期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Separation method for multi-source blended seismic data
1
作者 王汉闯 陈生昌 +1 位作者 张博 佘德平 《Applied Geophysics》 SCIE CSCD 2013年第3期251-264,357,共15页
Multi-source seismic technology is an efficient seismic acquisition method that requires a group of blended seismic data to be separated into single-source seismic data for subsequent processing. The separation of ble... Multi-source seismic technology is an efficient seismic acquisition method that requires a group of blended seismic data to be separated into single-source seismic data for subsequent processing. The separation of blended seismic data is a linear inverse problem. According to the relationship between the shooting number and the simultaneous source number of the acquisition system, this separation of blended seismic data is divided into an easily determined or overdetermined linear inverse problem and an underdetermined linear inverse problem that is difficult to solve. For the latter, this paper presents an optimization method that imposes the sparsity constraint on wavefields to construct the object function of inversion, and the problem is solved by using the iterative thresholding method. For the most extremely underdetermined separation problem with single-shooting and multiple sources, this paper presents a method of pseudo-deblending with random noise filtering. In this method, approximate common shot gathers are received through the pseudo-deblending process, and the random noises that appear when the approximate common shot gathers are sorted into common receiver gathers are eliminated through filtering methods. The separation methods proposed in this paper are applied to three types of numerical simulation data, including pure data without noise, data with random noise, and data with linear regular noise to obtain satisfactory results. The noise suppression effects of these methods are sufficient, particularly with single-shooting blended seismic data, which verifies the effectiveness of the proposed methods. 展开更多
关键词 MULTI-SOURCE data separation linear inverse problem sparsest constraint pseudo-deblending filtering
在线阅读 下载PDF
A STOCHASTIC ALGORITHM FOR FAULT INVERSE PROBLEMS IN ELASTIC HALF SPACE WITH PROOF OF CONVERGENCE
2
作者 Darko Volkov 《Journal of Computational Mathematics》 SCIE CSCD 2022年第6期955-976,共22页
A general stochastic algorithm for solving mixed linear and nonlinear problems was introduced in[11].We show in this paper how it can be used to solve the fault inverse problem,where a planar fault in elastic half-spa... A general stochastic algorithm for solving mixed linear and nonlinear problems was introduced in[11].We show in this paper how it can be used to solve the fault inverse problem,where a planar fault in elastic half-space and a slip on that fault have to be reconstructed from noisy surface displacement measurements.With the parameter giving the plane containing the fault denoted by m and the regularization parameter for the linear part of the inverse problem denoted by C,both modeled as random variables,we derive a formula for the posterior marginal of m.Modeling C as a random variable allows to sweep through a wide range of possible values which was shown to be superior to selecting a fixed value[11].We prove that this posterior marginal of m is convergent as the number of measurement points and the dimension of the space for discretizing slips increase.Simply put,our proof only assumes that the regularized discrete error functional for processing measurements relates to an order 1 quadrature rule and that the union of the finite-dimensional spaces for discretizing slips is dense.Our proof relies on trace class operator theory to show that an adequate sequence of determinants is uniformly bounded.We also explain how our proof can be extended to a whole class of inverse problems,as long as some basic requirements are met.Finally,we show numerical simulations that illustrate the numerical convergence of our algorithm. 展开更多
关键词 Mixed linear and nonlinear inverse problems Bayesian modeling Regularization Approximation to solutions by quadrature Convergence of Random Variables Elasticity equations in unbounded domains
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部