The article investigates the growth of multiple Dirichlet series.The lower order and the linear order of n-tuple Dirichlet series in Cn are defined and some relations between them and the coefficients and exponents of...The article investigates the growth of multiple Dirichlet series.The lower order and the linear order of n-tuple Dirichlet series in Cn are defined and some relations between them and the coefficients and exponents of n-tuple Dirichlet series are obtained.展开更多
Differential inequalities generated in an extended Lyapunov framework are employed in the stability and instability analyses of a class of switched continuous-time second-and higher order linear systems with an arbitr...Differential inequalities generated in an extended Lyapunov framework are employed in the stability and instability analyses of a class of switched continuous-time second-and higher order linear systems with an arbitrary number of switching matrices.The exponential stability and instability(ESI)conditions so obtained involve the supremum and infimum of ratios of certain quadratic forms of the matrices,leading to global time-averages of their activity intervals.Further,motivated by linear switching system examples of(i)instability with stable matrices and(ii)stability with unstable matrices(found in the literature primarily for second-order systems),the proposed framework is generalized to establish ESI conditions that include both the activity intervals of the matrices and their switching rates,the latter being governed by a certain logarithmic measure of the normalized magnitudes of discontinuities caused by switching.In effect,(the new,globally averaged)dwell-time is flexibly traded,apparently for the first time,but under specific conditions(related,in part,to the eigenvalues of the matrices),for switching discontinuity-based conditions.Two further novel aspects of the proposed approach are:(i)For second-order matrices,switching lines in phase space can be chosen for periodic switching to stabilize or destabilize the system,and even generate oscillations,depending on the eigenvalues of the system matrices.But for third-(and higher)order matrices,such an analytically tractable(and controlled)periodical switching entails solution of an explicit non-convex multi-parameter optimization problem for which a stochastic optimization algorithm from the literature can be invoked.(ii)Lower and upper bounds on the solutions of the system equations can be quantified to reflect the stability/instability/oscillatory property of the system.Illustrative examples,which demonstrate the novelty of the derived stability and instability conditions,are presented in part 2 which is advisedly to be read along with this part 1 for a coherent merging of theory with practice.展开更多
In this second part of the paper,bearing the same title as above,but with the last hyphenated phrase replaced by part 1(Theory),the exponential stability and instability(ESI)Theorems 1–4 of part 1 are illustrated by ...In this second part of the paper,bearing the same title as above,but with the last hyphenated phrase replaced by part 1(Theory),the exponential stability and instability(ESI)Theorems 1–4 of part 1 are illustrated by applying them to second-andby,say,third-order linear switched systems with different eigenvalue structures to demonstrate the versatility,novelty and superiority(over many of the results found in the literature,especially for second-order switched lined systems)of the new theoretical results.The computational procedure that is employed with reference to the third-order systems is generic,in the sense that it is applicable to higher(i.e.,greater than third-)order linear switched systems.A pseudo-code for a computer implementation of the stability/instability conditions is also presented.With the principal aim of facilitating an independent reading of this part 2 of the paper,some crucial mathematical notations,definitions and results of part 1 have been repeated,thereby making the contents as self-contained as possible.展开更多
The modified AOR method for solving linear complementarity problem(LCP(M,p))was proposed in literature,with some convergence results.In this paper,we considered the MAOR method for generalized-order linear complementa...The modified AOR method for solving linear complementarity problem(LCP(M,p))was proposed in literature,with some convergence results.In this paper,we considered the MAOR method for generalized-order linear complementarity problem(ELCP(M,N,p,q)),where M,N are nonsingular matrices of the following form:M=[D11H1K1D2],N=[D12H2K2D22],D11,D12,D21 and D22 are square nonsingular diagonal matrices.展开更多
In this paper eigenstructure assignment via proportional-plus-derivative feedback is investigated for a class of second-order descriptor linear systems. Under certain conditions, simple, general and complete parametri...In this paper eigenstructure assignment via proportional-plus-derivative feedback is investigated for a class of second-order descriptor linear systems. Under certain conditions, simple, general and complete parametric solutions of both finite closed-loop eigenvector matrices and feedback gain matrices are derived. The parametric approach utilizes directly original system data, involves manipulations only on n-dimensional matrices, and reveals all the design degrees of freedom which can be further utilized to achieve certain additional system specifications. A numerical example shows the effect of the proposed approach.展开更多
The main purpose of this paper is to study the growth of meromorphic solutions of complex linear differential-difference equations L(z, f) =n∑i=0m∑j=0Aij(z)f^(j)(z + ci) = 0 or F(z)with entire or meromorp...The main purpose of this paper is to study the growth of meromorphic solutions of complex linear differential-difference equations L(z, f) =n∑i=0m∑j=0Aij(z)f^(j)(z + ci) = 0 or F(z)with entire or meromorphic coefficients, and ci, i = 0,..., n being distinct complex numbers,where there is only one dominant coefficient.展开更多
This paper considers eigenstructure assignment in second-order linear systems via proportional plus derivative feedback. It is shown that the problem is closely related to a type of so-called second-order Sylvester ma...This paper considers eigenstructure assignment in second-order linear systems via proportional plus derivative feedback. It is shown that the problem is closely related to a type of so-called second-order Sylvester matrix equations. Through establishing two general parametric solutions to this type of matrix equations, two complete parametric methods for the proposed eigenstructure assignment problem are presented. Both methods give simple complete parametric expressions for the feedback gains and the closed-loop eigenvector matrices. The first one mainly depends on a series of singular value decompositions, and is thus numerically simple and reliable; the second one utilizes the right factorization of the system, and allows the closed-loop eigenvalues to be set undetermined and sought via certain optimization procedures. An example shows the effectiveness of the proposed approaches. Keywords Second-order linear systems - Eigenstructure assignment - Proportional plus derivative feedback - Parametric solution - Singular value decompoition - Right factorization This work was supported in part by the Chinese Outstanding Youth Foundation (No.69504002).展开更多
The main purpose of this article is to study the existence theories of global meromorphic solutions for some second-order linear differential equations with meromorphic coefficients, which perfect the solution theory ...The main purpose of this article is to study the existence theories of global meromorphic solutions for some second-order linear differential equations with meromorphic coefficients, which perfect the solution theory of such equations.展开更多
A simple method for disturbance decoupling for matrix second-order linear systems is proposed directly in matrix second-order framework via Luenberger function observers based on complete parametric eigenstructure ass...A simple method for disturbance decoupling for matrix second-order linear systems is proposed directly in matrix second-order framework via Luenberger function observers based on complete parametric eigenstructure assignment. By introducing the H2 norm of the transfer function from disturbance to estimation error, sufficient and necessary conditions for disturbance decoupling in matrix second-order linear systems are established and are arranged into constraints on the design parameters via Luenberger function observers in terms of the closed-loop eigenvalues and the group of design parameters provided by the eigenstructure assignment approach. Therefore, the disturbance decoupling problem is converted into an eigenstructure assignment problem with extra parameter constraints. A simple example is investigated to show the effect and simplicity of the approach.展开更多
This paper addresses the robust admissibility problem in singular fractional-order continuous time systems. It is based on new admissibility conditions of singular fractional-order systems expressed in a set of strict...This paper addresses the robust admissibility problem in singular fractional-order continuous time systems. It is based on new admissibility conditions of singular fractional-order systems expressed in a set of strict linear matrix inequalities(LMIs). Then, a static output feedback controller is designed for the uncertain closed-loop system to be admissible. Numerical examples are given to illustrate the proposed methods.展开更多
This article discusses the problems on the existence of meromorphic solutions of some higher order linear differential equations with meromorphic coefficients. Some nice results are obtained. And these results perfect...This article discusses the problems on the existence of meromorphic solutions of some higher order linear differential equations with meromorphic coefficients. Some nice results are obtained. And these results perfect the complex oscillation theory of meromorphic solutions of linear differential equations.展开更多
In this article, the authors study the growth of certain second order linear differential equation f″+A(z)f′+B(z)f=0 and give precise estimates for the hyperorder of solutions of infinite order. Under similar ...In this article, the authors study the growth of certain second order linear differential equation f″+A(z)f′+B(z)f=0 and give precise estimates for the hyperorder of solutions of infinite order. Under similar conditions, higher order differential equations will be considered.展开更多
In this paper, the normal Luenberger function observer design for second-order descriptor linear systems is considered. It is shown that the main procedure of the design is to solve a so-called second-order generalize...In this paper, the normal Luenberger function observer design for second-order descriptor linear systems is considered. It is shown that the main procedure of the design is to solve a so-called second-order generalized Sylvester-observer matrix equation. Based on an explicit parametric solution to this equation, a parametric solution to the normal Luenberger function observer design problem is given. The design degrees of freedom presented by explicit parameters can be further utilized to achieve some additional design requirements.展开更多
By using the variation of parameters, this paper deals with the general solution and Ulam stability of second order linear dynamic equations with variable coefficients on time scales.In particular, we also obtain the ...By using the variation of parameters, this paper deals with the general solution and Ulam stability of second order linear dynamic equations with variable coefficients on time scales.In particular, we also obtain the Ulam stability of second order linear dynamic equations with constant coefficients under different cases.展开更多
Modal logic characterization in a higher-order setting is usually not a trivial task because higher-order process-passing is quite different from first-order name-passing. We study the logical characterization of high...Modal logic characterization in a higher-order setting is usually not a trivial task because higher-order process-passing is quite different from first-order name-passing. We study the logical characterization of higherorder processes constrained by linearity. Linearity respects resource-sensitiveness and does not allow processes to duplicate themselves arbitrarily. We provide a modal logic that characterizes linear higher-order processes,particularly the bisimulation called local bisimulation over them. More importantly, the logic has modalities for higher-order actions downscaled to resembling first-order ones in Hennessy-Milner logic, based on a formulation exploiting the linearity of processes.展开更多
This paper aims at solving the state filtering problem for linear systems with state constraints. Three classes of typical state constraints, i.e., linear equality, quadratic equality and inequality, are discussed. By...This paper aims at solving the state filtering problem for linear systems with state constraints. Three classes of typical state constraints, i.e., linear equality, quadratic equality and inequality, are discussed. By using the linear relationships among different state variables, a reduced-order Kalman filter is derived for the system with linear equality constraints. Afterwards, such a solution is applied to the cases of the quadratic equality constraint and inequality constraints and the two constrained state filtering problems are transformed into two relative constrained optimization problems. Then they are solved by the Lagrangian multiplier and linear matrix inequality techniques, respectively. Finally, two simple tracking examples are provided to illustrate the effectiveness of the reduced-order filters.展开更多
A type of high-order integral observers for matrix second-order linear systems is proposed on the basis of generalized eigenstructure assignment via unified parametric approaches. Through establishing two general para...A type of high-order integral observers for matrix second-order linear systems is proposed on the basis of generalized eigenstructure assignment via unified parametric approaches. Through establishing two general parametric solutions to this type of generalized matrix second-order Sylvester matrix equations, two unified complete parametric methods for the proposed observer design problem are presented. Both methods give simple complete parametric expressions for the observer gain matrices. The first one mainly depends on a series of singular value decompositions, and is thus numerically simple and reliable; the second one utilizes the fight factorization of the system, and allows eigenvalues of the error system to be set undetermined and sought via certain optimization procedures. A spring-mass-dashpot system is utilized to illustrate the design procedure and show the effect of the proposed approach.展开更多
The controllability for a class of fractional-order linear control systems is mainly investigated. The generalizations of the usual complete solution formulae of the fractional-order linear control systems are derived...The controllability for a class of fractional-order linear control systems is mainly investigated. The generalizations of the usual complete solution formulae of the fractional-order linear control systems are derived not only for time-invariant case but also for time-varying case. Several sufficient and necessary conditions for state controllability of such systems are established and the corresponding criteria for fractional-order time-invariant continuous-time systems are also obtained. The results obtained will be help for future study of fractional-order control systems.展开更多
In this paper a singularly perturbed linear second order hyperbolic problem with zeroth order reduced equation is discussed. Firstly, an energy inequality of the solution and an estimate of the remainder term of the a...In this paper a singularly perturbed linear second order hyperbolic problem with zeroth order reduced equation is discussed. Firstly, an energy inequality of the solution and an estimate of the remainder term of the asymptotic solution are given. Then an exponentially fitted difference scheme is developed in an equidistant mesh. Finally, uniform convergence in small parameter is proved in the sense of discrete energy norm.展开更多
The issue of designing a type of generalized Luenberger observers for matrix second-order linear (MSOL) systems was addressed in the matrix second-order framework. By introducing the concept of stable matrix pair for ...The issue of designing a type of generalized Luenberger observers for matrix second-order linear (MSOL) systems was addressed in the matrix second-order framework. By introducing the concept of stable matrix pair for MSOL systems, sufficient and necessary conditions for the design of the type of generalized Luenberger observers were given under the assumption of controllability and observability of the MSOL system. Based on the proposed conditions and the right coprime factorization of the system, a parametric approach to the design of such type of observers was presented. The proposed approach provides all the degrees of design freedom, which can be further utilized to achieve additional system specifications. A spring-mass system was utilized to show the effect of the proposed method.展开更多
基金supported by the National Natural Sci-ence Foundation of China(11501127)Natural Science Foundation of Guangdong Province(2016A030313686)+1 种基金the Training Program for Outstanding Young Teachers in University of Guangdong Province(312XCQ14564)Foundation for Distinguished Young Talents in Higher Education of Guangdong Province(2013LYM0027,2014KQNCX068)
文摘The article investigates the growth of multiple Dirichlet series.The lower order and the linear order of n-tuple Dirichlet series in Cn are defined and some relations between them and the coefficients and exponents of n-tuple Dirichlet series are obtained.
文摘Differential inequalities generated in an extended Lyapunov framework are employed in the stability and instability analyses of a class of switched continuous-time second-and higher order linear systems with an arbitrary number of switching matrices.The exponential stability and instability(ESI)conditions so obtained involve the supremum and infimum of ratios of certain quadratic forms of the matrices,leading to global time-averages of their activity intervals.Further,motivated by linear switching system examples of(i)instability with stable matrices and(ii)stability with unstable matrices(found in the literature primarily for second-order systems),the proposed framework is generalized to establish ESI conditions that include both the activity intervals of the matrices and their switching rates,the latter being governed by a certain logarithmic measure of the normalized magnitudes of discontinuities caused by switching.In effect,(the new,globally averaged)dwell-time is flexibly traded,apparently for the first time,but under specific conditions(related,in part,to the eigenvalues of the matrices),for switching discontinuity-based conditions.Two further novel aspects of the proposed approach are:(i)For second-order matrices,switching lines in phase space can be chosen for periodic switching to stabilize or destabilize the system,and even generate oscillations,depending on the eigenvalues of the system matrices.But for third-(and higher)order matrices,such an analytically tractable(and controlled)periodical switching entails solution of an explicit non-convex multi-parameter optimization problem for which a stochastic optimization algorithm from the literature can be invoked.(ii)Lower and upper bounds on the solutions of the system equations can be quantified to reflect the stability/instability/oscillatory property of the system.Illustrative examples,which demonstrate the novelty of the derived stability and instability conditions,are presented in part 2 which is advisedly to be read along with this part 1 for a coherent merging of theory with practice.
文摘In this second part of the paper,bearing the same title as above,but with the last hyphenated phrase replaced by part 1(Theory),the exponential stability and instability(ESI)Theorems 1–4 of part 1 are illustrated by applying them to second-andby,say,third-order linear switched systems with different eigenvalue structures to demonstrate the versatility,novelty and superiority(over many of the results found in the literature,especially for second-order switched lined systems)of the new theoretical results.The computational procedure that is employed with reference to the third-order systems is generic,in the sense that it is applicable to higher(i.e.,greater than third-)order linear switched systems.A pseudo-code for a computer implementation of the stability/instability conditions is also presented.With the principal aim of facilitating an independent reading of this part 2 of the paper,some crucial mathematical notations,definitions and results of part 1 have been repeated,thereby making the contents as self-contained as possible.
文摘The modified AOR method for solving linear complementarity problem(LCP(M,p))was proposed in literature,with some convergence results.In this paper,we considered the MAOR method for generalized-order linear complementarity problem(ELCP(M,N,p,q)),where M,N are nonsingular matrices of the following form:M=[D11H1K1D2],N=[D12H2K2D22],D11,D12,D21 and D22 are square nonsingular diagonal matrices.
文摘In this paper eigenstructure assignment via proportional-plus-derivative feedback is investigated for a class of second-order descriptor linear systems. Under certain conditions, simple, general and complete parametric solutions of both finite closed-loop eigenvector matrices and feedback gain matrices are derived. The parametric approach utilizes directly original system data, involves manipulations only on n-dimensional matrices, and reveals all the design degrees of freedom which can be further utilized to achieve certain additional system specifications. A numerical example shows the effect of the proposed approach.
基金Supported by the National Natural Science Foundation of China(Grant Nos.1130123311171119)+1 种基金the Natural Science Foundation of Jiangxi Province(Grant No.20132BAB211002)the Youth Science Foundation of Education Bureau of Jiangxi Province(Grant No.GJJ14271)
文摘The main purpose of this paper is to study the growth of meromorphic solutions of complex linear differential-difference equations L(z, f) =n∑i=0m∑j=0Aij(z)f^(j)(z + ci) = 0 or F(z)with entire or meromorphic coefficients, and ci, i = 0,..., n being distinct complex numbers,where there is only one dominant coefficient.
文摘This paper considers eigenstructure assignment in second-order linear systems via proportional plus derivative feedback. It is shown that the problem is closely related to a type of so-called second-order Sylvester matrix equations. Through establishing two general parametric solutions to this type of matrix equations, two complete parametric methods for the proposed eigenstructure assignment problem are presented. Both methods give simple complete parametric expressions for the feedback gains and the closed-loop eigenvector matrices. The first one mainly depends on a series of singular value decompositions, and is thus numerically simple and reliable; the second one utilizes the right factorization of the system, and allows the closed-loop eigenvalues to be set undetermined and sought via certain optimization procedures. An example shows the effectiveness of the proposed approaches. Keywords Second-order linear systems - Eigenstructure assignment - Proportional plus derivative feedback - Parametric solution - Singular value decompoition - Right factorization This work was supported in part by the Chinese Outstanding Youth Foundation (No.69504002).
基金Supported by the National Natural Science Foundation of China(11101096 )Guangdong Natural Science Foundation (S2012010010376, S201204006711)
文摘The main purpose of this article is to study the existence theories of global meromorphic solutions for some second-order linear differential equations with meromorphic coefficients, which perfect the solution theory of such equations.
文摘A simple method for disturbance decoupling for matrix second-order linear systems is proposed directly in matrix second-order framework via Luenberger function observers based on complete parametric eigenstructure assignment. By introducing the H2 norm of the transfer function from disturbance to estimation error, sufficient and necessary conditions for disturbance decoupling in matrix second-order linear systems are established and are arranged into constraints on the design parameters via Luenberger function observers in terms of the closed-loop eigenvalues and the group of design parameters provided by the eigenstructure assignment approach. Therefore, the disturbance decoupling problem is converted into an eigenstructure assignment problem with extra parameter constraints. A simple example is investigated to show the effect and simplicity of the approach.
文摘This paper addresses the robust admissibility problem in singular fractional-order continuous time systems. It is based on new admissibility conditions of singular fractional-order systems expressed in a set of strict linear matrix inequalities(LMIs). Then, a static output feedback controller is designed for the uncertain closed-loop system to be admissible. Numerical examples are given to illustrate the proposed methods.
基金supported by the National Natural Science Foundation of China (11101096)
文摘This article discusses the problems on the existence of meromorphic solutions of some higher order linear differential equations with meromorphic coefficients. Some nice results are obtained. And these results perfect the complex oscillation theory of meromorphic solutions of linear differential equations.
基金the National Natural Science Foundation of China(10161006,10571044)the Natural Science Foundation of Guangdong Prov(06025059)
文摘In this article, the authors study the growth of certain second order linear differential equation f″+A(z)f′+B(z)f=0 and give precise estimates for the hyperorder of solutions of infinite order. Under similar conditions, higher order differential equations will be considered.
基金This work was supported by National Natural Science Foundation of China(No.60710002)Program for Changjiang Scholars and Innovative Research Team in University(PCSIRT).
文摘In this paper, the normal Luenberger function observer design for second-order descriptor linear systems is considered. It is shown that the main procedure of the design is to solve a so-called second-order generalized Sylvester-observer matrix equation. Based on an explicit parametric solution to this equation, a parametric solution to the normal Luenberger function observer design problem is given. The design degrees of freedom presented by explicit parameters can be further utilized to achieve some additional design requirements.
基金Supported by the National Natural Science Foundation of China (Grant Nos. 11701425,11971493)。
文摘By using the variation of parameters, this paper deals with the general solution and Ulam stability of second order linear dynamic equations with variable coefficients on time scales.In particular, we also obtain the Ulam stability of second order linear dynamic equations with constant coefficients under different cases.
基金the National Natural Science Foundation of China(Nos.61202023,61261130589 and61173048)the PACE Project(No.12IS02001)the Specialized Research Fund for the Doctoral Program of Higher Edueation of China(No.20120073120031)
文摘Modal logic characterization in a higher-order setting is usually not a trivial task because higher-order process-passing is quite different from first-order name-passing. We study the logical characterization of higherorder processes constrained by linearity. Linearity respects resource-sensitiveness and does not allow processes to duplicate themselves arbitrarily. We provide a modal logic that characterizes linear higher-order processes,particularly the bisimulation called local bisimulation over them. More importantly, the logic has modalities for higher-order actions downscaled to resembling first-order ones in Hennessy-Milner logic, based on a formulation exploiting the linearity of processes.
基金supported by the National Key Basic Research Development Project (973 Program) (2012CB821205)the Natural Scientific Research Innovation Foundation in Harbin Institute of Technology(HIT.NSRIF.2009004)
文摘This paper aims at solving the state filtering problem for linear systems with state constraints. Three classes of typical state constraints, i.e., linear equality, quadratic equality and inequality, are discussed. By using the linear relationships among different state variables, a reduced-order Kalman filter is derived for the system with linear equality constraints. Afterwards, such a solution is applied to the cases of the quadratic equality constraint and inequality constraints and the two constrained state filtering problems are transformed into two relative constrained optimization problems. Then they are solved by the Lagrangian multiplier and linear matrix inequality techniques, respectively. Finally, two simple tracking examples are provided to illustrate the effectiveness of the reduced-order filters.
基金This work was supported by the Chinese National Natural Science Foundation ( No. 69925308).
文摘A type of high-order integral observers for matrix second-order linear systems is proposed on the basis of generalized eigenstructure assignment via unified parametric approaches. Through establishing two general parametric solutions to this type of generalized matrix second-order Sylvester matrix equations, two unified complete parametric methods for the proposed observer design problem are presented. Both methods give simple complete parametric expressions for the observer gain matrices. The first one mainly depends on a series of singular value decompositions, and is thus numerically simple and reliable; the second one utilizes the fight factorization of the system, and allows eigenvalues of the error system to be set undetermined and sought via certain optimization procedures. A spring-mass-dashpot system is utilized to illustrate the design procedure and show the effect of the proposed approach.
文摘The controllability for a class of fractional-order linear control systems is mainly investigated. The generalizations of the usual complete solution formulae of the fractional-order linear control systems are derived not only for time-invariant case but also for time-varying case. Several sufficient and necessary conditions for state controllability of such systems are established and the corresponding criteria for fractional-order time-invariant continuous-time systems are also obtained. The results obtained will be help for future study of fractional-order control systems.
文摘In this paper a singularly perturbed linear second order hyperbolic problem with zeroth order reduced equation is discussed. Firstly, an energy inequality of the solution and an estimate of the remainder term of the asymptotic solution are given. Then an exponentially fitted difference scheme is developed in an equidistant mesh. Finally, uniform convergence in small parameter is proved in the sense of discrete energy norm.
文摘The issue of designing a type of generalized Luenberger observers for matrix second-order linear (MSOL) systems was addressed in the matrix second-order framework. By introducing the concept of stable matrix pair for MSOL systems, sufficient and necessary conditions for the design of the type of generalized Luenberger observers were given under the assumption of controllability and observability of the MSOL system. Based on the proposed conditions and the right coprime factorization of the system, a parametric approach to the design of such type of observers was presented. The proposed approach provides all the degrees of design freedom, which can be further utilized to achieve additional system specifications. A spring-mass system was utilized to show the effect of the proposed method.