MODIS (Moderate Resolution Imaging Spectroradiometer) is a key instrument aboard the Terra (EOS AM) and Aqua (EOS PM) satellites. Linear spectral mixture models are applied to MOIDS data for the sub-pixel classi...MODIS (Moderate Resolution Imaging Spectroradiometer) is a key instrument aboard the Terra (EOS AM) and Aqua (EOS PM) satellites. Linear spectral mixture models are applied to MOIDS data for the sub-pixel classification of land covers. Shaoxing county of Zhejiang Province in China was chosen to be the study site and early rice was selected as the study crop. The derived proportions of land covers from MODIS pixel using linear spectral mixture models were compared with unsupervised classification derived from TM data acquired on the same day, which implies that MODIS data could be used as satellite data source for rice cultivation area estimation, possibly rice growth monitoring and yield forecasting on the regional scale.展开更多
A new algorithm for unsupervised hyperspectral data unmixing is investigated, which includes a modified minimum noise fraction (MNF) transformation and independent component analysis (ICA). The modified MNF transf...A new algorithm for unsupervised hyperspectral data unmixing is investigated, which includes a modified minimum noise fraction (MNF) transformation and independent component analysis (ICA). The modified MNF transformation is used to reduce noise and remove correlation between neighboring bands. Then the ICA is applied to unmix hyperspectral images, and independent endmembers are obtained from unmixed images by using post-processing which includes image segmentation based on statistical histograms and morphological operations. The experimental results demonstrate that this algorithm can identify endmembers resident in mixed pixels. Meanwhile, the results show the high computational efficiency of the modified MNF transformation. The time consumed by the modified method is almost one fifth of the traditional MNF transformation.展开更多
Introduction:One of the most striking features of urbanization is the replacement of the original natural land cover type by artificial impervious surface area(ISA).However,the extent of the contribution of various en...Introduction:One of the most striking features of urbanization is the replacement of the original natural land cover type by artificial impervious surface area(ISA).However,the extent of the contribution of various environmental factors,especially the growth of 3D space to ISA expansion,and the scope and mechanism of their influences in dramatically expanding cities,are yet to be determined.The boosted regression tree(BRT)model was adopted to analyze the main influencing factors and driving mechanisms of ISA change in Shenyang,China between 2010 and 2017.Outcomes:The nearly complete-coverage ISA(≥0.7)increased from 42%in 2010 to 47%in 2017.The percentage of landscape with a high ISA fraction increased,while the landscape evenness and diversity of ISA decreased.The BRT analysis revealed that elevation,regional population density,and landscape class had the largest influences on the change of urban ISA,contributing 22.55%,18.16%,and 11.18%to the model,respectively.Conclusion:Overall,topographic and socioeconomic factors had the greatest influence on urban ISA change in Shenyang,followed by land use type and building pattern indices.The trend of high aggregation was strong in large commercial and residential areas.The 3D expansion of the city had an influence on its areal expansion.展开更多
文摘MODIS (Moderate Resolution Imaging Spectroradiometer) is a key instrument aboard the Terra (EOS AM) and Aqua (EOS PM) satellites. Linear spectral mixture models are applied to MOIDS data for the sub-pixel classification of land covers. Shaoxing county of Zhejiang Province in China was chosen to be the study site and early rice was selected as the study crop. The derived proportions of land covers from MODIS pixel using linear spectral mixture models were compared with unsupervised classification derived from TM data acquired on the same day, which implies that MODIS data could be used as satellite data source for rice cultivation area estimation, possibly rice growth monitoring and yield forecasting on the regional scale.
基金Sponsored by the National Natural Science Foundation of China(Grant No. 60272073).
文摘A new algorithm for unsupervised hyperspectral data unmixing is investigated, which includes a modified minimum noise fraction (MNF) transformation and independent component analysis (ICA). The modified MNF transformation is used to reduce noise and remove correlation between neighboring bands. Then the ICA is applied to unmix hyperspectral images, and independent endmembers are obtained from unmixed images by using post-processing which includes image segmentation based on statistical histograms and morphological operations. The experimental results demonstrate that this algorithm can identify endmembers resident in mixed pixels. Meanwhile, the results show the high computational efficiency of the modified MNF transformation. The time consumed by the modified method is almost one fifth of the traditional MNF transformation.
基金This study was supported by the China National R&D Program(No.2017YFC0505704)the National Natural Science Foundation of China(Nos.41871162 and 41871192)the Fundamental Research Funds for the Central Universities of China(No.N2011005)。
文摘Introduction:One of the most striking features of urbanization is the replacement of the original natural land cover type by artificial impervious surface area(ISA).However,the extent of the contribution of various environmental factors,especially the growth of 3D space to ISA expansion,and the scope and mechanism of their influences in dramatically expanding cities,are yet to be determined.The boosted regression tree(BRT)model was adopted to analyze the main influencing factors and driving mechanisms of ISA change in Shenyang,China between 2010 and 2017.Outcomes:The nearly complete-coverage ISA(≥0.7)increased from 42%in 2010 to 47%in 2017.The percentage of landscape with a high ISA fraction increased,while the landscape evenness and diversity of ISA decreased.The BRT analysis revealed that elevation,regional population density,and landscape class had the largest influences on the change of urban ISA,contributing 22.55%,18.16%,and 11.18%to the model,respectively.Conclusion:Overall,topographic and socioeconomic factors had the greatest influence on urban ISA change in Shenyang,followed by land use type and building pattern indices.The trend of high aggregation was strong in large commercial and residential areas.The 3D expansion of the city had an influence on its areal expansion.