The linear instabilities of incompressible confluent mixing layer and boundary layer were analyzed.The mixing layers include wake,shear layer and their combination.The mean velocity profile of confluent flow is taken ...The linear instabilities of incompressible confluent mixing layer and boundary layer were analyzed.The mixing layers include wake,shear layer and their combination.The mean velocity profile of confluent flow is taken as a superposition of a hyperbolic and exponential function to model a mixing layer and the Blasius similarity solution for a flat plate boundary layer.The stability equation of confluent flow was solved by using the global numerical method.The unstable modes associated with both the mixing and boundary layers were identified.They are the boundary layer mode,mixing layer mode 1(nearly symmetrical mode)and mode 2(nearly anti-symmetrical mode).The interactions between the mixing layer stability and the boundary layer stability were examined.As the mixing layer approaches the boundary layer,the neutral curves of the boundary layer mode move to the upper left,the resulting critical Reynolds number decreases,and the growth rate of the most unstable mode increases.The wall tends to stabilize the mixing layer modes at low frequency.In addition,the mode switching behavior of the relative level of the spatial growth rate between the mixing layer mode 1 and mode 2 with the velocity ratio is found to occur at low frequency.展开更多
We perform a Poiseuille flow in a channel linear stability analysis of a inserted with one porous layer in the centre, and focus mainly on the effect of porous filling ratio. The spectral collocation technique is adop...We perform a Poiseuille flow in a channel linear stability analysis of a inserted with one porous layer in the centre, and focus mainly on the effect of porous filling ratio. The spectral collocation technique is adopted to solve the coupled linear stability problem. We investigate the effect of permeability, σ, with fixed porous filling ratio ψ = 1/3 and then the effect of change in porous filling ratio. As shown in the paper, with increasing σ, almost each eigenvalue on the upper left branch has two subbranches at ψ = 1/3. The channel flow with one porous layer inserted at its middle (ψ = 1/3) is more stable than the structure of two porous layers at upper and bottom walls with the same parameters. By decreasing the filling ratio ψ, the modes on the upper left branch are almost in pairs and move in opposite directions, especially one of the two unstable modes moves back to a stable mode, while the other becomes more instable. It is concluded that there are at most two unstable modes with decreasing filling ratio ψ. By analyzing the relation between ψ and the maximum imaginary part of the streamwise phase speed, Cimax, we find that increasing Re has a destabilizing effect and the effect is more obvious for small Re, where ψ a remarkable drop in Cimax can be observed. The most unstable mode is more sensitive at small filling ratio ψ, and decreasing ψ can not always increase the linear stability. There is a maximum value of Cimax which appears at a small porous filling ratio when Re is larger than 2 000. And the value of filling ratio 0 corresponding to the maximum value of Cimax in the most unstable state is increased with in- creasing Re. There is a critical value of porous filling ratio (= 0.24) for Re = 500; the structure will become stable as ψ grows to surpass the threshold of 0.24; When porous filling ratio ψ increases from 0.4 to 0.6, there is hardly any changes in the values of Cimax. We have also observed that the critical Reynolds number is especially sensitive for small ψ where the fastest drop is observed, and there may be a wide range in which the porous filling ratio has less effect on the stability (ψ ranges from 0.2 to 0.6 at σ = 0.002). At larger permeability, σ, the critical Reynolds number tends to converge no matter what the value of porous filling ratio is.展开更多
This paper proposes a method of simultaneous determination of the four layer parameters (mass density, longitudinal velocity, the thickness and attenuation) of an immersed linear-viscoelastic thin layer by using the...This paper proposes a method of simultaneous determination of the four layer parameters (mass density, longitudinal velocity, the thickness and attenuation) of an immersed linear-viscoelastic thin layer by using the normally-incident reflected and transmitted ultrasonic waves. The analytical formula of the layer thickness related to the measured trans- mitted transfer functions is derived. The two determination steps of the four layer parameters are developed, in which acoustic impedance, time-of-flight and attenuation are first determined by the reflected transfer functions. Using the derived formula, it successively calculates and determines the layer thickness, longitudinal velocity and mass density by the measured transmitted transfer functions. According to the two determination steps, a more feasible and simplified measurement setups is described. It is found that only three signals (the reference waves, the reflected and transmitted waves) need to be recorded in the whole measurement for the determination of the four layer parameters. A study of the stability of the determination method against the experimental noises and the error analysis of the four layer parameters are made. This study lays the theoretical foundation of the practical measurement of a linear-viscoelastic thin layer.展开更多
Multiple linear regression (MLR) method was applied to quantify the effects of the net heat flux (NHF), the net freshwater flux (NFF) and the wind stress on the mixed layer depth (MLD) of the South China Sea ...Multiple linear regression (MLR) method was applied to quantify the effects of the net heat flux (NHF), the net freshwater flux (NFF) and the wind stress on the mixed layer depth (MLD) of the South China Sea (SCS) based on the simple ocean data assimilation (SODA) dataset. The spatio-temporal distributions of the MLD, the buoyancy flux (combining the NHF and the NFF) and the wind stress of the SCS were presented. Then using an oceanic vertical mixing model, the MLD after a certain time under the same initial conditions but various pairs of boundary conditions (the three factors) was simulated. Applying the MLR method to the results, regression equations which modeling the relationship between the simulated MLD and the three factors were calculated. The equations indicate that when the NHF was negative, it was the primary driver of the mixed layer deepening; and when the NHF was positive, the wind stress played a more important role than that of the NHF while the NFF had the least effect. When the NHF was positive, the relative quantitative effects of the wind stress, the NHF, and the NFF were about i0, 6 and 2. The above conclusions were applied to explaining the spatio-temporal distributions of the MLD in the SCS and thus proved to be valid.展开更多
Based on the theoretical and experimental investigation of a thin silicon layer(TSL) with linear variable doping(LVD) and further research on the TSL LVD with a multiple step field plate(MSFP),a breakdown voltag...Based on the theoretical and experimental investigation of a thin silicon layer(TSL) with linear variable doping(LVD) and further research on the TSL LVD with a multiple step field plate(MSFP),a breakdown voltage(BV) model is proposed and experimentally verified in this paper.With the two-dimensional Poisson equation of the silicon on insulator(SOI) device,the lateral electric field in drift region of the thin silicon layer is assumed to be constant.For the SOI device with LVD in the thin silicon layer,the dependence of the BV on impurity concentration under the drain is investigated by an enhanced dielectric layer field(ENDIF),from which the reduced surface field(RESURF) condition is deduced.The drain in the centre of the device has a good self-isolation effect,but the problem of the high voltage interconnection(HVI) line will become serious.The two step field plates including the source field plate and gate field plate can be adopted to shield the HVI adverse effect on the device.Based on this model,the TSL LVD SOI n-channel lateral double-diffused MOSFET(nLDMOS) with MSFP is realized.The experimental breakdown voltage(BV) and specific on-resistance(R on,sp) of the TSL LVD SOI device are 694 V and 21.3 ·mm 2 with a drift region length of 60 μm,buried oxide layer of 3 μm,and silicon layer of 0.15 μm,respectively.展开更多
Monthly mean zonal wind data from the European Center for Medium-range Weather Forecasting(ECMWF) t'or December 1982, April 1983, October 1984 and ApriI 1985 are used in numerical integration as thebasic flow in a...Monthly mean zonal wind data from the European Center for Medium-range Weather Forecasting(ECMWF) t'or December 1982, April 1983, October 1984 and ApriI 1985 are used in numerical integration as thebasic flow in a non-linear critical-layer model. The subtropical high is extensive and limited in number if simulated with the basic now in December 1982 and April 1983. It consists of 2 to 3 cells that move westward at alloscillatory periods of 1~ 2 months. The subtropical high, simulated with the basic flow in October 1984 and April1 985. is weak and small in coverage, or distributed in strips that contain up to 4 cells. The high. merged or spillover a short time. is moving westward. The years 1982 ~ 1983 are a process of EI Nino while the years 1984- 1985one of La Nina. lt is known from the chart of energy flux that it oscillates by a much larger amplitude and longerperiod in the El Nino year than in the La Nina year. All the results above have indicated that the basic now' in theEl Nino year is enhancing the subtropical high lagging by about 4 months and that in the La Nina year is decay'ing it. It is consiStent with the well-known observational fact that the SSTA in the equatorial eastern Pacitlc ispositively correlated with the extent and intensity of the subtropical high in west Pacific lagging by 1 ~2 seasons.The result is also important for further study of the formation, maintenance and oscillation of the subtropicalhigh.展开更多
The linear growth of Ftayleigh-Taylor instability (FtTI) of two superimposed finite-thickness fluids in a gravita- tional field is investigated analytically. Coupling evolution equations for perturbation on the uppe...The linear growth of Ftayleigh-Taylor instability (FtTI) of two superimposed finite-thickness fluids in a gravita- tional field is investigated analytically. Coupling evolution equations for perturbation on the upper, middle and lower interfaces of the two stratified fluids are derived. The growth rate of the RTI and the evolution of the amplitudes of perturbation on the three interfaces are obtained by solving the coupling equations. It is found that the finite-thickness fluids reduce the growth rate of perturbation on the middle interface. However, the finite-thickness effect plays an important role in perturbation growth even for the thin layers which will cause more severe RTI growth. Finally, the dependence of the interface position under different initial conditions are discussed in some detail.展开更多
In this paper, the problem of unsteady laminar boundary-layer flow and heat transfer of a viscous income-pressible fluid over stretching sheet is studied numerically. The unsteadiness in the flow and temperature is ca...In this paper, the problem of unsteady laminar boundary-layer flow and heat transfer of a viscous income-pressible fluid over stretching sheet is studied numerically. The unsteadiness in the flow and temperature is caused by the time-dependent stretching velocity and surface temperature. A similarity transformation is used to reduce the governing boundary-layer equations to couple higher order non-linear ordinary differential equations. These equations are numerically solved using quasi-linearization technique. The effect of the governing parameters unsteadiness parameter and Prandtl number on velocity and temperature profile is discussed. Besides the numerical results for the local skin friction coefficient and local Nusselt number are presented. The computed results are compared with previously reported work.展开更多
A two-layer switching architecture and a two-layer switching rule for stabilization of switched linear control systems are proposed, under which the mismatched switching between switched systems and their candidate hy...A two-layer switching architecture and a two-layer switching rule for stabilization of switched linear control systems are proposed, under which the mismatched switching between switched systems and their candidate hybrid controllers can be allowed. In the low layer, a state-dependent switching rule with a dwell time constraint to exponentially stabilize switched linear systems is given; in the high layer, supervisory conditions on the mismatched switching frequency and the mismatched switching ratio are presented, under which the closed-loop switched system is still exponentially stable in case of the candidate controller switches delay with respect to the subsystems. Different from the traditional switching rule, the two-layer switching architecture and switching rule have robustness, which in some extend permit mismatched switching between switched subsystems and their candidate controllers.展开更多
We present an analysis of electromagnetic oscillations in a spherical conducting cavity filled concentrically with either dielectric or vacuum layers. The fields are given analytically, and the resonant frequency is d...We present an analysis of electromagnetic oscillations in a spherical conducting cavity filled concentrically with either dielectric or vacuum layers. The fields are given analytically, and the resonant frequency is determined numerically. An important special case of a spherical conducting cavity with a smaller dielectric sphere at its center is treated in more detail. By numerically integrating the equations of motion we demonstrate that the transverse electric oscillations in such cavity can be used to accelerate strongly relativistic electrons. The electron’s trajectory is assumed to be nearly tangential to the dielectric sphere. We demonstrate that the interaction of such electrons with the oscillating magnetic field deflects their trajectory from a straight line only slightly. The Q factor of such a resonator only depends on losses in the dielectric. For existing ultra low loss dielectrics, Q can be three orders of magnitude better than obtained in existing cylindrical cavities.展开更多
The prediction on small disturbance propagation in complex three-dimensional(3D) boundary layers is of great significance in transition prediction methodology, especially in the aircraft design. In this paper, the lin...The prediction on small disturbance propagation in complex three-dimensional(3D) boundary layers is of great significance in transition prediction methodology, especially in the aircraft design. In this paper, the linear stability theory(LST) with the equivalent spanwise wavenumber correction(ESWC) is proposed in order to accurately predict the linear evolution of a disturbance in a kind of boundary layer flow with a vital variation in the spanwise direction. The LST with the ESWC takes not only the scale of the mean flow with the significant variation but also the wavenumber evolution of the disturbance itself. Compared with the conventional LST, the results obtained by the new method are in excellent agreement with those of the numerical simulations. The LST with the ESWC is an effective method on the prediction of the disturbance evolution in 3D boundary layers, which improves the prediction of the LST in the applications to complex 3D boundary layers greatly.展开更多
The strong nonlinearity of boundary layer parameterizations in atmospheric and oceanic models can cause difficulty for tangent linear models in approximating nonlinear perturbations when the time integration grows lon...The strong nonlinearity of boundary layer parameterizations in atmospheric and oceanic models can cause difficulty for tangent linear models in approximating nonlinear perturbations when the time integration grows longer. Consequently, the related 4—D variational data assimilation problems could be difficult to solve. A modified tangent linear model is built on the Mellor-Yamada turbulent closure (level 2.5) for 4-D variational data assimilation. For oceanic mixed layer model settings, the modified tangent linear model produces better finite amplitude, nonlinear perturbation than the full and simplified tangent linear models when the integration time is longer than one day. The corresponding variational data assimilation performances based on the adjoint of the modified tangent linear model are also improved compared with those adjoints of the full and simplified tangent linear models.展开更多
基金supported by the National Natural Science Foundation of China (No. 51476152)
文摘The linear instabilities of incompressible confluent mixing layer and boundary layer were analyzed.The mixing layers include wake,shear layer and their combination.The mean velocity profile of confluent flow is taken as a superposition of a hyperbolic and exponential function to model a mixing layer and the Blasius similarity solution for a flat plate boundary layer.The stability equation of confluent flow was solved by using the global numerical method.The unstable modes associated with both the mixing and boundary layers were identified.They are the boundary layer mode,mixing layer mode 1(nearly symmetrical mode)and mode 2(nearly anti-symmetrical mode).The interactions between the mixing layer stability and the boundary layer stability were examined.As the mixing layer approaches the boundary layer,the neutral curves of the boundary layer mode move to the upper left,the resulting critical Reynolds number decreases,and the growth rate of the most unstable mode increases.The wall tends to stabilize the mixing layer modes at low frequency.In addition,the mode switching behavior of the relative level of the spatial growth rate between the mixing layer mode 1 and mode 2 with the velocity ratio is found to occur at low frequency.
基金supported by the National Natural Science Foundation of China(40972160 and 51306130)
文摘We perform a Poiseuille flow in a channel linear stability analysis of a inserted with one porous layer in the centre, and focus mainly on the effect of porous filling ratio. The spectral collocation technique is adopted to solve the coupled linear stability problem. We investigate the effect of permeability, σ, with fixed porous filling ratio ψ = 1/3 and then the effect of change in porous filling ratio. As shown in the paper, with increasing σ, almost each eigenvalue on the upper left branch has two subbranches at ψ = 1/3. The channel flow with one porous layer inserted at its middle (ψ = 1/3) is more stable than the structure of two porous layers at upper and bottom walls with the same parameters. By decreasing the filling ratio ψ, the modes on the upper left branch are almost in pairs and move in opposite directions, especially one of the two unstable modes moves back to a stable mode, while the other becomes more instable. It is concluded that there are at most two unstable modes with decreasing filling ratio ψ. By analyzing the relation between ψ and the maximum imaginary part of the streamwise phase speed, Cimax, we find that increasing Re has a destabilizing effect and the effect is more obvious for small Re, where ψ a remarkable drop in Cimax can be observed. The most unstable mode is more sensitive at small filling ratio ψ, and decreasing ψ can not always increase the linear stability. There is a maximum value of Cimax which appears at a small porous filling ratio when Re is larger than 2 000. And the value of filling ratio 0 corresponding to the maximum value of Cimax in the most unstable state is increased with in- creasing Re. There is a critical value of porous filling ratio (= 0.24) for Re = 500; the structure will become stable as ψ grows to surpass the threshold of 0.24; When porous filling ratio ψ increases from 0.4 to 0.6, there is hardly any changes in the values of Cimax. We have also observed that the critical Reynolds number is especially sensitive for small ψ where the fastest drop is observed, and there may be a wide range in which the porous filling ratio has less effect on the stability (ψ ranges from 0.2 to 0.6 at σ = 0.002). At larger permeability, σ, the critical Reynolds number tends to converge no matter what the value of porous filling ratio is.
基金supported by the National Natural Science Foundation of China (Grant Nos. 10534040 and 40674059)the State Key Laboratory of Acoustics (IACAS) (Grant No. 200807)
文摘This paper proposes a method of simultaneous determination of the four layer parameters (mass density, longitudinal velocity, the thickness and attenuation) of an immersed linear-viscoelastic thin layer by using the normally-incident reflected and transmitted ultrasonic waves. The analytical formula of the layer thickness related to the measured trans- mitted transfer functions is derived. The two determination steps of the four layer parameters are developed, in which acoustic impedance, time-of-flight and attenuation are first determined by the reflected transfer functions. Using the derived formula, it successively calculates and determines the layer thickness, longitudinal velocity and mass density by the measured transmitted transfer functions. According to the two determination steps, a more feasible and simplified measurement setups is described. It is found that only three signals (the reference waves, the reflected and transmitted waves) need to be recorded in the whole measurement for the determination of the four layer parameters. A study of the stability of the determination method against the experimental noises and the error analysis of the four layer parameters are made. This study lays the theoretical foundation of the practical measurement of a linear-viscoelastic thin layer.
基金The National Natural Science Foundation of China under contract No.11174235the Science and Technology Development Project of Shaanxi Province of China under contract No.2010KJXX-02+2 种基金the Program for New Century Excellent Talents in University of China under contract No. NCET-08-0455the Science and Technology Innovation Foundation of Northwestern Polytechnical University of Chinathe Doctorate Foundation of Northwestern Polytechnical University of China under contract No.CX201226.
文摘Multiple linear regression (MLR) method was applied to quantify the effects of the net heat flux (NHF), the net freshwater flux (NFF) and the wind stress on the mixed layer depth (MLD) of the South China Sea (SCS) based on the simple ocean data assimilation (SODA) dataset. The spatio-temporal distributions of the MLD, the buoyancy flux (combining the NHF and the NFF) and the wind stress of the SCS were presented. Then using an oceanic vertical mixing model, the MLD after a certain time under the same initial conditions but various pairs of boundary conditions (the three factors) was simulated. Applying the MLR method to the results, regression equations which modeling the relationship between the simulated MLD and the three factors were calculated. The equations indicate that when the NHF was negative, it was the primary driver of the mixed layer deepening; and when the NHF was positive, the wind stress played a more important role than that of the NHF while the NFF had the least effect. When the NHF was positive, the relative quantitative effects of the wind stress, the NHF, and the NFF were about i0, 6 and 2. The above conclusions were applied to explaining the spatio-temporal distributions of the MLD in the SCS and thus proved to be valid.
基金Project supported partially by the National Natural Science Foundation of China (Grant Nos. 60906038 and 61076082)
文摘Based on the theoretical and experimental investigation of a thin silicon layer(TSL) with linear variable doping(LVD) and further research on the TSL LVD with a multiple step field plate(MSFP),a breakdown voltage(BV) model is proposed and experimentally verified in this paper.With the two-dimensional Poisson equation of the silicon on insulator(SOI) device,the lateral electric field in drift region of the thin silicon layer is assumed to be constant.For the SOI device with LVD in the thin silicon layer,the dependence of the BV on impurity concentration under the drain is investigated by an enhanced dielectric layer field(ENDIF),from which the reduced surface field(RESURF) condition is deduced.The drain in the centre of the device has a good self-isolation effect,but the problem of the high voltage interconnection(HVI) line will become serious.The two step field plates including the source field plate and gate field plate can be adopted to shield the HVI adverse effect on the device.Based on this model,the TSL LVD SOI n-channel lateral double-diffused MOSFET(nLDMOS) with MSFP is realized.The experimental breakdown voltage(BV) and specific on-resistance(R on,sp) of the TSL LVD SOI device are 694 V and 21.3 ·mm 2 with a drift region length of 60 μm,buried oxide layer of 3 μm,and silicon layer of 0.15 μm,respectively.
文摘Monthly mean zonal wind data from the European Center for Medium-range Weather Forecasting(ECMWF) t'or December 1982, April 1983, October 1984 and ApriI 1985 are used in numerical integration as thebasic flow in a non-linear critical-layer model. The subtropical high is extensive and limited in number if simulated with the basic now in December 1982 and April 1983. It consists of 2 to 3 cells that move westward at alloscillatory periods of 1~ 2 months. The subtropical high, simulated with the basic flow in October 1984 and April1 985. is weak and small in coverage, or distributed in strips that contain up to 4 cells. The high. merged or spillover a short time. is moving westward. The years 1982 ~ 1983 are a process of EI Nino while the years 1984- 1985one of La Nina. lt is known from the chart of energy flux that it oscillates by a much larger amplitude and longerperiod in the El Nino year than in the La Nina year. All the results above have indicated that the basic now' in theEl Nino year is enhancing the subtropical high lagging by about 4 months and that in the La Nina year is decay'ing it. It is consiStent with the well-known observational fact that the SSTA in the equatorial eastern Pacitlc ispositively correlated with the extent and intensity of the subtropical high in west Pacific lagging by 1 ~2 seasons.The result is also important for further study of the formation, maintenance and oscillation of the subtropicalhigh.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11275031,11475034,11575033 and 11274026the National Basic Research Program of China under Grant No 2013CB834100
文摘The linear growth of Ftayleigh-Taylor instability (FtTI) of two superimposed finite-thickness fluids in a gravita- tional field is investigated analytically. Coupling evolution equations for perturbation on the upper, middle and lower interfaces of the two stratified fluids are derived. The growth rate of the RTI and the evolution of the amplitudes of perturbation on the three interfaces are obtained by solving the coupling equations. It is found that the finite-thickness fluids reduce the growth rate of perturbation on the middle interface. However, the finite-thickness effect plays an important role in perturbation growth even for the thin layers which will cause more severe RTI growth. Finally, the dependence of the interface position under different initial conditions are discussed in some detail.
文摘In this paper, the problem of unsteady laminar boundary-layer flow and heat transfer of a viscous income-pressible fluid over stretching sheet is studied numerically. The unsteadiness in the flow and temperature is caused by the time-dependent stretching velocity and surface temperature. A similarity transformation is used to reduce the governing boundary-layer equations to couple higher order non-linear ordinary differential equations. These equations are numerically solved using quasi-linearization technique. The effect of the governing parameters unsteadiness parameter and Prandtl number on velocity and temperature profile is discussed. Besides the numerical results for the local skin friction coefficient and local Nusselt number are presented. The computed results are compared with previously reported work.
基金supported by the National Natural Science Foundation of China(No.61233002)the Fundamental Research Funds for the Central Universities(No.N120404019)
文摘A two-layer switching architecture and a two-layer switching rule for stabilization of switched linear control systems are proposed, under which the mismatched switching between switched systems and their candidate hybrid controllers can be allowed. In the low layer, a state-dependent switching rule with a dwell time constraint to exponentially stabilize switched linear systems is given; in the high layer, supervisory conditions on the mismatched switching frequency and the mismatched switching ratio are presented, under which the closed-loop switched system is still exponentially stable in case of the candidate controller switches delay with respect to the subsystems. Different from the traditional switching rule, the two-layer switching architecture and switching rule have robustness, which in some extend permit mismatched switching between switched subsystems and their candidate controllers.
文摘We present an analysis of electromagnetic oscillations in a spherical conducting cavity filled concentrically with either dielectric or vacuum layers. The fields are given analytically, and the resonant frequency is determined numerically. An important special case of a spherical conducting cavity with a smaller dielectric sphere at its center is treated in more detail. By numerically integrating the equations of motion we demonstrate that the transverse electric oscillations in such cavity can be used to accelerate strongly relativistic electrons. The electron’s trajectory is assumed to be nearly tangential to the dielectric sphere. We demonstrate that the interaction of such electrons with the oscillating magnetic field deflects their trajectory from a straight line only slightly. The Q factor of such a resonator only depends on losses in the dielectric. For existing ultra low loss dielectrics, Q can be three orders of magnitude better than obtained in existing cylindrical cavities.
基金Project supported by the National Key Research and Development(R&D)Program of China(No.2016YFA0401200)the National Natural Science Foundation of China(Nos.11402167,11332007,11672204,11672205,and 11732011)
文摘The prediction on small disturbance propagation in complex three-dimensional(3D) boundary layers is of great significance in transition prediction methodology, especially in the aircraft design. In this paper, the linear stability theory(LST) with the equivalent spanwise wavenumber correction(ESWC) is proposed in order to accurately predict the linear evolution of a disturbance in a kind of boundary layer flow with a vital variation in the spanwise direction. The LST with the ESWC takes not only the scale of the mean flow with the significant variation but also the wavenumber evolution of the disturbance itself. Compared with the conventional LST, the results obtained by the new method are in excellent agreement with those of the numerical simulations. The LST with the ESWC is an effective method on the prediction of the disturbance evolution in 3D boundary layers, which improves the prediction of the LST in the applications to complex 3D boundary layers greatly.
基金Acknowledgments. The authors would like to thank Prof. Z. Yuan for her numerous suggestions in the writing of this paper. This work is supported by the National Natural Science Foundation of China (Grant No.40176009), the National Key Programme for Devel
文摘The strong nonlinearity of boundary layer parameterizations in atmospheric and oceanic models can cause difficulty for tangent linear models in approximating nonlinear perturbations when the time integration grows longer. Consequently, the related 4—D variational data assimilation problems could be difficult to solve. A modified tangent linear model is built on the Mellor-Yamada turbulent closure (level 2.5) for 4-D variational data assimilation. For oceanic mixed layer model settings, the modified tangent linear model produces better finite amplitude, nonlinear perturbation than the full and simplified tangent linear models when the integration time is longer than one day. The corresponding variational data assimilation performances based on the adjoint of the modified tangent linear model are also improved compared with those adjoints of the full and simplified tangent linear models.