期刊文献+
共找到1,244篇文章
< 1 2 63 >
每页显示 20 50 100
Low Complexity Minimum Mean Square Error Channel Estimation for Adaptive Coding and Modulation Systems 被引量:2
1
作者 GUO Shuxia SONG Yang +1 位作者 GAO Ying HAN Qianjin 《China Communications》 SCIE CSCD 2014年第1期126-137,共12页
Performance of the Adaptive Coding and Modulation(ACM) strongly depends on the retrieved Channel State Information(CSI),which can be obtained using the channel estimation techniques relying on pilot symbol transmissio... Performance of the Adaptive Coding and Modulation(ACM) strongly depends on the retrieved Channel State Information(CSI),which can be obtained using the channel estimation techniques relying on pilot symbol transmission.Earlier analysis of methods of pilot-aided channel estimation for ACM systems were relatively little.In this paper,we investigate the performance of CSI prediction using the Minimum Mean Square Error(MMSE)channel estimator for an ACM system.To solve the two problems of MMSE:high computational operations and oversimplified assumption,we then propose the Low-Complexity schemes(LC-MMSE and Recursion LC-MMSE(R-LC-MMSE)).Computational complexity and Mean Square Error(MSE) are presented to evaluate the efficiency of the proposed algorithm.Both analysis and numerical results show that LC-MMSE performs close to the wellknown MMSE estimator with much lower complexity and R-LC-MMSE improves the application of MMSE estimation to specific circumstances. 展开更多
关键词 adaptive coding and modulation channel estimation minimum mean square error low-complexity minimum mean square error
在线阅读 下载PDF
Recursive weighted least squares estimation algorithm based on minimum model error principle 被引量:2
2
作者 雷晓云 张志安 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2021年第2期545-558,共14页
Kalman filter is commonly used in data filtering and parameters estimation of nonlinear system,such as projectile's trajectory estimation and control.While there is a drawback that the prior error covariance matri... Kalman filter is commonly used in data filtering and parameters estimation of nonlinear system,such as projectile's trajectory estimation and control.While there is a drawback that the prior error covariance matrix and filter parameters are difficult to be determined,which may result in filtering divergence.As to the problem that the accuracy of state estimation for nonlinear ballistic model strongly depends on its mathematical model,we improve the weighted least squares method(WLSM)with minimum model error principle.Invariant embedding method is adopted to solve the cost function including the model error.With the knowledge of measurement data and measurement error covariance matrix,we use gradient descent algorithm to determine the weighting matrix of model error.The uncertainty and linearization error of model are recursively estimated by the proposed method,thus achieving an online filtering estimation of the observations.Simulation results indicate that the proposed recursive estimation algorithm is insensitive to initial conditions and of good robustness. 展开更多
关键词 minimum model error Weighted least squares method State estimation Invariant embedding method Nonlinear recursive estimate
在线阅读 下载PDF
Calculation of Significant Wave Height Using the Linear Mean Square Estimation Method 被引量:2
3
作者 GAO Yangyang YU Dingyong +1 位作者 LI Cuilin XU Delun 《Journal of Ocean University of China》 SCIE CAS 2010年第4期327-332,共6页
Significant wave height is an important criterion in designing coastal and offshore structures.Based on the orthogonality principle, the linear mean square estimation method is applied to calculate significant wave he... Significant wave height is an important criterion in designing coastal and offshore structures.Based on the orthogonality principle, the linear mean square estimation method is applied to calculate significant wave height in this paper.Twenty-eight-year time series of wave data collected from three ocean buoys near San Francisco along the California coast are analyzed.It is proved theoretically that the computation error will be reduced by using as many measured data as possible for the calculation of significant wave height.Measured significant wave height at one buoy location is compared with the calculated value based on the data from two other adjacent buoys.The results indicate that the linear mean square estimation method can be well applied to the calculation and prediction of significant wave height in coastal regions. 展开更多
关键词 significant wave height linear mean square estimation method orthogonality principle
在线阅读 下载PDF
Application of Linear Mean-Square Estimation in Ocean Engineering 被引量:5
4
作者 王莉萍 陈柏宇 +2 位作者 陈超 陈正寿 刘桂林 《China Ocean Engineering》 SCIE EI CSCD 2016年第1期149-160,共12页
The attempt to obtain long-term observed data around some sea areas we concern is usually very hard or even impossible in practical offshore and ocean engineering situations. In this paper, by means of linear mean-squ... The attempt to obtain long-term observed data around some sea areas we concern is usually very hard or even impossible in practical offshore and ocean engineering situations. In this paper, by means of linear mean-square estimation method, a new way to extend short-term data to long-term ones is developed. The long-term data about concerning sea areas can be constructed via a series of long-term data obtained from neighbor oceanographic stations, through relevance analysis of different data series. It is effective to cover the insufficiency of time series prediction method's overdependence upon the length of data series, as well as the limitation of variable numbers adopted in multiple linear regression model. The storm surge data collected from three oceanographic stations located in Shandong Peninsula are taken as examples to analyze the number-selection effect of reference oceanographic stations(adjacent to the concerning sea area) and the correlation coefficients between sea sites which are selected for reference and for engineering projects construction respectively. By comparing the N-year return-period values which are calculated from observed raw data and processed data which are extended from finite data series by means of the linear mean-square estimation method, one can draw a conclusion that this method can give considerably good estimation in practical ocean engineering, in spite of different extreme value distributions about raw and processed data. 展开更多
关键词 ocean engineering linear mean-square estimation N-year return-period storm surge
在线阅读 下载PDF
Efficient Mean Estimation in Log-normal Linear Models with First-order Correlated Errors
5
作者 Zhang Song Wang De-hui 《Communications in Mathematical Research》 CSCD 2013年第3期271-279,共9页
In this paper, we propose a log-normal linear model whose errors are first-order correlated, and suggest a two-stage method for the efficient estimation of the conditional mean of the response variable at the original... In this paper, we propose a log-normal linear model whose errors are first-order correlated, and suggest a two-stage method for the efficient estimation of the conditional mean of the response variable at the original scale. We obtain two estimators which minimize the asymptotic mean squared error (MM) and the asymptotic bias (MB), respectively. Both the estimators are very easy to implement, and simulation studies show that they are perform better. 展开更多
关键词 log-normal first-order correlated maximum likelihood two-stage estimation mean squared error
在线阅读 下载PDF
Adaptive Linear Filtering Design with Minimum Symbol Error Probability Criterion 被引量:2
6
作者 Sheng Chen 《International Journal of Automation and computing》 EI 2006年第3期291-303,共13页
Adaptive digital filtering has traditionally been developed based on the minimum mean square error (MMSE) criterion and has found ever-increasing applications in communications. This paper presents an alternative ad... Adaptive digital filtering has traditionally been developed based on the minimum mean square error (MMSE) criterion and has found ever-increasing applications in communications. This paper presents an alternative adaptive filtering design based on the minimum symbol error rate (MSER) criterion for communication applications. It is shown that the MSER filtering is smarter, as it exploits the non-Gaussian distribution of filter output effectively. Consequently, it provides significant performance gain in terms of smaller symbol error over the MMSE approach. Adopting Parzen window or kernel density estimation for a probability density function, a block-data gradient adaptive MSER algorithm is derived. A stochastic gradient adaptive MSER algorithm, referred to as the least symbol error rate, is further developed for sample-by-sample adaptive implementation of the MSER filtering. Two applications, involving single-user channel equalization and beamforming assisted receiver, are included to demonstrate the effectiveness and generality of the proposed adaptive MSER filtering approach. 展开更多
关键词 Adaptive filtering mean square error probability density function non-Gaussian distribution Parzen window estimate symbol error rate stochastic gradient algorithm.
在线阅读 下载PDF
Mean Square Error Comparisons of Estimatorsin Two SUR Models
7
作者 LIU Jin-shan GUI Qing-ming 《Chinese Quarterly Journal of Mathematics》 CSCD 2000年第3期63-71,共9页
For a system of two seerningly umrelated regressions.some general results of mean square er-ror matrix comparisons are presented.A class of linear estimators and a class of two-stage estimatorsbased on a generalized u... For a system of two seerningly umrelated regressions.some general results of mean square er-ror matrix comparisons are presented.A class of linear estimators and a class of two-stage estimatorsbased on a generalized unrestricted estimate of the dispersion matrix are proposed.Some exact finitesample properties of the two-stage estimators are obtained. 展开更多
关键词 seemingly unrelated regressions two-stage estimator mean square error matrix
在线阅读 下载PDF
Selection of the Linear Regression Model According to the Parameter Estimation 被引量:35
8
作者 Sun Dao-de Department of Computer, Fuyang Teachers College, Anhui 236032,China 《Wuhan University Journal of Natural Sciences》 EI CAS 2000年第4期400-405,共6页
In this paper, based on the theory of parameter estimation, we give a selection method and, in a sense of a good character of the parameter estimation, we think that it is very reasonable. Moreover, we offer a calcula... In this paper, based on the theory of parameter estimation, we give a selection method and, in a sense of a good character of the parameter estimation, we think that it is very reasonable. Moreover, we offer a calculation method of selection statistic and an applied example. 展开更多
关键词 parameter estimation linear regression model selection criterion mean square error
在线阅读 下载PDF
THE SUPERIORITY OF EMPIRICAL BAYES ESTIMATION OF PARAMETERS IN PARTITIONED NORMAL LINEAR MODEL 被引量:4
9
作者 张伟平 韦来生 《Acta Mathematica Scientia》 SCIE CSCD 2008年第4期955-962,共8页
In this article,the empirical Bayes(EB)estimators are constructed for the estimable functions of the parameters in partitioned normal linear model.The superiorities of the EB estimators over ordinary least-squares... In this article,the empirical Bayes(EB)estimators are constructed for the estimable functions of the parameters in partitioned normal linear model.The superiorities of the EB estimators over ordinary least-squares(LS)estimator are investigated under mean square error matrix(MSEM)criterion. 展开更多
关键词 Partitioned linear model empirical Bayes estimator least-squares estimator mean square error matrix
在线阅读 下载PDF
LOW COMPLEXITY LMMSE TURBO EQUALIZATION FOR COMBINED ERROR CONTROL CODED AND LINEARLY PRECODED OFDM
10
作者 Qu Daiming Zhu Guangxi 《Journal of Electronics(China)》 2006年第1期1-6,共6页
The turbo equalization approach is studied for Orthogonal Frequency Division Multiplexing (OFDM) system with combined error control coding and linear precoding. While previous literatures employed linear precodcr of... The turbo equalization approach is studied for Orthogonal Frequency Division Multiplexing (OFDM) system with combined error control coding and linear precoding. While previous literatures employed linear precodcr of small size for complexity reasons, this paper proposes to use a linear precoder of size larger than or equal to the maximum length of the equivalent discrete-time channel in order to achieve full frequency diversity and reduce complexities of the error control coder/decoder. Also a low complexity Linear Minimum Mean Square Error (LMMSE) turbo equalizer is derived for the receiver. Through simulation and performance analysis, it is shown that the performance of the proposed scheme over frequency selective fading channel reaches the matched filter bound; compared with the same coded OFDM without linear precoding, the proposed scheme shows an Signal-to-Noise Ratio (SNR) improvement of at least 6dB at a bit error rate of 10 6 over a multipath channel with exponential power delay profile. Convergence behavior of the proposed scheme with turbo equalization using various type of linear precoder/transformer, various interleaver size and error control coder of various constraint length is also investigated. 展开更多
关键词 Orthogonal Frequency Division Multiplexing (OFDM) linear precoding Turbo equalization linear minimum mean square error (LMMSE)
在线阅读 下载PDF
Revisiting Akaike’s Final Prediction Error and the Generalized Cross Validation Criteria in Regression from the Same Perspective: From Least Squares to Ridge Regression and Smoothing Splines
11
作者 Jean Raphael Ndzinga Mvondo Eugène-Patrice Ndong Nguéma 《Open Journal of Statistics》 2023年第5期694-716,共23页
In regression, despite being both aimed at estimating the Mean Squared Prediction Error (MSPE), Akaike’s Final Prediction Error (FPE) and the Generalized Cross Validation (GCV) selection criteria are usually derived ... In regression, despite being both aimed at estimating the Mean Squared Prediction Error (MSPE), Akaike’s Final Prediction Error (FPE) and the Generalized Cross Validation (GCV) selection criteria are usually derived from two quite different perspectives. Here, settling on the most commonly accepted definition of the MSPE as the expectation of the squared prediction error loss, we provide theoretical expressions for it, valid for any linear model (LM) fitter, be it under random or non random designs. Specializing these MSPE expressions for each of them, we are able to derive closed formulas of the MSPE for some of the most popular LM fitters: Ordinary Least Squares (OLS), with or without a full column rank design matrix;Ordinary and Generalized Ridge regression, the latter embedding smoothing splines fitting. For each of these LM fitters, we then deduce a computable estimate of the MSPE which turns out to coincide with Akaike’s FPE. Using a slight variation, we similarly get a class of MSPE estimates coinciding with the classical GCV formula for those same LM fitters. 展开更多
关键词 linear Model mean squared Prediction error Final Prediction error Generalized Cross Validation Least squares Ridge Regression
在线阅读 下载PDF
仿射频分复用系统中低复杂度消息传递检测算法研究
12
作者 宁晓燕 武泽宇 +1 位作者 尹巧灵 孙志国 《哈尔滨工程大学学报》 北大核心 2025年第3期601-608,共8页
为解决未来高速移动通信场景中传统正交频分复用技术受载波频偏影响,在时频双选择性衰落信道下性能恶化的问题,本文研究了仿射频分复用技术。在双选衰落信道下,基于仿射频分复用等效信道矩阵的稀疏性,首次提出一种消息传递检测的仿射频... 为解决未来高速移动通信场景中传统正交频分复用技术受载波频偏影响,在时频双选择性衰落信道下性能恶化的问题,本文研究了仿射频分复用技术。在双选衰落信道下,基于仿射频分复用等效信道矩阵的稀疏性,首次提出一种消息传递检测的仿射频分复用接收算法,利用迭代运算的思想对信号进行处理。为了进一步降低消息传递检测算法的复杂度,提出一种并行判决消息传递检测算法,通过改进判决迭代停止条件,减少最大迭代次数。仿真结果表明:在双选衰落信道下,本文提出的消息传递检测算法具有优于迫零检测和最小均方误差检测的误码率性能。改进后的并行判决消息传递检测算法在降低复杂度的同时,仍能保证优于最小均方误差检测的误码率性能。 展开更多
关键词 仿射频分复用 时频双选择性衰落信道 稀疏信道矩阵 迫零检测 最小均方误差检测 消息传递检测 平均迭代次数 误码率
在线阅读 下载PDF
极端次序统计量在均匀分布统计推断中的应用
13
作者 姜培华 刘文震 张小敏 《高师理科学刊》 2025年第6期100-107,共8页
参数估计是概率统计中的一个重要内容,也是研究生入学考试高等数学科目中的一个重要考点。受2024年研究生入学考试高等数学试卷中一道考题的启发,对此题进行拓展和深化,系统研究了均匀分布总体下基于极端次序统计量如何来构造参数的点估... 参数估计是概率统计中的一个重要内容,也是研究生入学考试高等数学科目中的一个重要考点。受2024年研究生入学考试高等数学试卷中一道考题的启发,对此题进行拓展和深化,系统研究了均匀分布总体下基于极端次序统计量如何来构造参数的点估计,并讨论了不同估计量的有效性以及在均方误差意义下的最优估计问题。所用的处理方法和技巧,对于培养学生的发散思维,提高学生的创新能力是非常有益的。 展开更多
关键词 最大次序统计量 最小次序统计量 点估计 有效性 均方误差.
在线阅读 下载PDF
一种低复杂度的OTFS系统信号检测算法
14
作者 陈发堂 陈甲杰 +1 位作者 夏麒煜 黄梁 《电讯技术》 北大核心 2025年第2期205-213,共9页
针对正交时频空(Orthogonal Time Frequency Space, OTFS)调制系统中均衡器性能不佳及线性滤波器复杂度较高等问题,提出了一种LU(Lower-Upper)分解与迭代最小均方误差(Iterative Minimum Mean Square Error, IMMSE)均衡器结合的OTFS系... 针对正交时频空(Orthogonal Time Frequency Space, OTFS)调制系统中均衡器性能不佳及线性滤波器复杂度较高等问题,提出了一种LU(Lower-Upper)分解与迭代最小均方误差(Iterative Minimum Mean Square Error, IMMSE)均衡器结合的OTFS系统信号检测算法(LU-IMMSE)。该算法依据时延多普勒域稀疏信道矩阵的特征,采用一种低复杂度的LU分解方法,以避免MMSE均衡器求解矩阵逆的过程,在保证均衡器性能的前提下降低了均衡器复杂度。在OTFS系统中引入一种IMMSE均衡器,通过不断迭代更新发送符号均值和方差这些先验信息来逼近MMSE均衡器最优估计值。LU-IMMSE算法通过调节迭代次数可以有效降低误比特率。在比特信噪比为8 dB时,5次迭代后的LU-IMMSE均衡器误比特率相比传统的MMSE均衡器降低了约11 dB。随着迭代次数的增大,较传统IMMSE算法降低了计算复杂度。在最大时延系数为4、符号数为16的情况下,与直接求逆相比,所提出的低复杂度LU分解方法降低了约91.72%的矩阵求逆计算复杂度。 展开更多
关键词 正交时频空(OTFS) 信号检测 最小均方误差均衡 三角分解
在线阅读 下载PDF
A New Class of Biased Linear Estimators in Deficient-rank Linear Models 被引量:1
15
作者 归庆明 段清堂 +1 位作者 周巧云 郭建锋 《Chinese Quarterly Journal of Mathematics》 CSCD 2001年第1期71-78,共8页
In this paper, we define a new class of biased linear estimators of the vector of unknown parameters in the deficient_rank linear model based on the spectral decomposition expression of the best linear minimun bias es... In this paper, we define a new class of biased linear estimators of the vector of unknown parameters in the deficient_rank linear model based on the spectral decomposition expression of the best linear minimun bias estimator. Some important properties are discussed. By appropriate choices of bias parameters, we construct many interested and useful biased linear estimators, which are the extension of ordinary biased linear estimators in the full_rank linear model to the deficient_rank linear model. At last, we give a numerical example in geodetic adjustment. 展开更多
关键词 deficient_rank model best linear minimum bias estimator generalized principal components estimator mean squared error condition number
在线阅读 下载PDF
基于Fisher线性判别率的加权K-means聚类算法 被引量:5
16
作者 杨鹤标 薛艳锋 +2 位作者 冯进兰 沈项军 吴静丽 《计算机应用研究》 CSCD 北大核心 2010年第12期4439-4442,共4页
为提高K-means聚类效果,采用Fisher线性判别率的方法确定特征在聚类中的贡献度并依此对特征进行加权聚类。在人工和实际数据集上所做的实验表明,本方法在聚类效果上优于其他同类加权K-means聚类算法。
关键词 K-均值 聚类 Fisher线性判别率 特征加权 调整随机指标 类内错误率均方和
在线阅读 下载PDF
基于空域维纳滤波的多天线无线通信抗干扰技术
17
作者 常海锐 刘寅生 +1 位作者 武思军 王雷 《现代防御技术》 北大核心 2025年第3期120-128,共9页
在现代高科技战争中,电子攻击武器几乎已经覆盖所有军用通信频段,形成了电子进攻“软”“硬”杀伤态势。无线通信作为现代战争主要的通信手段,抗干扰能力制约武器系统作战效能的发挥。多接收天线可以提供除传统时域和频域之外的空域自由... 在现代高科技战争中,电子攻击武器几乎已经覆盖所有军用通信频段,形成了电子进攻“软”“硬”杀伤态势。无线通信作为现代战争主要的通信手段,抗干扰能力制约武器系统作战效能的发挥。多接收天线可以提供除传统时域和频域之外的空域自由度,充分挖掘和利用空域自由度,可以有效对抗有意干扰对通信链路的干扰。研究基于空域维纳滤波理论的多天线抗干扰技术在无线通信干扰对抗场景下的应用和仿真,分析了大信噪比条件下空域抗干扰技术的几何模型,并结合几何模型深入分析了空域抗干扰技术机制和局限性。计算机仿真结果表明,所提出的基于空域维纳滤波理论的空域抗干扰技术有效提升了对抗恶意干扰对通信链路的干扰。 展开更多
关键词 无线抗干扰 多天线 空域 维纳滤波 最小均方误差准则
在线阅读 下载PDF
高速移动环境下OTSMB-LMMSE-PIC迭代检测方法
18
作者 李国军 郑翔 王杰 《通信学报》 北大核心 2025年第1期13-22,共10页
为提升正交时序复用(OTSM)在高速移动环境下传输的可靠性,提出了一种基于并行干扰消除的分块线性最小均方误差(B-LMMSE-PIC)迭代检测方法。该方法在时域分块进行MMSE-PIC符号估计,并且使用诺伊曼(Neumann)级数逼近涉及的矩阵反演,将计... 为提升正交时序复用(OTSM)在高速移动环境下传输的可靠性,提出了一种基于并行干扰消除的分块线性最小均方误差(B-LMMSE-PIC)迭代检测方法。该方法在时域分块进行MMSE-PIC符号估计,并且使用诺伊曼(Neumann)级数逼近涉及的矩阵反演,将计算复杂度降为线性阶;随后在时延-序列域计算估计符号的均值与方差作为下一次迭代的先验信息。仿真结果表明,在移动速度为540km/h的场景下使用16QAM调制且误码率为10-4时,所提方法与目前广泛使用的基于最大比合并(MRC)的迭代rake检测方法相比有2.48dB的性能增益。 展开更多
关键词 正交时序复用 线性最小均方误差 并行干扰消除 诺伊曼级数
在线阅读 下载PDF
异型滑块导轨间垂直度误差测算方法研究
19
作者 赵未来 祝锡晶 +3 位作者 卢圣力 郭晋竹 孔华野 刘瑶 《制造技术与机床》 北大核心 2025年第8期156-162,共7页
针对传统自准直仪测量导轨滑块副垂直度误差时,因测量对象不同导致结果不一致的问题,提出了一种通用的垂直度误差计算方法。首先,分开考虑两导轨滑块副,并根据自准直仪测量原理、结合最小包容区域包络模型,对导轨直线度误差进行测量与... 针对传统自准直仪测量导轨滑块副垂直度误差时,因测量对象不同导致结果不一致的问题,提出了一种通用的垂直度误差计算方法。首先,分开考虑两导轨滑块副,并根据自准直仪测量原理、结合最小包容区域包络模型,对导轨直线度误差进行测量与分析。其次,在Matlab中编写数据处理程序,完成误差计算。最后,在某公司生产的某小型数控铣床上进行试验验证。结果表明测量值均在机床精度检验的允差范围内,证明了该计算方法的有效性,为导轨间的垂直度误差的测算提供一种更为通用的计算方法。 展开更多
关键词 垂直度误差 最小包容区域法 自准直仪 角差法 直线导轨副
在线阅读 下载PDF
基于Critic权重法与反熵权法组合的风电功率概率预报
20
作者 屈伯阳 李宏伟 付立思 《南方电网技术》 北大核心 2025年第8期31-43,71,共14页
为了提升风电功率概率区间预报性能,提出了一种基于Critic权重法与反熵权法(anti-entropy weight method)的变带宽混合滑动Gaussian核密度估计(variable bandwidth hybrid sliding Gaussian kernel density estimation,VHSKDE(Gaussian)... 为了提升风电功率概率区间预报性能,提出了一种基于Critic权重法与反熵权法(anti-entropy weight method)的变带宽混合滑动Gaussian核密度估计(variable bandwidth hybrid sliding Gaussian kernel density estimation,VHSKDE(Gaussian))与正态滑动指数迭代估计(normal sliding exponential iteration,NSEI)组合的风电功率区间概率预报方法。该组合方法简称为VHSKDE(Gaussian)-NSEI。首先,通过基于变分模态分解与长短期记忆神经网络(variational mode decomposition-long short-term memory,VMD-LSTM)点预报得到偏差。然后,分别利用VHSKDE(Gaussian)和NSEI估计预报偏差的概率分布,得出对应的置信概率下的预报区间。最后,利用4种客观权重赋值法分别对VHSKDE(Gauss⁃ian)环节及VHSKDE(Gaussian)-NSEI组合环节进行两次加权组合生成最终的风电功率预报区间。研究结果表明,VHSKDE(Gaussian)-NSEI预报模型在不同置信度情况下能够兼顾PICP与PIAW的优良性能,与NSEI和VHSKDE(Gaussian)相比具有更高的可靠性和准确性,为风电功率概率预报提供了重要参考。 展开更多
关键词 风电功率 概率预报 CRITIC 反熵权法 均方积分偏差 核密度估计
在线阅读 下载PDF
上一页 1 2 63 下一页 到第
使用帮助 返回顶部