partially linear drive-response chaotic systems. Based on the Lyapunov stability theory, it has been shown that the function projective synchronization with desired scaling function can be realized by simple control law. Moreover it does not need scaling function to be differentiable, bounded and non-vanished. The numerical simulations are provided to verify the theoretical result.展开更多
In this paper, a class of the stochastic generalized linear complementarity problems with finitely many elements is proposed for the first time. Based on the Fischer-Burmeister function, a new conjugate gradient proje...In this paper, a class of the stochastic generalized linear complementarity problems with finitely many elements is proposed for the first time. Based on the Fischer-Burmeister function, a new conjugate gradient projection method is given for solving the stochastic generalized linear complementarity problems. The global convergence of the conjugate gradient projection method is proved and the related numerical results are also reported.展开更多
A linear projection approach is developed to present geoscience research result in planar coordinate system projected from spherical coordinate system. Here, the sphere is intersected by a plane and its surface is pro...A linear projection approach is developed to present geoscience research result in planar coordinate system projected from spherical coordinate system. Here, the sphere is intersected by a plane and its surface is projected onto the plane. In order to keep the projected coordinate system orthogonal, and minimize the distortion, one axis of the planar coordinate system is chosen in our projection based on the shape of the region to be projected, and the other axes can be chosen arbitrarily or based on the constraint of the orthogonality. In the new method the projection is self-contained. The forward projection can be fully projected backward without loss of precision. The central area of the sphere will be projected to the planar system without distortion, and the latitudinal length in the rotated spherical system keeps constant during the projecting process. Only the longitudinal length in the rotated spherical system changes with the rotated latitude. The distortion of the projection therefore, overall, is small and suitable for geoscience studies.展开更多
In this paper, we investigate a new perturbation theorem for the Moore-Penrose metric generalized inverses of a bounded linear operator in Banach space. The main tool in this paper is "the generalized Neumann lemma"...In this paper, we investigate a new perturbation theorem for the Moore-Penrose metric generalized inverses of a bounded linear operator in Banach space. The main tool in this paper is "the generalized Neumann lemma" which is quite different from the method in [12] where "the generalized Banach lemma" was used. By the method of the perturba- tion analysis of bounded linear operators, we obtain an explicit perturbation theorem and three inequalities about error estimates for the Moore-Penrose metric generalized inverse of bounded linear operator under the generalized Neumann lemma and the concept of stable perturbations in Banach spaces.展开更多
In this paper, by using a new projection, we construct a variant of Zhang’s algorithm and prove its convergence. Specially, the variant of Zhang’s algorithm has quadratic termination and superlinear convergence rale...In this paper, by using a new projection, we construct a variant of Zhang’s algorithm and prove its convergence. Specially, the variant of Zhang’s algorithm has quadratic termination and superlinear convergence rale under certain conditions. Zhang’s algorithm hasn’t these properties.展开更多
In this paper we compute Karmarkar's projections quickly using MoorePenrose g-inverse and matrix factorization. So the computation work of (ATD2A)-1is decreased.
In this paper, a new iterative solution method is proposed for solving multiple linear systems A(i)x(i)=b(i), for 1≤ i ≤ s, where the coefficient matrices A(i) and the right-hand sides b(i) are arbitrary in general....In this paper, a new iterative solution method is proposed for solving multiple linear systems A(i)x(i)=b(i), for 1≤ i ≤ s, where the coefficient matrices A(i) and the right-hand sides b(i) are arbitrary in general. The proposed method is based on the global least squares (GL-LSQR) method. A linear operator is defined to connect all the linear systems together. To approximate all numerical solutions of the multiple linear systems simultaneously, the GL-LSQR method is applied for the operator and the approximate solutions are obtained recursively. The presented method is compared with the well-known LSQR method. Finally, numerical experiments on test matrices are presented to show the efficiency of the new method.展开更多
Let (X,d) be a real metric linear space, with translation-invariant metric d and C a linear subspace of X. In this paper we use functionals in the Lipschitz dual of X to characterize those elements of G which are best...Let (X,d) be a real metric linear space, with translation-invariant metric d and C a linear subspace of X. In this paper we use functionals in the Lipschitz dual of X to characterize those elements of G which are best approximations to elements of X.We also give simultaneous characterization of elements of best approximation and also consider elements of ε-approximation.展开更多
基金Supported by National Nature Science Foundation of China(Grant No.11471091)
文摘In this paper, we investigate the perturbation problem for the Moore-Penrose bounded quasi-linear projection generalized inverses of a closed linear operaters in Banach space. By the method of the perturbation analysis of bounded quasi-linear operators, we obtain an explicit perturbation theorem and error estimates for the Moore-Penrose bounded quasi-linear generalized inverse of closed linear operator under the T-bounded perturbation, which not only extend some known results on the perturbation of the oblique projection generalized inverse of closed linear operators, but also extend some known results on the perturbation of the Moore-Penrose metric generalized inverse of bounded linear operators in Banach spaces.
文摘Under suitable conditions,the monotone convergence about the projected iteration method for solving linear complementarity problem is proved and the influence of the involved parameter matrix on the convergence rate of this method is investigated.
基金the financial support provided by the National Natural Science Foundation of China(11472267 and 11372182)the National Basic Research Program of China(2012CB937504)
文摘Although the structured light system that uses digital fringe projection has been widely implemented in three-dimensional surface profile measurement, the measurement system is susceptible to non-linear error. In this work, we propose a convenient look-up-table-based (LUT-based) method to compensate for the non-linear error in captured fringe patterns. Without extra calibration, this LUT-based method completely utilizes the captured fringe pattern by recording the full-field differences. Then, a phase compensation map is established to revise the measured phase. Experimental results demonstrate that this method works effectively.
文摘Motivated by the count sketch maximal weighted residual Kaczmarz (CS-MWRK) method presented by Zhang and Li (Appl. Math. Comput., 410, 126486), we combine the count sketch tech with the maximal weighted residual Kaczmarz Method with Oblique Projection (MWRKO) constructed by Wang, Li, Bao and Liu (arXiv: 2106.13606) to develop a new method for solving highly overdetermined linear systems. The convergence rate of the new method is analyzed. Numerical results demonstrate that our method performs better in computing time compared with the CS-MWRK and MWRKO methods.
基金Supported by the natural science foundation of Hebei
文摘In this paper, we study the contraction linearity for metric projection in L p spaces. A geometrical property of a subspace Y of L p is given on which P Y is a contraction projection.
基金Supported by the National Natural Science Foundation of China (Grant No. 10971123)the Specialized Research Fund for the Doctoral Program of Higher Education (Grant No. 20090202110001)
文摘Let Bs (7-/) be the real linear space of all self-adjoint operators on a complex Hilbert spae 7-/ with dimT/〉 2. It is proved that a linear surjective map on Bs(T/) preserves the nonzero projections of Jordan products of two operators if and only if there is a unitary or an anti-unitary operator U on T/such that ^(X) = AU*XU, VX E Bs(TI) for some constant ~ with k E {1,-1}.
基金supported by National Natural Science Foundation of China (No. 10771120)Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry
文摘In this paper, we present a modified projection method for the linear feasibility problems (LFP). Compared with the existing methods, the new method adopts a surrogate technique to obtain new iteration instead of the line search procedure with fixed stepsize. For the new method, we first show its global convergence under the condition that the solution set is nonempty, and then establish its linear convergence rate. Preliminary numerical experiments show that this method has good performance.
基金Starting Fund of University of Electronic Science and Technology of China.
文摘In this three-part paper, an observer based projective synchronization method for a class of chaotic system is proposed. At the transmitter, a general observer is used to create the scalar signal for synchronizing. In this part, the structure of the projective synchronization method is presented. And the condition of projection synchronization is theoretically analyzed when the synchronization subsystem is linear.
基金Project supported by the National Natural Science Foundation of China (Grant No. 60875036)the Program for Innovative Research Team of Jiangnan University
文摘This paper gives the definition of function projective synchronization with less conservative demand for a scaling function, and investigates the function projective synchronization in partially linear drive-response chaotic systems. Based on the Lyapunov stability theory, it has been shown that the function projective synchronization with desired scaling function can be realized by simple control law. Moreover it does not need scaling function to be differentiable, bounded and non-vanished. The numerical simulations are provided to verify the theoretical result.
文摘In this paper, a class of the stochastic generalized linear complementarity problems with finitely many elements is proposed for the first time. Based on the Fischer-Burmeister function, a new conjugate gradient projection method is given for solving the stochastic generalized linear complementarity problems. The global convergence of the conjugate gradient projection method is proved and the related numerical results are also reported.
基金supported by the National Natural Science Foundation of China (Nos. 41174086, 41074052, 40974034, and 41021003)
文摘A linear projection approach is developed to present geoscience research result in planar coordinate system projected from spherical coordinate system. Here, the sphere is intersected by a plane and its surface is projected onto the plane. In order to keep the projected coordinate system orthogonal, and minimize the distortion, one axis of the planar coordinate system is chosen in our projection based on the shape of the region to be projected, and the other axes can be chosen arbitrarily or based on the constraint of the orthogonality. In the new method the projection is self-contained. The forward projection can be fully projected backward without loss of precision. The central area of the sphere will be projected to the planar system without distortion, and the latitudinal length in the rotated spherical system keeps constant during the projecting process. Only the longitudinal length in the rotated spherical system changes with the rotated latitude. The distortion of the projection therefore, overall, is small and suitable for geoscience studies.
基金Supported by the Nature Science Foundation of China(11471091 and 11401143)
文摘In this paper, we investigate a new perturbation theorem for the Moore-Penrose metric generalized inverses of a bounded linear operator in Banach space. The main tool in this paper is "the generalized Neumann lemma" which is quite different from the method in [12] where "the generalized Banach lemma" was used. By the method of the perturba- tion analysis of bounded linear operators, we obtain an explicit perturbation theorem and three inequalities about error estimates for the Moore-Penrose metric generalized inverse of bounded linear operator under the generalized Neumann lemma and the concept of stable perturbations in Banach spaces.
基金The subject is supported by Natural Science Foundation of China and Natural Science Foundation of Shandong Province.
文摘In this paper, by using a new projection, we construct a variant of Zhang’s algorithm and prove its convergence. Specially, the variant of Zhang’s algorithm has quadratic termination and superlinear convergence rale under certain conditions. Zhang’s algorithm hasn’t these properties.
文摘In this paper we compute Karmarkar's projections quickly using MoorePenrose g-inverse and matrix factorization. So the computation work of (ATD2A)-1is decreased.
文摘In this paper, a new iterative solution method is proposed for solving multiple linear systems A(i)x(i)=b(i), for 1≤ i ≤ s, where the coefficient matrices A(i) and the right-hand sides b(i) are arbitrary in general. The proposed method is based on the global least squares (GL-LSQR) method. A linear operator is defined to connect all the linear systems together. To approximate all numerical solutions of the multiple linear systems simultaneously, the GL-LSQR method is applied for the operator and the approximate solutions are obtained recursively. The presented method is compared with the well-known LSQR method. Finally, numerical experiments on test matrices are presented to show the efficiency of the new method.
文摘Let (X,d) be a real metric linear space, with translation-invariant metric d and C a linear subspace of X. In this paper we use functionals in the Lipschitz dual of X to characterize those elements of G which are best approximations to elements of X.We also give simultaneous characterization of elements of best approximation and also consider elements of ε-approximation.