The purpose of this article is to investigate (s, t)-weak tractability of multivariate linear problems in the average case set ting. The considered algorithms use finitely many evaluations of arbitrary linear function...The purpose of this article is to investigate (s, t)-weak tractability of multivariate linear problems in the average case set ting. The considered algorithms use finitely many evaluations of arbitrary linear functionals. Generally, we obtained matching necessary and sufficient conditions for (s,t)-weak tractability in terms of the corresponding non-increasing sequence of eigenvalues. Specifically, we discussed (s, t)-weak tractability of linear tensor product problems and obtained necessary and sufficient conditions in terms of the corresponding one-dimensional problem. As an example of applications, we discussed also (s,t)-weak tractability of a multivariate approximation problem.展开更多
A family of neural networks is proposed to solve linear complementarity problems(LCP).The neural networks are constructed from the novel equivalent model of LCP,which is reformulated by utilizing the modulus and smoot...A family of neural networks is proposed to solve linear complementarity problems(LCP).The neural networks are constructed from the novel equivalent model of LCP,which is reformulated by utilizing the modulus and smoothing technologies.Some important properties of the proposed novel equivalent model are summarized.In addition,the stability properties of the proposed steepest descent-based neural networks for LCP are analyzed.In order to illustrate the theoretical results,we provide some numerical simulations and compare the proposed neural networks with existing neural networks based on the NCP-functions.Numerical results indicate that the performance of the proposed neural networks is effective and robust.展开更多
In this paper,we propose a new full-Newton step feasible interior-point algorithm for the special weighted linear complementarity problems.The proposed algorithm employs the technique of algebraic equivalent transform...In this paper,we propose a new full-Newton step feasible interior-point algorithm for the special weighted linear complementarity problems.The proposed algorithm employs the technique of algebraic equivalent transformation to derive the search direction.It is shown that the proximity measure reduces quadratically at each iteration.Moreover,the iteration bound of the algorithm is as good as the best-known polynomial complexity for these types of problems.Furthermore,numerical results are presented to show the efficiency of the proposed algorithm.展开更多
In this paper,a new full-Newton step primal-dual interior-point algorithm for solving the special weighted linear complementarity problem is designed and analyzed.The algorithm employs a kernel function with a linear ...In this paper,a new full-Newton step primal-dual interior-point algorithm for solving the special weighted linear complementarity problem is designed and analyzed.The algorithm employs a kernel function with a linear growth term to derive the search direction,and by introducing new technical results and selecting suitable parameters,we prove that the iteration bound of the algorithm is as good as best-known polynomial complexity of interior-point methods.Furthermore,numerical results illustrate the efficiency of the proposed method.展开更多
In this paper,a two-step iteration method is established which can be viewed as a generalization of the existing modulus-based methods for vertical linear complementarity problems given by He and Vong(Appl.Math.Lett.1...In this paper,a two-step iteration method is established which can be viewed as a generalization of the existing modulus-based methods for vertical linear complementarity problems given by He and Vong(Appl.Math.Lett.134:108344,2022).The convergence analysis of the proposed method is established,which can improve the existing results.Numerical examples show that the proposed method is efficient with the two-step technique.展开更多
A partition reduction method is used to obtain new upper bounds for the inverses of H-matrices and S-strictly diagonally dominant(S-SDD)matrices.The estimates are expressed via the determinants of third order matrices...A partition reduction method is used to obtain new upper bounds for the inverses of H-matrices and S-strictly diagonally dominant(S-SDD)matrices.The estimates are expressed via the determinants of third order matrices.Numerical experiments with various random matrices show that they are stable and better than the estimates presented in literatures.We use these upper bounds to improve known error estimates for linear complementarity problems with H-matrices and S-SDD matrices.展开更多
The modified AOR method for solving linear complementarity problem(LCP(M,p))was proposed in literature,with some convergence results.In this paper,we considered the MAOR method for generalized-order linear complementa...The modified AOR method for solving linear complementarity problem(LCP(M,p))was proposed in literature,with some convergence results.In this paper,we considered the MAOR method for generalized-order linear complementarity problem(ELCP(M,N,p,q)),where M,N are nonsingular matrices of the following form:M=[D11H1K1D2],N=[D12H2K2D22],D11,D12,D21 and D22 are square nonsingular diagonal matrices.展开更多
An integer linear bilevel programming problem is firstly transformed into a binary linear bilevel programming problem, and then converted into a single-level binary implicit programming. An orthogonal genetic algorith...An integer linear bilevel programming problem is firstly transformed into a binary linear bilevel programming problem, and then converted into a single-level binary implicit programming. An orthogonal genetic algorithm is developed for solving the binary linear implicit programming problem based on the orthogonal design. The orthogonal design with the factor analysis, an experimental design method is applied to the genetic algorithm to make the algorithm more robust, statistical y sound and quickly convergent. A crossover operator formed by the orthogonal array and the factor analysis is presented. First, this crossover operator can generate a smal but representative sample of points as offspring. After al of the better genes of these offspring are selected, a best combination among these offspring is then generated. The simulation results show the effectiveness of the proposed algorithm.展开更多
This paper addresses the generalized linear complementarity problem (GLCP) over a polyhedral cone. To solve the problem, we first equivalently convert the problem into an affine variational inequalities problem over...This paper addresses the generalized linear complementarity problem (GLCP) over a polyhedral cone. To solve the problem, we first equivalently convert the problem into an affine variational inequalities problem over a closed polyhedral cone, and then propose a new type of method to solve the GLCP based on the error bound estimation. The global and R-linear convergence rate is established. The numerical experiments show the efficiency of the method.展开更多
In this paper, a class of quasi linear Riemann Hilbert problems for general holomorphic functions in the unit disk was studied. Under suitable hypotheses, the existence of solutions of the Hardy class H 2 to this p...In this paper, a class of quasi linear Riemann Hilbert problems for general holomorphic functions in the unit disk was studied. Under suitable hypotheses, the existence of solutions of the Hardy class H 2 to this problem was proved by means of Tikhonov's fixed point theorem and corresponding theories for general holomorphic functions.展开更多
A class of preconditioned iterative methods, i.e., preconditioned generalized accelerated overrelaxation (GAOR) methods, is proposed to solve linear systems based on a class of weighted linear least squares problems...A class of preconditioned iterative methods, i.e., preconditioned generalized accelerated overrelaxation (GAOR) methods, is proposed to solve linear systems based on a class of weighted linear least squares problems. The convergence and comparison results are obtained. The comparison results show that the convergence rate of the preconditioned iterative methods is better than that of the original methods. Furthermore, the effectiveness of the proposed methods is shown in the numerical experiment.展开更多
Under suitable conditions,the monotone convergence about the projected iteration method for solving linear complementarity problem is proved and the influence of the involved parameter matrix on the convergence rate o...Under suitable conditions,the monotone convergence about the projected iteration method for solving linear complementarity problem is proved and the influence of the involved parameter matrix on the convergence rate of this method is investigated.展开更多
Linear Least Squares(LLS) problems are particularly difficult to solve because they are frequently ill-conditioned, and involve large quantities of data. Ill-conditioned LLS problems are commonly seen in mathematics...Linear Least Squares(LLS) problems are particularly difficult to solve because they are frequently ill-conditioned, and involve large quantities of data. Ill-conditioned LLS problems are commonly seen in mathematics and geosciences, where regularization algorithms are employed to seek optimal solutions. For many problems, even with the use of regularization algorithms it may be impossible to obtain an accurate solution. Riley and Golub suggested an iterative scheme for solving LLS problems. For the early iteration algorithm, it is difficult to improve the well-conditioned perturbed matrix and accelerate the convergence at the same time. Aiming at this problem, self-adaptive iteration algorithm(SAIA) is proposed in this paper for solving severe ill-conditioned LLS problems. The algorithm is different from other popular algorithms proposed in recent references. It avoids matrix inverse by using Cholesky decomposition, and tunes the perturbation parameter according to the rate of residual error decline in the iterative process. Example shows that the algorithm can greatly reduce iteration times, accelerate the convergence,and also greatly enhance the computation accuracy.展开更多
Utilizing the well-known aggregation technique, we propose a smoothing sample average approximation (SAA) method for a stochastic linear complementarity problem, where the underlying functions are represented by exp...Utilizing the well-known aggregation technique, we propose a smoothing sample average approximation (SAA) method for a stochastic linear complementarity problem, where the underlying functions are represented by expectations of stochastic functions. The method is proved to be convergent and the preliminary numerical results are reported.展开更多
Intuitionistic Fuzzy Set (IFS) can be used as a general tool for modeling problems of decision making under uncertainty where, the degree of rejection is defined simultaneously with the degree of acceptance of a piece...Intuitionistic Fuzzy Set (IFS) can be used as a general tool for modeling problems of decision making under uncertainty where, the degree of rejection is defined simultaneously with the degree of acceptance of a piece of information in such a way that these degrees are not complement to each other. Accordingly, an attempt is made to solve intuitionistic fuzzy linear programming problems using a technique based on an earlier technique proposed by Zimmermann to solve fuzzy linear programming problem. Our proposed technique does not require the existing ranking of intuitionistic fuzzy numbers. This method is also different from the existing weight assignment method or the Angelov’s method. A comparative study is undertaken and interesting results have been presented.展开更多
We discuss the linear conjugate boundary value problems on the unit circle and the real axis. We obtain some Fredholm integral equations. Using thess equations we discuss the solvable conditions on these problems and ...We discuss the linear conjugate boundary value problems on the unit circle and the real axis. We obtain some Fredholm integral equations. Using thess equations we discuss the solvable conditions on these problems and we also give a direct method for the extension problems on the real axis.展开更多
In this article,the authors discuss the optimal conditions of the linear fractionalprogramming problem and prove that a locally optional solution is a globally optional solution and the locally optimal solution can be...In this article,the authors discuss the optimal conditions of the linear fractionalprogramming problem and prove that a locally optional solution is a globally optional solution and the locally optimal solution can be attained at a basic feasible solution withconstraint condition.展开更多
In this paper, a class of the stochastic generalized linear complementarity problems with finitely many elements is proposed for the first time. Based on the Fischer-Burmeister function, a new conjugate gradient proje...In this paper, a class of the stochastic generalized linear complementarity problems with finitely many elements is proposed for the first time. Based on the Fischer-Burmeister function, a new conjugate gradient projection method is given for solving the stochastic generalized linear complementarity problems. The global convergence of the conjugate gradient projection method is proved and the related numerical results are also reported.展开更多
In the present paper we investigate linear elastic systems with damping in Hilbert spaces, where A and B ars unbounded positive definite linear operators. We have obtained the most fundamental results for the holomorp...In the present paper we investigate linear elastic systems with damping in Hilbert spaces, where A and B ars unbounded positive definite linear operators. We have obtained the most fundamental results for the holomorphic property and exponential stability of the semigroups associated with these systems via inclusion relation of the domains of A and B.展开更多
基金supported by the National Natural Science Foundation of China(11471043,11671271)the Beijing Natural Science Foundation(1172004)
文摘The purpose of this article is to investigate (s, t)-weak tractability of multivariate linear problems in the average case set ting. The considered algorithms use finitely many evaluations of arbitrary linear functionals. Generally, we obtained matching necessary and sufficient conditions for (s,t)-weak tractability in terms of the corresponding non-increasing sequence of eigenvalues. Specifically, we discussed (s, t)-weak tractability of linear tensor product problems and obtained necessary and sufficient conditions in terms of the corresponding one-dimensional problem. As an example of applications, we discussed also (s,t)-weak tractability of a multivariate approximation problem.
基金Supported by the National Natural Science Foundation of China(12371378,41725017,11901098).
文摘A family of neural networks is proposed to solve linear complementarity problems(LCP).The neural networks are constructed from the novel equivalent model of LCP,which is reformulated by utilizing the modulus and smoothing technologies.Some important properties of the proposed novel equivalent model are summarized.In addition,the stability properties of the proposed steepest descent-based neural networks for LCP are analyzed.In order to illustrate the theoretical results,we provide some numerical simulations and compare the proposed neural networks with existing neural networks based on the NCP-functions.Numerical results indicate that the performance of the proposed neural networks is effective and robust.
基金Supported by the Optimisation Theory and Algorithm Research Team(Grant No.23kytdzd004)University Science Research Project of Anhui Province(Grant No.2024AH050631)the General Programs for Young Teacher Cultivation of Educational Commission of Anhui Province(Grant No.YQYB2023090).
文摘In this paper,we propose a new full-Newton step feasible interior-point algorithm for the special weighted linear complementarity problems.The proposed algorithm employs the technique of algebraic equivalent transformation to derive the search direction.It is shown that the proximity measure reduces quadratically at each iteration.Moreover,the iteration bound of the algorithm is as good as the best-known polynomial complexity for these types of problems.Furthermore,numerical results are presented to show the efficiency of the proposed algorithm.
基金Supported by University Science Research Project of Anhui Province(2023AH052921)Outstanding Youth Talent Project of Anhui Province(gxyq2021254)。
文摘In this paper,a new full-Newton step primal-dual interior-point algorithm for solving the special weighted linear complementarity problem is designed and analyzed.The algorithm employs a kernel function with a linear growth term to derive the search direction,and by introducing new technical results and selecting suitable parameters,we prove that the iteration bound of the algorithm is as good as best-known polynomial complexity of interior-point methods.Furthermore,numerical results illustrate the efficiency of the proposed method.
基金supported by the Scientific Computing Research Innovation Team of Guangdong Province(no.2021KCXTD052)the Science and Technology Development Fund,Macao SAR(no.0096/2022/A,0151/2022/A)+3 种基金University of Macao(no.MYRG2020-00035-FST,MYRG2022-00076-FST)the Guangdong Key Construction Discipline Research Capacity Enhancement Project(no.2022ZDJS049)Technology Planning Project of Shaoguan(no.210716094530390)the ScienceFoundation of Shaoguan University(no.SZ2020KJ01).
文摘In this paper,a two-step iteration method is established which can be viewed as a generalization of the existing modulus-based methods for vertical linear complementarity problems given by He and Vong(Appl.Math.Lett.134:108344,2022).The convergence analysis of the proposed method is established,which can improve the existing results.Numerical examples show that the proposed method is efficient with the two-step technique.
基金Supported by the Scientific Research Project of Education Department of Hunan Province(Grant No.21C0837).
文摘A partition reduction method is used to obtain new upper bounds for the inverses of H-matrices and S-strictly diagonally dominant(S-SDD)matrices.The estimates are expressed via the determinants of third order matrices.Numerical experiments with various random matrices show that they are stable and better than the estimates presented in literatures.We use these upper bounds to improve known error estimates for linear complementarity problems with H-matrices and S-SDD matrices.
文摘The modified AOR method for solving linear complementarity problem(LCP(M,p))was proposed in literature,with some convergence results.In this paper,we considered the MAOR method for generalized-order linear complementarity problem(ELCP(M,N,p,q)),where M,N are nonsingular matrices of the following form:M=[D11H1K1D2],N=[D12H2K2D22],D11,D12,D21 and D22 are square nonsingular diagonal matrices.
基金supported by the Fundamental Research Funds for the Central Universities(K50511700004)the Natural Science Basic Research Plan in Shaanxi Province of China(2013JM1022)
文摘An integer linear bilevel programming problem is firstly transformed into a binary linear bilevel programming problem, and then converted into a single-level binary implicit programming. An orthogonal genetic algorithm is developed for solving the binary linear implicit programming problem based on the orthogonal design. The orthogonal design with the factor analysis, an experimental design method is applied to the genetic algorithm to make the algorithm more robust, statistical y sound and quickly convergent. A crossover operator formed by the orthogonal array and the factor analysis is presented. First, this crossover operator can generate a smal but representative sample of points as offspring. After al of the better genes of these offspring are selected, a best combination among these offspring is then generated. The simulation results show the effectiveness of the proposed algorithm.
基金supported by National Natural Science Foundation of China (No. 10771120)
文摘This paper addresses the generalized linear complementarity problem (GLCP) over a polyhedral cone. To solve the problem, we first equivalently convert the problem into an affine variational inequalities problem over a closed polyhedral cone, and then propose a new type of method to solve the GLCP based on the error bound estimation. The global and R-linear convergence rate is established. The numerical experiments show the efficiency of the method.
文摘In this paper, a class of quasi linear Riemann Hilbert problems for general holomorphic functions in the unit disk was studied. Under suitable hypotheses, the existence of solutions of the Hardy class H 2 to this problem was proved by means of Tikhonov's fixed point theorem and corresponding theories for general holomorphic functions.
基金supported by the National Natural Science Foundation of China (No. 11071033)the Fundamental Research Funds for the Central Universities (No. 090405013)
文摘A class of preconditioned iterative methods, i.e., preconditioned generalized accelerated overrelaxation (GAOR) methods, is proposed to solve linear systems based on a class of weighted linear least squares problems. The convergence and comparison results are obtained. The comparison results show that the convergence rate of the preconditioned iterative methods is better than that of the original methods. Furthermore, the effectiveness of the proposed methods is shown in the numerical experiment.
文摘Under suitable conditions,the monotone convergence about the projected iteration method for solving linear complementarity problem is proved and the influence of the involved parameter matrix on the convergence rate of this method is investigated.
基金supported by Open Fund of Engineering Laboratory of Spatial Information Technology of Highway Geological Disaster Early Warning in Hunan Province(Changsha University of Science&Technology,kfj150602)Hunan Province Science and Technology Program Funded Projects,China(2015NK3035)+1 种基金the Land and Resources Department Scientific Research Project of Hunan Province,China(2013-27)the Education Department Scientific Research Project of Hunan Province,China(13C1011)
文摘Linear Least Squares(LLS) problems are particularly difficult to solve because they are frequently ill-conditioned, and involve large quantities of data. Ill-conditioned LLS problems are commonly seen in mathematics and geosciences, where regularization algorithms are employed to seek optimal solutions. For many problems, even with the use of regularization algorithms it may be impossible to obtain an accurate solution. Riley and Golub suggested an iterative scheme for solving LLS problems. For the early iteration algorithm, it is difficult to improve the well-conditioned perturbed matrix and accelerate the convergence at the same time. Aiming at this problem, self-adaptive iteration algorithm(SAIA) is proposed in this paper for solving severe ill-conditioned LLS problems. The algorithm is different from other popular algorithms proposed in recent references. It avoids matrix inverse by using Cholesky decomposition, and tunes the perturbation parameter according to the rate of residual error decline in the iterative process. Example shows that the algorithm can greatly reduce iteration times, accelerate the convergence,and also greatly enhance the computation accuracy.
文摘Utilizing the well-known aggregation technique, we propose a smoothing sample average approximation (SAA) method for a stochastic linear complementarity problem, where the underlying functions are represented by expectations of stochastic functions. The method is proved to be convergent and the preliminary numerical results are reported.
文摘Intuitionistic Fuzzy Set (IFS) can be used as a general tool for modeling problems of decision making under uncertainty where, the degree of rejection is defined simultaneously with the degree of acceptance of a piece of information in such a way that these degrees are not complement to each other. Accordingly, an attempt is made to solve intuitionistic fuzzy linear programming problems using a technique based on an earlier technique proposed by Zimmermann to solve fuzzy linear programming problem. Our proposed technique does not require the existing ranking of intuitionistic fuzzy numbers. This method is also different from the existing weight assignment method or the Angelov’s method. A comparative study is undertaken and interesting results have been presented.
基金Supported by the National Natural Science Foundation of China (10471107)
文摘We discuss the linear conjugate boundary value problems on the unit circle and the real axis. We obtain some Fredholm integral equations. Using thess equations we discuss the solvable conditions on these problems and we also give a direct method for the extension problems on the real axis.
基金Supported by the Natural Science Foundation of Henan Province(0511012000 0511013600) Supported by the Science Foundation for Pure Research of Natural Science of the Education Department of Henan Province(200512950001)
文摘In this article,the authors discuss the optimal conditions of the linear fractionalprogramming problem and prove that a locally optional solution is a globally optional solution and the locally optimal solution can be attained at a basic feasible solution withconstraint condition.
文摘In this paper, a class of the stochastic generalized linear complementarity problems with finitely many elements is proposed for the first time. Based on the Fischer-Burmeister function, a new conjugate gradient projection method is given for solving the stochastic generalized linear complementarity problems. The global convergence of the conjugate gradient projection method is proved and the related numerical results are also reported.
文摘In the present paper we investigate linear elastic systems with damping in Hilbert spaces, where A and B ars unbounded positive definite linear operators. We have obtained the most fundamental results for the holomorphic property and exponential stability of the semigroups associated with these systems via inclusion relation of the domains of A and B.