期刊文献+
共找到1,247篇文章
< 1 2 63 >
每页显示 20 50 100
Low Complexity Minimum Mean Square Error Channel Estimation for Adaptive Coding and Modulation Systems 被引量:2
1
作者 GUO Shuxia SONG Yang +1 位作者 GAO Ying HAN Qianjin 《China Communications》 SCIE CSCD 2014年第1期126-137,共12页
Performance of the Adaptive Coding and Modulation(ACM) strongly depends on the retrieved Channel State Information(CSI),which can be obtained using the channel estimation techniques relying on pilot symbol transmissio... Performance of the Adaptive Coding and Modulation(ACM) strongly depends on the retrieved Channel State Information(CSI),which can be obtained using the channel estimation techniques relying on pilot symbol transmission.Earlier analysis of methods of pilot-aided channel estimation for ACM systems were relatively little.In this paper,we investigate the performance of CSI prediction using the Minimum Mean Square Error(MMSE)channel estimator for an ACM system.To solve the two problems of MMSE:high computational operations and oversimplified assumption,we then propose the Low-Complexity schemes(LC-MMSE and Recursion LC-MMSE(R-LC-MMSE)).Computational complexity and Mean Square Error(MSE) are presented to evaluate the efficiency of the proposed algorithm.Both analysis and numerical results show that LC-MMSE performs close to the wellknown MMSE estimator with much lower complexity and R-LC-MMSE improves the application of MMSE estimation to specific circumstances. 展开更多
关键词 adaptive coding and modulation channel estimation minimum mean square error low-complexity minimum mean square error
在线阅读 下载PDF
Recursive weighted least squares estimation algorithm based on minimum model error principle 被引量:2
2
作者 雷晓云 张志安 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2021年第2期545-558,共14页
Kalman filter is commonly used in data filtering and parameters estimation of nonlinear system,such as projectile's trajectory estimation and control.While there is a drawback that the prior error covariance matri... Kalman filter is commonly used in data filtering and parameters estimation of nonlinear system,such as projectile's trajectory estimation and control.While there is a drawback that the prior error covariance matrix and filter parameters are difficult to be determined,which may result in filtering divergence.As to the problem that the accuracy of state estimation for nonlinear ballistic model strongly depends on its mathematical model,we improve the weighted least squares method(WLSM)with minimum model error principle.Invariant embedding method is adopted to solve the cost function including the model error.With the knowledge of measurement data and measurement error covariance matrix,we use gradient descent algorithm to determine the weighting matrix of model error.The uncertainty and linearization error of model are recursively estimated by the proposed method,thus achieving an online filtering estimation of the observations.Simulation results indicate that the proposed recursive estimation algorithm is insensitive to initial conditions and of good robustness. 展开更多
关键词 minimum model error Weighted least squares method State estimation Invariant embedding method Nonlinear recursive estimate
在线阅读 下载PDF
Calculation of Significant Wave Height Using the Linear Mean Square Estimation Method 被引量:2
3
作者 GAO Yangyang YU Dingyong +1 位作者 LI Cuilin XU Delun 《Journal of Ocean University of China》 SCIE CAS 2010年第4期327-332,共6页
Significant wave height is an important criterion in designing coastal and offshore structures.Based on the orthogonality principle, the linear mean square estimation method is applied to calculate significant wave he... Significant wave height is an important criterion in designing coastal and offshore structures.Based on the orthogonality principle, the linear mean square estimation method is applied to calculate significant wave height in this paper.Twenty-eight-year time series of wave data collected from three ocean buoys near San Francisco along the California coast are analyzed.It is proved theoretically that the computation error will be reduced by using as many measured data as possible for the calculation of significant wave height.Measured significant wave height at one buoy location is compared with the calculated value based on the data from two other adjacent buoys.The results indicate that the linear mean square estimation method can be well applied to the calculation and prediction of significant wave height in coastal regions. 展开更多
关键词 significant wave height linear mean square estimation method orthogonality principle
在线阅读 下载PDF
Application of Linear Mean-Square Estimation in Ocean Engineering 被引量:5
4
作者 王莉萍 陈柏宇 +2 位作者 陈超 陈正寿 刘桂林 《China Ocean Engineering》 SCIE EI CSCD 2016年第1期149-160,共12页
The attempt to obtain long-term observed data around some sea areas we concern is usually very hard or even impossible in practical offshore and ocean engineering situations. In this paper, by means of linear mean-squ... The attempt to obtain long-term observed data around some sea areas we concern is usually very hard or even impossible in practical offshore and ocean engineering situations. In this paper, by means of linear mean-square estimation method, a new way to extend short-term data to long-term ones is developed. The long-term data about concerning sea areas can be constructed via a series of long-term data obtained from neighbor oceanographic stations, through relevance analysis of different data series. It is effective to cover the insufficiency of time series prediction method's overdependence upon the length of data series, as well as the limitation of variable numbers adopted in multiple linear regression model. The storm surge data collected from three oceanographic stations located in Shandong Peninsula are taken as examples to analyze the number-selection effect of reference oceanographic stations(adjacent to the concerning sea area) and the correlation coefficients between sea sites which are selected for reference and for engineering projects construction respectively. By comparing the N-year return-period values which are calculated from observed raw data and processed data which are extended from finite data series by means of the linear mean-square estimation method, one can draw a conclusion that this method can give considerably good estimation in practical ocean engineering, in spite of different extreme value distributions about raw and processed data. 展开更多
关键词 ocean engineering linear mean-square estimation N-year return-period storm surge
在线阅读 下载PDF
Efficient Mean Estimation in Log-normal Linear Models with First-order Correlated Errors
5
作者 Zhang Song Wang De-hui 《Communications in Mathematical Research》 CSCD 2013年第3期271-279,共9页
In this paper, we propose a log-normal linear model whose errors are first-order correlated, and suggest a two-stage method for the efficient estimation of the conditional mean of the response variable at the original... In this paper, we propose a log-normal linear model whose errors are first-order correlated, and suggest a two-stage method for the efficient estimation of the conditional mean of the response variable at the original scale. We obtain two estimators which minimize the asymptotic mean squared error (MM) and the asymptotic bias (MB), respectively. Both the estimators are very easy to implement, and simulation studies show that they are perform better. 展开更多
关键词 log-normal first-order correlated maximum likelihood two-stage estimation mean squared error
在线阅读 下载PDF
Adaptive Linear Filtering Design with Minimum Symbol Error Probability Criterion 被引量:2
6
作者 Sheng Chen 《International Journal of Automation and computing》 EI 2006年第3期291-303,共13页
Adaptive digital filtering has traditionally been developed based on the minimum mean square error (MMSE) criterion and has found ever-increasing applications in communications. This paper presents an alternative ad... Adaptive digital filtering has traditionally been developed based on the minimum mean square error (MMSE) criterion and has found ever-increasing applications in communications. This paper presents an alternative adaptive filtering design based on the minimum symbol error rate (MSER) criterion for communication applications. It is shown that the MSER filtering is smarter, as it exploits the non-Gaussian distribution of filter output effectively. Consequently, it provides significant performance gain in terms of smaller symbol error over the MMSE approach. Adopting Parzen window or kernel density estimation for a probability density function, a block-data gradient adaptive MSER algorithm is derived. A stochastic gradient adaptive MSER algorithm, referred to as the least symbol error rate, is further developed for sample-by-sample adaptive implementation of the MSER filtering. Two applications, involving single-user channel equalization and beamforming assisted receiver, are included to demonstrate the effectiveness and generality of the proposed adaptive MSER filtering approach. 展开更多
关键词 Adaptive filtering mean square error probability density function non-Gaussian distribution Parzen window estimate symbol error rate stochastic gradient algorithm.
在线阅读 下载PDF
Mean Square Error Comparisons of Estimatorsin Two SUR Models
7
作者 LIU Jin-shan GUI Qing-ming 《Chinese Quarterly Journal of Mathematics》 CSCD 2000年第3期63-71,共9页
For a system of two seerningly umrelated regressions.some general results of mean square er-ror matrix comparisons are presented.A class of linear estimators and a class of two-stage estimatorsbased on a generalized u... For a system of two seerningly umrelated regressions.some general results of mean square er-ror matrix comparisons are presented.A class of linear estimators and a class of two-stage estimatorsbased on a generalized unrestricted estimate of the dispersion matrix are proposed.Some exact finitesample properties of the two-stage estimators are obtained. 展开更多
关键词 seemingly unrelated regressions two-stage estimator mean square error matrix
在线阅读 下载PDF
Selection of the Linear Regression Model According to the Parameter Estimation 被引量:35
8
作者 Sun Dao-de Department of Computer, Fuyang Teachers College, Anhui 236032,China 《Wuhan University Journal of Natural Sciences》 EI CAS 2000年第4期400-405,共6页
In this paper, based on the theory of parameter estimation, we give a selection method and, in a sense of a good character of the parameter estimation, we think that it is very reasonable. Moreover, we offer a calcula... In this paper, based on the theory of parameter estimation, we give a selection method and, in a sense of a good character of the parameter estimation, we think that it is very reasonable. Moreover, we offer a calculation method of selection statistic and an applied example. 展开更多
关键词 parameter estimation linear regression model selection criterion mean square error
在线阅读 下载PDF
THE SUPERIORITY OF EMPIRICAL BAYES ESTIMATION OF PARAMETERS IN PARTITIONED NORMAL LINEAR MODEL 被引量:4
9
作者 张伟平 韦来生 《Acta Mathematica Scientia》 SCIE CSCD 2008年第4期955-962,共8页
In this article,the empirical Bayes(EB)estimators are constructed for the estimable functions of the parameters in partitioned normal linear model.The superiorities of the EB estimators over ordinary least-squares... In this article,the empirical Bayes(EB)estimators are constructed for the estimable functions of the parameters in partitioned normal linear model.The superiorities of the EB estimators over ordinary least-squares(LS)estimator are investigated under mean square error matrix(MSEM)criterion. 展开更多
关键词 Partitioned linear model empirical Bayes estimator least-squares estimator mean square error matrix
在线阅读 下载PDF
LOW COMPLEXITY LMMSE TURBO EQUALIZATION FOR COMBINED ERROR CONTROL CODED AND LINEARLY PRECODED OFDM
10
作者 Qu Daiming Zhu Guangxi 《Journal of Electronics(China)》 2006年第1期1-6,共6页
The turbo equalization approach is studied for Orthogonal Frequency Division Multiplexing (OFDM) system with combined error control coding and linear precoding. While previous literatures employed linear precodcr of... The turbo equalization approach is studied for Orthogonal Frequency Division Multiplexing (OFDM) system with combined error control coding and linear precoding. While previous literatures employed linear precodcr of small size for complexity reasons, this paper proposes to use a linear precoder of size larger than or equal to the maximum length of the equivalent discrete-time channel in order to achieve full frequency diversity and reduce complexities of the error control coder/decoder. Also a low complexity Linear Minimum Mean Square Error (LMMSE) turbo equalizer is derived for the receiver. Through simulation and performance analysis, it is shown that the performance of the proposed scheme over frequency selective fading channel reaches the matched filter bound; compared with the same coded OFDM without linear precoding, the proposed scheme shows an Signal-to-Noise Ratio (SNR) improvement of at least 6dB at a bit error rate of 10 6 over a multipath channel with exponential power delay profile. Convergence behavior of the proposed scheme with turbo equalization using various type of linear precoder/transformer, various interleaver size and error control coder of various constraint length is also investigated. 展开更多
关键词 Orthogonal Frequency Division Multiplexing (OFDM) linear precoding Turbo equalization linear minimum mean square error (LMMSE)
在线阅读 下载PDF
Revisiting Akaike’s Final Prediction Error and the Generalized Cross Validation Criteria in Regression from the Same Perspective: From Least Squares to Ridge Regression and Smoothing Splines
11
作者 Jean Raphael Ndzinga Mvondo Eugène-Patrice Ndong Nguéma 《Open Journal of Statistics》 2023年第5期694-716,共23页
In regression, despite being both aimed at estimating the Mean Squared Prediction Error (MSPE), Akaike’s Final Prediction Error (FPE) and the Generalized Cross Validation (GCV) selection criteria are usually derived ... In regression, despite being both aimed at estimating the Mean Squared Prediction Error (MSPE), Akaike’s Final Prediction Error (FPE) and the Generalized Cross Validation (GCV) selection criteria are usually derived from two quite different perspectives. Here, settling on the most commonly accepted definition of the MSPE as the expectation of the squared prediction error loss, we provide theoretical expressions for it, valid for any linear model (LM) fitter, be it under random or non random designs. Specializing these MSPE expressions for each of them, we are able to derive closed formulas of the MSPE for some of the most popular LM fitters: Ordinary Least Squares (OLS), with or without a full column rank design matrix;Ordinary and Generalized Ridge regression, the latter embedding smoothing splines fitting. For each of these LM fitters, we then deduce a computable estimate of the MSPE which turns out to coincide with Akaike’s FPE. Using a slight variation, we similarly get a class of MSPE estimates coinciding with the classical GCV formula for those same LM fitters. 展开更多
关键词 linear Model mean squared Prediction error Final Prediction error Generalized Cross Validation Least squares Ridge Regression
在线阅读 下载PDF
A New Class of Biased Linear Estimators in Deficient-rank Linear Models 被引量:1
12
作者 归庆明 段清堂 +1 位作者 周巧云 郭建锋 《Chinese Quarterly Journal of Mathematics》 CSCD 2001年第1期71-78,共8页
In this paper, we define a new class of biased linear estimators of the vector of unknown parameters in the deficient_rank linear model based on the spectral decomposition expression of the best linear minimun bias es... In this paper, we define a new class of biased linear estimators of the vector of unknown parameters in the deficient_rank linear model based on the spectral decomposition expression of the best linear minimun bias estimator. Some important properties are discussed. By appropriate choices of bias parameters, we construct many interested and useful biased linear estimators, which are the extension of ordinary biased linear estimators in the full_rank linear model to the deficient_rank linear model. At last, we give a numerical example in geodetic adjustment. 展开更多
关键词 deficient_rank model best linear minimum bias estimator generalized principal components estimator mean squared error condition number
在线阅读 下载PDF
基于Fisher线性判别率的加权K-means聚类算法 被引量:5
13
作者 杨鹤标 薛艳锋 +2 位作者 冯进兰 沈项军 吴静丽 《计算机应用研究》 CSCD 北大核心 2010年第12期4439-4442,共4页
为提高K-means聚类效果,采用Fisher线性判别率的方法确定特征在聚类中的贡献度并依此对特征进行加权聚类。在人工和实际数据集上所做的实验表明,本方法在聚类效果上优于其他同类加权K-means聚类算法。
关键词 K-均值 聚类 Fisher线性判别率 特征加权 调整随机指标 类内错误率均方和
在线阅读 下载PDF
Adaptive compensating method for Doppler frequency shift using LMS and phase estimation 被引量:7
14
作者 Jing Qingfeng Guo Qing 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2009年第5期913-919,共7页
The novel compensating method directly demodulates the signals without the carrier recovery processes, in which the carrier with original modulation frequency is used as the local coherent carrier. In this way, the ph... The novel compensating method directly demodulates the signals without the carrier recovery processes, in which the carrier with original modulation frequency is used as the local coherent carrier. In this way, the phase offsets due to frequency shift are linear. Based on this premise, the compensation processes are: firstly, the phase offsets between the baseband neighbor-symbols after clock recovery is unbiasedly estimated among the reference symbols; then, the receiving signals symbols are adjusted by the phase estimation value; finally, the phase offsets after adjusting are compensated by the least mean squares (LMS) algorithm. In order to express the compensation processes and ability clearly, the quadrature phase shift keying (QPSK) modulation signals are regarded as examples for Matlab simulation. BER simulations are carried out using the Monte-Carlo method. The learning curves are obtained to study the algorithm's convergence ability. The constellation figures are also simulated to observe the compensation results directly. 展开更多
关键词 Doppler frequency shift least mean square minimum phase shift keying unbiased estimation Matlab simulation.
在线阅读 下载PDF
Using self-location to calibrate the errors of observer positions for source localization 被引量:2
15
作者 Wanchun Li Wanyi Zhang Liping Li 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2014年第2期194-202,共9页
The uncertainty of observers' positions can lead to significantly degrading in source localization accuracy. This pa-per proposes a method of using self-location for calibrating the positions of observer stations in ... The uncertainty of observers' positions can lead to significantly degrading in source localization accuracy. This pa-per proposes a method of using self-location for calibrating the positions of observer stations in source localization to reduce the errors of the observer positions and improve the accuracy of the source localization. The relative distance measurements of the two coordinative observers are used for the linear minimum mean square error (LMMSE) estimator. The results of computer si-mulations prove the feasibility and effectiveness of the proposed method. With the general estimation errors of observers' positions, the MSE of the source localization with self-location calibration, which is significantly lower than that without self-location calibra-tion, is approximating to the Cramer-Rao lower bound (CRLB). 展开更多
关键词 self-location errors of the observer positions linearminimum mean square error (LMMSE) estimator accuracy of thesource localization Cramer-Rao lower bound (CRLB).
在线阅读 下载PDF
Convolutional Neural Network Auto Encoder Channel Estimation Algorithm in MIMO-OFDM System 被引量:2
16
作者 I.Kalphana T.Kesavamurthy 《Computer Systems Science & Engineering》 SCIE EI 2022年第4期171-185,共15页
Higher transmission rate is one of the technological features of promi-nently used wireless communication namely Multiple Input Multiple Output-Orthogonal Frequency Division Multiplexing(MIMO–OFDM).One among an effec... Higher transmission rate is one of the technological features of promi-nently used wireless communication namely Multiple Input Multiple Output-Orthogonal Frequency Division Multiplexing(MIMO–OFDM).One among an effective solution for channel estimation in wireless communication system,spe-cifically in different environments is Deep Learning(DL)method.This research greatly utilizes channel estimator on the basis of Convolutional Neural Network Auto Encoder(CNNAE)classifier for MIMO-OFDM systems.A CNNAE classi-fier is one among Deep Learning(DL)algorithm,in which video signal is fed as input by allotting significant learnable weights and biases in various aspects/objects for video signal and capable of differentiating from one another.Improved performances are achieved by using CNNAE based channel estimation,in which extension is done for channel selection as well as achieve enhanced performances numerically,when compared with conventional estimators in quite a lot of scenar-ios.Considering reduction in number of parameters involved and re-usability of weights,CNNAE based channel estimation is quite suitable and properlyfits to the video signal.CNNAE classifier weights updation are done with minimized Sig-nal to Noise Ratio(SNR),Bit Error Rate(BER)and Mean Square Error(MSE). 展开更多
关键词 Deep learning channel estimation multiple input multiple output least square linear minimum mean square error and orthogonal frequency division multiplexing
在线阅读 下载PDF
Estimation of the Stress-Strength Reliability for Exponentiated Pareto Distribution Using Median and Ranked Set Sampling Methods 被引量:2
17
作者 Amer Ibrahim Al-Omari Ibrahim M.Almanjahie +1 位作者 Amal S.Hassan Heba F.Nagy 《Computers, Materials & Continua》 SCIE EI 2020年第8期835-857,共23页
In reliability analysis,the stress-strength model is often used to describe the life of a component which has a random strength(X)and is subjected to a random stress(Y).In this paper,we considered the problem of estim... In reliability analysis,the stress-strength model is often used to describe the life of a component which has a random strength(X)and is subjected to a random stress(Y).In this paper,we considered the problem of estimating the reliability𝑅𝑅=P[Y<X]when the distributions of both stress and strength are independent and follow exponentiated Pareto distribution.The maximum likelihood estimator of the stress strength reliability is calculated under simple random sample,ranked set sampling and median ranked set sampling methods.Four different reliability estimators under median ranked set sampling are derived.Two estimators are obtained when both strength and stress have an odd or an even set size.The two other estimators are obtained when the strength has an odd size and the stress has an even set size and vice versa.The performances of the suggested estimators are compared with their competitors under simple random sample via a simulation study.The simulation study revealed that the stress strength reliability estimates based on ranked set sampling and median ranked set sampling are more efficient than their competitors via simple random sample.In general,the stress strength reliability estimates based on median ranked set sampling are smaller than the corresponding estimates under ranked set sampling and simple random sample methods.Keywords:Stress-Strength model,ranked set sampling,median ranked set sampling,maximum likelihood estimation,mean square error.corresponding estimates under ranked set sampling and simple random sample methods. 展开更多
关键词 Stress-Strength model ranked set sampling median ranked set sampling maximum likelihood estimation mean square error
在线阅读 下载PDF
Optimal Generalized Biased Estimator in Linear Regression Model 被引量:2
18
作者 Sivarajah Arumairajan Pushpakanthie Wijekoon 《Open Journal of Statistics》 2015年第5期403-411,共9页
The paper introduces a new biased estimator namely Generalized Optimal Estimator (GOE) in a multiple linear regression when there exists multicollinearity among predictor variables. Stochastic properties of proposed e... The paper introduces a new biased estimator namely Generalized Optimal Estimator (GOE) in a multiple linear regression when there exists multicollinearity among predictor variables. Stochastic properties of proposed estimator were derived, and the proposed estimator was compared with other existing biased estimators based on sample information in the the Scalar Mean Square Error (SMSE) criterion by using a Monte Carlo simulation study and two numerical illustrations. 展开更多
关键词 MULTICOLlinearITY Biased ESTIMATOR GENERALIZED OPTIMAL ESTIMATOR SCALAR mean square error
在线阅读 下载PDF
Application of Unscented Transformation for Nonlinear State Smoothing 被引量:6
19
作者 WANG Xiao-Xu PAN Quan +1 位作者 LIANG Yan ZHAO Chun-Hui 《自动化学报》 EI CSCD 北大核心 2012年第7期1107-1112,共6页
关键词 非线性状态 最优平滑 UT变换 应用 最小均方误差 KALMAN 离散系统 状态估计
在线阅读 下载PDF
Mobile channel estimation for MU-MIMO systems using KL expansion based extrapolation 被引量:1
20
作者 Donghua Chen Hongbing Qiu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2012年第3期349-354,共6页
In multi-user multiple input multiple output (MU-MIMO) systems, the outdated channel state information at the transmit- ter caused by channel time variation has been shown to greatly reduce the achievable ergodic su... In multi-user multiple input multiple output (MU-MIMO) systems, the outdated channel state information at the transmit- ter caused by channel time variation has been shown to greatly reduce the achievable ergodic sum capacity. A simple yet effec- tive solution to this problem is presented by designing a channel extrapolator relying on Karhunen-Loeve (KL) expansion of time- varying channels. In this scheme, channel estimation is done at the base station (BS) rather than at the user terminal (UT), which thereby dispenses the channel parameters feedback from the UT to the BS. Moreover, the inherent channel correlation and the parsimonious parameterization properties of the KL expan- sion are respectively exploited to reduce the channel mismatch error and the computational complexity. Simulations show that the presented scheme outperforms conventional schemes in terms of both channel estimation mean square error (MSE) and ergodic capacity. 展开更多
关键词 channel estimation multiple input multiple output (MIMO) Karhunen-Loeve (KL) expansion minimum mean square error (MMSE).
在线阅读 下载PDF
上一页 1 2 63 下一页 到第
使用帮助 返回顶部