An approach to identification of linear continuous-time system is studied with modulating functions. Based on wavelet analysis theory, the multi-resolution modulating functions are designed, and the corresponding filt...An approach to identification of linear continuous-time system is studied with modulating functions. Based on wavelet analysis theory, the multi-resolution modulating functions are designed, and the corresponding filters have been analyzed. Using linear modulating filters, we can obtain an identification model that is parameterized directly in continuous-time model parameters. By applying the results from discrete-time model identification to the obtained identification model, a continuous-time estimation method is developed. Considering the accuracy of parameter estimates, an instrumental variable (Ⅳ) method is proposed, and the design of modulating integral filter is discussed. The relationship between the accuracy of identification and the parameter of modulating filter is investigated, and some points about designing Gaussian wavelet modulating function are outlined. Finally, a simulation study is also included to verify the theoretical results.展开更多
With regard to the bounded linear continuous-time system,a universal chaotic anti-controlling method was presented on the basis of tracking control.A tracking controller is designed to such an extent that it can track...With regard to the bounded linear continuous-time system,a universal chaotic anti-controlling method was presented on the basis of tracking control.A tracking controller is designed to such an extent that it can track any chaotic reference input,thus making it possible to chaotify the linear system.The controller is identical in structure for different controlled linear systems.Computer simulations proved the effectiveness of the proposed method.展开更多
Lateral movement represents the most covert and critical phase of Advanced Persistent Threats(APTs),and its detection still faces two primary challenges:sample scarcity and“cold start”of new entities.To address thes...Lateral movement represents the most covert and critical phase of Advanced Persistent Threats(APTs),and its detection still faces two primary challenges:sample scarcity and“cold start”of new entities.To address these challenges,we propose an Uncertainty-Driven Graph Embedding-Enhanced Lateral Movement Detection framework(UGEA-LMD).First,the framework employs event-level incremental encoding on a continuous-time graph to capture fine-grained behavioral evolution,enabling newly appearing nodes to retain temporal contextual awareness even in the absence of historical interactions and thereby fundamentally mitigating the cold-start problem.Second,in the embedding space,we model the dependency structure among feature dimensions using a Gaussian copula to quantify the uncertainty distribution,and generate augmented samples with consistent structural and semantic properties through adaptive sampling,thus expanding the representation space of sparse samples and enhancing the model’s generalization under sparse sample conditions.Unlike static graph methods that cannot model temporal dependencies or data augmentation techniques that depend on predefined structures,UGEA-LMD offers both superior temporaldynamic modeling and structural generalization.Experimental results on the large-scale LANL log dataset demonstrate that,under the transductive setting,UGEA-LMD achieves an AUC of 0.9254;even when 10%of nodes or edges are withheld during training,UGEA-LMD significantly outperforms baseline methods on metrics such as recall and AUC,confirming its robustness and generalization capability in sparse-sample and cold-start scenarios.展开更多
In this paper,a new parallel controller is developed for continuous-time linear systems.The main contribution of the method is to establish a new parallel control law,where both state and control are considered as the...In this paper,a new parallel controller is developed for continuous-time linear systems.The main contribution of the method is to establish a new parallel control law,where both state and control are considered as the input.The structure of the parallel control is provided,and the relationship between the parallel control and traditional feedback controls is presented.Considering the situations that the systems are controllable and incompletely controllable,the properties of the parallel control law are analyzed.The parallel controller design algorithms are given under the conditions that the systems are controllable and incompletely controllable.Finally,numerical simulations are carried out to demonstrate the effectiveness and applicability of the present method.Index Terms-Continuous-time linear systems,digital twin,parallel controller,parallel intelligence,parallel systems.展开更多
A model of continuous-time insider trading in which a risk-neutral in-sider possesses two imperfect correlated signals of a risky asset is studied.By conditional expectation theory and filtering theory,we first establ...A model of continuous-time insider trading in which a risk-neutral in-sider possesses two imperfect correlated signals of a risky asset is studied.By conditional expectation theory and filtering theory,we first establish three lemmas:normal corre-lation,equivalent pricing and equivalent profit,which can guarantee to turn our model into a model with insider knowing full information.Then we investigate the impact of the two correlated signals on the market equilibrium consisting of optimal insider trading strategy and semi-strong pricing rule.It shows that in the equilibrium,(1)the market depth is constant over time;(2)if the two noisy signals are not linerly correlated,then all private information of the insider is incorporated into prices in the end while the whole information on the asset value can not incorporated into prices in the end;(3)if the two noisy signals are linear correlated such that the insider can infer the whole information of the asset value,then our model turns into a model with insider knowing full information;(4)if the two noisy signals are the same then the total ex ant profit of the insider is increasing with the noise decreasing,while down to O as the noise going up to infinity;(5)if the two noisy signals are not linear correlated then with one noisy signal fixed,the total ex ante profit of the insider is single-peaked with a unique minimum with respect to the other noisy signal value,and furthermore as the noisy value going to O it gets its maximum,the profit in the case that the real value is observed.展开更多
In this paper, adaptive linear quadratic regulator(LQR) is proposed for continuous-time systems with uncertain dynamics. The dynamic state-feedback controller uses inputoutput data along the system trajectory to conti...In this paper, adaptive linear quadratic regulator(LQR) is proposed for continuous-time systems with uncertain dynamics. The dynamic state-feedback controller uses inputoutput data along the system trajectory to continuously adapt and converge to the optimal controller. The result differs from previous results in that the adaptive optimal controller is designed without the knowledge of the system dynamics and an initial stabilizing policy. Further, the controller is updated continuously using input-output data, as opposed to the commonly used switched/intermittent updates which can potentially lead to stability issues. An online state derivative estimator facilitates the design of a model-free controller. Gradient-based update laws are developed for online estimation of the optimal gain. Uniform exponential stability of the closed-loop system is established using the Lyapunov-based analysis, and a simulation example is provided to validate the theoretical contribution.展开更多
In this paper, we consider the perturbation analysis of linear time-invariant systems, which arise from the linear optimal control in continuous-time. We provide a method to compute condition numbers of continuous-tim...In this paper, we consider the perturbation analysis of linear time-invariant systems, which arise from the linear optimal control in continuous-time. We provide a method to compute condition numbers of continuous-time linear time-invariant systems. It solves the perturbed linear time-invariant systems via Riccati differential equations and continuous-time algebraic Riccati equations in finite and infinite time horizons. We derive the explicit expressions of measuring the perturbation bounds of condition numbers with respect to the solution of the linear time-invariant systems. Furthermore, condition numbers and their upper bounds of Riccati differential equations and continuous-time algebraic Riccati equations are also discussed. Numerical simulations show the sharpness of the perturbation bounds computed via the proposed methods.展开更多
GH4169 joints manufactured by Linear Friction Welding(LFW)are subjected to tensile test and stair-case method to evaluate the High Cycle Fatigue(HCF)performance at 650℃.The yield and ultimate tensile strengths are 58...GH4169 joints manufactured by Linear Friction Welding(LFW)are subjected to tensile test and stair-case method to evaluate the High Cycle Fatigue(HCF)performance at 650℃.The yield and ultimate tensile strengths are 582 MPa and 820 MPa,respectively.The HCF strength of joint reaches 400 MPa,which is slightly lower than that of Base Metal(BM),indicating reliable quality of this type of joint.The microstructure observation results show that all cracks initiate at the inside of specimens and transfer into deeper region with decrease of external stress,and the crack initiation site is related with microhardness of matrix.The Electron Backscattered Diffraction(EBSD)results of the observed regions with different distances to fracture show that plastic deformation plays a key role in HCF,and the Schmid factor of most grains near fracture exceeds 0.4.In addition,the generation of twins plays a vital role in strain concentration release and coordinating plastic deformation among grains.展开更多
The pre-weld heat treatment was carried out to obtain different initial microstructures of the GH4169 superalloy,and then Linear Friction Welding(LFW)was performed.The effect of the pre-weld heat treatment on the micr...The pre-weld heat treatment was carried out to obtain different initial microstructures of the GH4169 superalloy,and then Linear Friction Welding(LFW)was performed.The effect of the pre-weld heat treatment on the microstructure evolution and mechanical properties of the joint was analyzed,and the joint electrochemical corrosion behavior as well as the hot corrosion behavior was studied.The results show that the joint hardness of Base Metal(BM)increases after pre-weld heat treatment,and the strengthening phasesγ′andγ″further precipitate.However,the precipitation phases dissolve significantly in the Weld Zone(WZ)due to the thermal process of LFW.The corrosion resistance in BM is reduced after the pre-weld heat treatment,while it is similar in WZ with a slight decrease.The surface morphology of the BM and WZ can be generally divided into a loose and porous matrix and a scattered oxide particle layer after hot corrosion.The joint cross section exhibits a Cr-depleted zone with the diffusion of Cr to form an oxide film.The corrosion product mainly consists of Fe_(2)O_(3)/Fe_(3)O_(4) as the outer layer and Cr_(2)O_(3) as the inner layer.展开更多
The hyperloop idea,which is one of the most ecofriendly,low-carbon emissions,and fossil fuel-efficient modes of transportation,has recently become quite popular.In this study,a double-sided linear induction motor(LIM)...The hyperloop idea,which is one of the most ecofriendly,low-carbon emissions,and fossil fuel-efficient modes of transportation,has recently become quite popular.In this study,a double-sided linear induction motor(LIM)with 500 W of output power,60 N of thrust force and 200 V/38.58 Hz of supply voltage was designed to be used in hyperloop development competition hosted by the scientific and technological research council of turkey(TüB?TAK)rail transportation technologies institute(RUTE).In contrast to the studies in the literature,concentrated winding is preferred instead of distributed winding due to mechanical constraints.The electromagnetic design of LIM,whose mechanical and electrical requirements were determined considering the hyperloop development competition,was carried out by following certain steps.Then,the designed model was simulated and analyzed by finite element method(FEM),and the necessary optimizations have been performed to improve the motor characteristics.By examining the final model,the applicability of the concentrated winding type LIM for hyperloop technology has been investigated.Besides,the effects of primary material,railway material,and mechanical air-gap length on LIM performance were also investigated.In the practical phase of the study,the designed LIM has been prototyped and tested.The validation of the experimental results was achieved through good agreement with the finite element analysis results.展开更多
Due to the heterogeneity of rock masses and the variability of in situ stress,the traditional linear inversion method is insufficiently accurate to achieve high accuracy of the in situ stress field.To address this cha...Due to the heterogeneity of rock masses and the variability of in situ stress,the traditional linear inversion method is insufficiently accurate to achieve high accuracy of the in situ stress field.To address this challenge,nonlinear stress boundaries for a numerical model are determined through regression analysis of a series of nonlinear coefficient matrices,which are derived from the bubbling method.Considering the randomness and flexibility of the bubbling method,a parametric study is conducted to determine recommended ranges for these parameters,including the standard deviation(σb)of bubble radii,the non-uniform coefficient matrix number(λ)for nonlinear stress boundaries,and the number(m)and positions of in situ stress measurement points.A model case study provides a reference for the selection of these parameters.Additionally,when the nonlinear in situ stress inversion method is employed,stress distortion inevitably occurs near model boundaries,aligning with the Saint Venant's principle.Two strategies are proposed accordingly:employing a systematic reduction of nonlinear coefficients to achieve high inversion accuracy while minimizing significant stress distortion,and excluding regions with severe stress distortion near the model edges while utilizing the central part of the model for subsequent simulations.These two strategies have been successfully implemented in the nonlinear in situ stress inversion of the Xincheng Gold Mine and have achieved higher inversion accuracy than the linear method.Specifically,the linear and nonlinear inversion methods yield root mean square errors(RMSE)of 4.15 and 3.2,and inversion relative errors(δAve)of 22.08%and 17.55%,respectively.Therefore,the nonlinear inversion method outperforms the traditional multiple linear regression method,even in the presence of a systematic reduction in the nonlinear stress boundaries.展开更多
Let a_(1),a_(2),a_(3)be nonzero integers with gcd(a_(1),a_(2),a_(3))=1,and let k be any positive integer,K=max[3,|a_(1)|,|a_(2)|,|a_(3)|,k].Suppose that l_(1),l_(2),l_(3)are integers each coprime to k.Suppose further ...Let a_(1),a_(2),a_(3)be nonzero integers with gcd(a_(1),a_(2),a_(3))=1,and let k be any positive integer,K=max[3,|a_(1)|,|a_(2)|,|a_(3)|,k].Suppose that l_(1),l_(2),l_(3)are integers each coprime to k.Suppose further that b is any integer satisfying some necessary congruent conditions.The solvability of linear equation a_(1)p_(1)+a_(2)p_(2)+a_(3)p_(3)=b(p_(j)=l_(j)(mod k),1≤j≤3)with prime variables pi,p_(2),ps is investigated.It is proved that if ai,a_(2),a_(3)are all positive,then the above equation is solvable whenever b≥K^(25);if a,a_(2),a_(3)are not all of the same sign,then the above equation has a solution p_(1),p_(2),p_(3)satisfying max(p_(1),p_(2),p_(3))≤3|b|+K^(25).展开更多
We study the existence and stability of dark-gap solitons in linear lattice and nonlinear lattices.The results indicate that the combination of linear and nonlinear lattices gives dark-gap solitons unique properties.T...We study the existence and stability of dark-gap solitons in linear lattice and nonlinear lattices.The results indicate that the combination of linear and nonlinear lattices gives dark-gap solitons unique properties.The linear lattice can stabilize dark-gap solitons,while the nonlinear lattice reduces the stability of dark-gap solitons.On the basis of numerical analysis,we investigate the effects of lattice depth,chemical potential,nonlinear lattice amplitude,and nonlinear lattice period on the soliton in mixed lattices with the same and different periods.The stability of dark-gap soliton is studied carefully by means of real-time evolution and linear stability analysis.Dark-gap solitons can exist stably in the band gap,but the solitons formed by the mixed lattices are slightly different when the period is the same or different.展开更多
The hydroformylation of olefins,known as the"oxo reaction",involves the use of syngas(CO/H_(2))to produce aldehyde with an additional carbon atom.However,side reactions such as the isomerization or hydrogena...The hydroformylation of olefins,known as the"oxo reaction",involves the use of syngas(CO/H_(2))to produce aldehyde with an additional carbon atom.However,side reactions such as the isomerization or hydrogenation of olefins often result in unexpected products and other by-products.Recent efforts in developing efficient ligands represent the most effective approach to addressing these challenges.In this study,we described a Bis-OPNN phosphorus ligand facilitated Rh-catalyzed hydroformylation with a high degree of linear selectivity across various olefins.Under mild conditions,a broad range of olefins were efficiently converted into linear aldehydes with high yields and excellent regioselectivity.The protocol also showed impressive functional group tolerance and was successfully applied to modify drugs and natural products,including the total synthesis of(±)-crispine A.Preliminary mechanistic studies revealed that this Bis-OPNN phosphorus ligand anchoring the rhodium catalyst is crucial for controlling the linear selectivity.展开更多
We have designed,assembled,and tested a 4-MA,60-ns fast linear transformer driver(LTD),which is the first operating generator featuring multiple LTD modules connected in parallel.The LTD-based accelerator comprises si...We have designed,assembled,and tested a 4-MA,60-ns fast linear transformer driver(LTD),which is the first operating generator featuring multiple LTD modules connected in parallel.The LTD-based accelerator comprises six modules in parallel,each of which has ten-stage cavities stacked in series.The six LTD modules are connected to a water tank of diameter 6 m via a 3-m-long impedance-matched deionized waterinsulated coaxial transmission line.In the water tank,the electrical pulses are transmitted down by six horizontal tri-plate transmission lines.A 2.1-m-diameter two-level vacuum insulator stack is utilized to separate the deionized water region from the vacuum region.In the vacuum,the currents are further transported downstream by a two-level magnetically insulated transmission-line and then converged through four post-hole convolutes.Plasma radiation loads or bremsstrahlung electron beam diodes serve as loads that are expected to generate intense soft X rays or warm X rays.The machine is 3.2 m in height and 22 m in outer diameter,including support systems such as a high-voltage charge supply,magnetic core reset system,trigger system,and support platform for inner stalk installation and maintenance.A total of 1440 individual±100-kV multi-gap spark switches and 2880 individual 100-kV capacitors are employed in the accelerator.A total of 12 fiberoptic laser-controlled trigger generators combining photoconductive and traditional gas spark switch technologies are used to realize the synchronous discharge of the more than 1000 gas switches.At an LTD charge voltage of±85 kV,the accelerator stores an initial energy of about 300 kJ and is expected to deliver a current of 3–5 MA into various loads.To date,the LTD facility has shot into a thick-walled aluminum liner load and a reflex triode load.With a thick-walled aluminum liner of inductance 1.81 nH,a current with peak up to 4.1 MA and rise time(10%–90%)of about 60 ns has been achieved.The current transport efficiency from the insulator stack to the liner load approaches 100%during peak times.The LTD accelerator has been used to drive reflex triode loads generating warm X rays with high energy fluence and large radiation area.It has been demonstrated that this LTD is a promising and high-efficiency prime pulsed power source suitable for use in constructing the next generation of large-scale accelerators with currents of tens of megaamperes.展开更多
A family of neural networks is proposed to solve linear complementarity problems(LCP).The neural networks are constructed from the novel equivalent model of LCP,which is reformulated by utilizing the modulus and smoot...A family of neural networks is proposed to solve linear complementarity problems(LCP).The neural networks are constructed from the novel equivalent model of LCP,which is reformulated by utilizing the modulus and smoothing technologies.Some important properties of the proposed novel equivalent model are summarized.In addition,the stability properties of the proposed steepest descent-based neural networks for LCP are analyzed.In order to illustrate the theoretical results,we provide some numerical simulations and compare the proposed neural networks with existing neural networks based on the NCP-functions.Numerical results indicate that the performance of the proposed neural networks is effective and robust.展开更多
Dear Editor,This letter studies output consensus problem of heterogeneous linear multiagent systems over directed graphs. A novel adaptive dynamic event-triggered controller is presented based only on the feedback com...Dear Editor,This letter studies output consensus problem of heterogeneous linear multiagent systems over directed graphs. A novel adaptive dynamic event-triggered controller is presented based only on the feedback combination of the agent's own state and neighbors' output,which can achieve exponential output consensus through intermittent communication. The controller is obtained by solving two linear matrix equations, and Zeno behavior is excluded.展开更多
Polydopamine-based melanin-like materials have been widely used in the fields of ultraviolet(UV)shielding,solar desalination and anti-inflammatory treatment owing to their unique physical properties.The well-establish...Polydopamine-based melanin-like materials have been widely used in the fields of ultraviolet(UV)shielding,solar desalination and anti-inflammatory treatment owing to their unique physical properties.The well-established synthesis of polydopamine nanoparticles involves the oxidative polymerization of dopamine-derived monomers,resulting in cross-linked nanostructures with high complexity and heterogeneity.Therefore,the controlled synthesis of polydopamine-based melanin-like materials with well-defined structures and predictable properties remains challenging.Herein,we propose a mechanochemical Suzuki polymerization approach for the synthesis of linear melanin-like polymers with tunable physical properties.Compared with polydopamine nanoparticles,the mechanochemical approach offers a more flexible chain-like structure,thereby enhancing its antioxidant performance.Furthermore,this approach also enables the preparation of a melanin-like alternating copolymer that exhibits green fluorescence owing to itsπ-conjugated structure.This study not only offers opportunities for exploring novel synthetic melanin materials,but also provides new insights into the structure-function relationships of polydopamine-based materials.展开更多
Piecewise linear systems are prevalent in engineering practice,and can be categorized into symmetric and asymmetric piecewise linear systems.Considering that symmetry is a special case of asymmetry,it is essential to ...Piecewise linear systems are prevalent in engineering practice,and can be categorized into symmetric and asymmetric piecewise linear systems.Considering that symmetry is a special case of asymmetry,it is essential to investigate the broader model,namely the asymmetric piecewise linear system.The traditional averaging method is frequently used for studying nonlinear systems,particularly symmetric piecewise linear systems,with the harmonic response of the oscillator serving as a key prerequisite for calculating steady-state solutions.However,asymmetric systems inherently exhibit nonharmonic,asymmetric responses,rendering the traditional averaging method inapplicable.To overcome this limitation,this paper introduces an improved averaging method tailored for an oscillator characterized by asymmetric gaps and springs.Unlike the traditional method,which assumes a purely harmonic response,the improved averaging method redefines the system response as a superposition of a direct current(DC)term and a first harmonic component.Herein,the DC term can be regarded as the offset induced by model asymmetry.Furthermore,the DC term is treated as a slow variable function of time,with its time derivative assumed to be zero when calculating the steady-state solution,akin to the amplitude and phase in the traditional averaging method.Numerical validation demonstrates that the responses computed in both time and frequency domains with the improved averaging method exhibit greater accuracy compared with those derived from the traditional method.Leveraging these improved results,the study also examines the parameter effect,stability,and bifurcation phenomena within the amplitude-frequency responses.展开更多
基金This project was supported by China Postdoctoral Science Foundation (2003034466)Scientific Research Fund of Hunan Provincial Education Department (02B032).
文摘An approach to identification of linear continuous-time system is studied with modulating functions. Based on wavelet analysis theory, the multi-resolution modulating functions are designed, and the corresponding filters have been analyzed. Using linear modulating filters, we can obtain an identification model that is parameterized directly in continuous-time model parameters. By applying the results from discrete-time model identification to the obtained identification model, a continuous-time estimation method is developed. Considering the accuracy of parameter estimates, an instrumental variable (Ⅳ) method is proposed, and the design of modulating integral filter is discussed. The relationship between the accuracy of identification and the parameter of modulating filter is investigated, and some points about designing Gaussian wavelet modulating function are outlined. Finally, a simulation study is also included to verify the theoretical results.
文摘With regard to the bounded linear continuous-time system,a universal chaotic anti-controlling method was presented on the basis of tracking control.A tracking controller is designed to such an extent that it can track any chaotic reference input,thus making it possible to chaotify the linear system.The controller is identical in structure for different controlled linear systems.Computer simulations proved the effectiveness of the proposed method.
基金supported by the Zhongyuan University of Technology Discipline Backbone Teacher Support Program Project(No.GG202417)the Key Research and Development Program of Henan under Grant 251111212000.
文摘Lateral movement represents the most covert and critical phase of Advanced Persistent Threats(APTs),and its detection still faces two primary challenges:sample scarcity and“cold start”of new entities.To address these challenges,we propose an Uncertainty-Driven Graph Embedding-Enhanced Lateral Movement Detection framework(UGEA-LMD).First,the framework employs event-level incremental encoding on a continuous-time graph to capture fine-grained behavioral evolution,enabling newly appearing nodes to retain temporal contextual awareness even in the absence of historical interactions and thereby fundamentally mitigating the cold-start problem.Second,in the embedding space,we model the dependency structure among feature dimensions using a Gaussian copula to quantify the uncertainty distribution,and generate augmented samples with consistent structural and semantic properties through adaptive sampling,thus expanding the representation space of sparse samples and enhancing the model’s generalization under sparse sample conditions.Unlike static graph methods that cannot model temporal dependencies or data augmentation techniques that depend on predefined structures,UGEA-LMD offers both superior temporaldynamic modeling and structural generalization.Experimental results on the large-scale LANL log dataset demonstrate that,under the transductive setting,UGEA-LMD achieves an AUC of 0.9254;even when 10%of nodes or edges are withheld during training,UGEA-LMD significantly outperforms baseline methods on metrics such as recall and AUC,confirming its robustness and generalization capability in sparse-sample and cold-start scenarios.
基金supported in part by the National Key Research and Development Program of China(2018AAA0101502,2018YFB1702300)the National Natural Science Foundation of China(61722312,61533019,U1811463,61533017)。
文摘In this paper,a new parallel controller is developed for continuous-time linear systems.The main contribution of the method is to establish a new parallel control law,where both state and control are considered as the input.The structure of the parallel control is provided,and the relationship between the parallel control and traditional feedback controls is presented.Considering the situations that the systems are controllable and incompletely controllable,the properties of the parallel control law are analyzed.The parallel controller design algorithms are given under the conditions that the systems are controllable and incompletely controllable.Finally,numerical simulations are carried out to demonstrate the effectiveness and applicability of the present method.Index Terms-Continuous-time linear systems,digital twin,parallel controller,parallel intelligence,parallel systems.
文摘A model of continuous-time insider trading in which a risk-neutral in-sider possesses two imperfect correlated signals of a risky asset is studied.By conditional expectation theory and filtering theory,we first establish three lemmas:normal corre-lation,equivalent pricing and equivalent profit,which can guarantee to turn our model into a model with insider knowing full information.Then we investigate the impact of the two correlated signals on the market equilibrium consisting of optimal insider trading strategy and semi-strong pricing rule.It shows that in the equilibrium,(1)the market depth is constant over time;(2)if the two noisy signals are not linerly correlated,then all private information of the insider is incorporated into prices in the end while the whole information on the asset value can not incorporated into prices in the end;(3)if the two noisy signals are linear correlated such that the insider can infer the whole information of the asset value,then our model turns into a model with insider knowing full information;(4)if the two noisy signals are the same then the total ex ant profit of the insider is increasing with the noise decreasing,while down to O as the noise going up to infinity;(5)if the two noisy signals are not linear correlated then with one noisy signal fixed,the total ex ante profit of the insider is single-peaked with a unique minimum with respect to the other noisy signal value,and furthermore as the noisy value going to O it gets its maximum,the profit in the case that the real value is observed.
文摘In this paper, adaptive linear quadratic regulator(LQR) is proposed for continuous-time systems with uncertain dynamics. The dynamic state-feedback controller uses inputoutput data along the system trajectory to continuously adapt and converge to the optimal controller. The result differs from previous results in that the adaptive optimal controller is designed without the knowledge of the system dynamics and an initial stabilizing policy. Further, the controller is updated continuously using input-output data, as opposed to the commonly used switched/intermittent updates which can potentially lead to stability issues. An online state derivative estimator facilitates the design of a model-free controller. Gradient-based update laws are developed for online estimation of the optimal gain. Uniform exponential stability of the closed-loop system is established using the Lyapunov-based analysis, and a simulation example is provided to validate the theoretical contribution.
文摘In this paper, we consider the perturbation analysis of linear time-invariant systems, which arise from the linear optimal control in continuous-time. We provide a method to compute condition numbers of continuous-time linear time-invariant systems. It solves the perturbed linear time-invariant systems via Riccati differential equations and continuous-time algebraic Riccati equations in finite and infinite time horizons. We derive the explicit expressions of measuring the perturbation bounds of condition numbers with respect to the solution of the linear time-invariant systems. Furthermore, condition numbers and their upper bounds of Riccati differential equations and continuous-time algebraic Riccati equations are also discussed. Numerical simulations show the sharpness of the perturbation bounds computed via the proposed methods.
基金supported by the National Natural Science Foundation of China(Nos.52074228,52305420,and 51875470)the China Postdoctoral Science Foundation(No.2023M742830)。
文摘GH4169 joints manufactured by Linear Friction Welding(LFW)are subjected to tensile test and stair-case method to evaluate the High Cycle Fatigue(HCF)performance at 650℃.The yield and ultimate tensile strengths are 582 MPa and 820 MPa,respectively.The HCF strength of joint reaches 400 MPa,which is slightly lower than that of Base Metal(BM),indicating reliable quality of this type of joint.The microstructure observation results show that all cracks initiate at the inside of specimens and transfer into deeper region with decrease of external stress,and the crack initiation site is related with microhardness of matrix.The Electron Backscattered Diffraction(EBSD)results of the observed regions with different distances to fracture show that plastic deformation plays a key role in HCF,and the Schmid factor of most grains near fracture exceeds 0.4.In addition,the generation of twins plays a vital role in strain concentration release and coordinating plastic deformation among grains.
基金supported by the National Natural Science Foundation of China(Nos.52074228,52305420 and 51875470)the Practice and Innovation Funds for Graduate Students of Northwestern Polytechnical University,China(No.PF2024053)the Xi’an Beilin District Science and Technology Planning Project,China(No.GX2349).
文摘The pre-weld heat treatment was carried out to obtain different initial microstructures of the GH4169 superalloy,and then Linear Friction Welding(LFW)was performed.The effect of the pre-weld heat treatment on the microstructure evolution and mechanical properties of the joint was analyzed,and the joint electrochemical corrosion behavior as well as the hot corrosion behavior was studied.The results show that the joint hardness of Base Metal(BM)increases after pre-weld heat treatment,and the strengthening phasesγ′andγ″further precipitate.However,the precipitation phases dissolve significantly in the Weld Zone(WZ)due to the thermal process of LFW.The corrosion resistance in BM is reduced after the pre-weld heat treatment,while it is similar in WZ with a slight decrease.The surface morphology of the BM and WZ can be generally divided into a loose and porous matrix and a scattered oxide particle layer after hot corrosion.The joint cross section exhibits a Cr-depleted zone with the diffusion of Cr to form an oxide film.The corrosion product mainly consists of Fe_(2)O_(3)/Fe_(3)O_(4) as the outer layer and Cr_(2)O_(3) as the inner layer.
基金the Istanbul Technical University Scientific Research Projects Unit with grant number MGA-2022-43948。
文摘The hyperloop idea,which is one of the most ecofriendly,low-carbon emissions,and fossil fuel-efficient modes of transportation,has recently become quite popular.In this study,a double-sided linear induction motor(LIM)with 500 W of output power,60 N of thrust force and 200 V/38.58 Hz of supply voltage was designed to be used in hyperloop development competition hosted by the scientific and technological research council of turkey(TüB?TAK)rail transportation technologies institute(RUTE).In contrast to the studies in the literature,concentrated winding is preferred instead of distributed winding due to mechanical constraints.The electromagnetic design of LIM,whose mechanical and electrical requirements were determined considering the hyperloop development competition,was carried out by following certain steps.Then,the designed model was simulated and analyzed by finite element method(FEM),and the necessary optimizations have been performed to improve the motor characteristics.By examining the final model,the applicability of the concentrated winding type LIM for hyperloop technology has been investigated.Besides,the effects of primary material,railway material,and mechanical air-gap length on LIM performance were also investigated.In the practical phase of the study,the designed LIM has been prototyped and tested.The validation of the experimental results was achieved through good agreement with the finite element analysis results.
基金funded by the National Key R&D Program of China(Grant No.2022YFC2903904)the National Natural Science Foundation of China(Grant Nos.51904057 and U1906208).
文摘Due to the heterogeneity of rock masses and the variability of in situ stress,the traditional linear inversion method is insufficiently accurate to achieve high accuracy of the in situ stress field.To address this challenge,nonlinear stress boundaries for a numerical model are determined through regression analysis of a series of nonlinear coefficient matrices,which are derived from the bubbling method.Considering the randomness and flexibility of the bubbling method,a parametric study is conducted to determine recommended ranges for these parameters,including the standard deviation(σb)of bubble radii,the non-uniform coefficient matrix number(λ)for nonlinear stress boundaries,and the number(m)and positions of in situ stress measurement points.A model case study provides a reference for the selection of these parameters.Additionally,when the nonlinear in situ stress inversion method is employed,stress distortion inevitably occurs near model boundaries,aligning with the Saint Venant's principle.Two strategies are proposed accordingly:employing a systematic reduction of nonlinear coefficients to achieve high inversion accuracy while minimizing significant stress distortion,and excluding regions with severe stress distortion near the model edges while utilizing the central part of the model for subsequent simulations.These two strategies have been successfully implemented in the nonlinear in situ stress inversion of the Xincheng Gold Mine and have achieved higher inversion accuracy than the linear method.Specifically,the linear and nonlinear inversion methods yield root mean square errors(RMSE)of 4.15 and 3.2,and inversion relative errors(δAve)of 22.08%and 17.55%,respectively.Therefore,the nonlinear inversion method outperforms the traditional multiple linear regression method,even in the presence of a systematic reduction in the nonlinear stress boundaries.
文摘Let a_(1),a_(2),a_(3)be nonzero integers with gcd(a_(1),a_(2),a_(3))=1,and let k be any positive integer,K=max[3,|a_(1)|,|a_(2)|,|a_(3)|,k].Suppose that l_(1),l_(2),l_(3)are integers each coprime to k.Suppose further that b is any integer satisfying some necessary congruent conditions.The solvability of linear equation a_(1)p_(1)+a_(2)p_(2)+a_(3)p_(3)=b(p_(j)=l_(j)(mod k),1≤j≤3)with prime variables pi,p_(2),ps is investigated.It is proved that if ai,a_(2),a_(3)are all positive,then the above equation is solvable whenever b≥K^(25);if a,a_(2),a_(3)are not all of the same sign,then the above equation has a solution p_(1),p_(2),p_(3)satisfying max(p_(1),p_(2),p_(3))≤3|b|+K^(25).
基金supported by the Innovation Capability Improvement Project of Hebei Province,China(Grant No.22567605H).
文摘We study the existence and stability of dark-gap solitons in linear lattice and nonlinear lattices.The results indicate that the combination of linear and nonlinear lattices gives dark-gap solitons unique properties.The linear lattice can stabilize dark-gap solitons,while the nonlinear lattice reduces the stability of dark-gap solitons.On the basis of numerical analysis,we investigate the effects of lattice depth,chemical potential,nonlinear lattice amplitude,and nonlinear lattice period on the soliton in mixed lattices with the same and different periods.The stability of dark-gap soliton is studied carefully by means of real-time evolution and linear stability analysis.Dark-gap solitons can exist stably in the band gap,but the solitons formed by the mixed lattices are slightly different when the period is the same or different.
基金financial support from the National Key Research and Development Program of China(No.2021YFF0600704).
文摘The hydroformylation of olefins,known as the"oxo reaction",involves the use of syngas(CO/H_(2))to produce aldehyde with an additional carbon atom.However,side reactions such as the isomerization or hydrogenation of olefins often result in unexpected products and other by-products.Recent efforts in developing efficient ligands represent the most effective approach to addressing these challenges.In this study,we described a Bis-OPNN phosphorus ligand facilitated Rh-catalyzed hydroformylation with a high degree of linear selectivity across various olefins.Under mild conditions,a broad range of olefins were efficiently converted into linear aldehydes with high yields and excellent regioselectivity.The protocol also showed impressive functional group tolerance and was successfully applied to modify drugs and natural products,including the total synthesis of(±)-crispine A.Preliminary mechanistic studies revealed that this Bis-OPNN phosphorus ligand anchoring the rhodium catalyst is crucial for controlling the linear selectivity.
基金supported by the National Natural Science Foundation of China(Grant Nos.12027811 and 51790524).
文摘We have designed,assembled,and tested a 4-MA,60-ns fast linear transformer driver(LTD),which is the first operating generator featuring multiple LTD modules connected in parallel.The LTD-based accelerator comprises six modules in parallel,each of which has ten-stage cavities stacked in series.The six LTD modules are connected to a water tank of diameter 6 m via a 3-m-long impedance-matched deionized waterinsulated coaxial transmission line.In the water tank,the electrical pulses are transmitted down by six horizontal tri-plate transmission lines.A 2.1-m-diameter two-level vacuum insulator stack is utilized to separate the deionized water region from the vacuum region.In the vacuum,the currents are further transported downstream by a two-level magnetically insulated transmission-line and then converged through four post-hole convolutes.Plasma radiation loads or bremsstrahlung electron beam diodes serve as loads that are expected to generate intense soft X rays or warm X rays.The machine is 3.2 m in height and 22 m in outer diameter,including support systems such as a high-voltage charge supply,magnetic core reset system,trigger system,and support platform for inner stalk installation and maintenance.A total of 1440 individual±100-kV multi-gap spark switches and 2880 individual 100-kV capacitors are employed in the accelerator.A total of 12 fiberoptic laser-controlled trigger generators combining photoconductive and traditional gas spark switch technologies are used to realize the synchronous discharge of the more than 1000 gas switches.At an LTD charge voltage of±85 kV,the accelerator stores an initial energy of about 300 kJ and is expected to deliver a current of 3–5 MA into various loads.To date,the LTD facility has shot into a thick-walled aluminum liner load and a reflex triode load.With a thick-walled aluminum liner of inductance 1.81 nH,a current with peak up to 4.1 MA and rise time(10%–90%)of about 60 ns has been achieved.The current transport efficiency from the insulator stack to the liner load approaches 100%during peak times.The LTD accelerator has been used to drive reflex triode loads generating warm X rays with high energy fluence and large radiation area.It has been demonstrated that this LTD is a promising and high-efficiency prime pulsed power source suitable for use in constructing the next generation of large-scale accelerators with currents of tens of megaamperes.
基金Supported by the National Natural Science Foundation of China(12371378,41725017,11901098).
文摘A family of neural networks is proposed to solve linear complementarity problems(LCP).The neural networks are constructed from the novel equivalent model of LCP,which is reformulated by utilizing the modulus and smoothing technologies.Some important properties of the proposed novel equivalent model are summarized.In addition,the stability properties of the proposed steepest descent-based neural networks for LCP are analyzed.In order to illustrate the theoretical results,we provide some numerical simulations and compare the proposed neural networks with existing neural networks based on the NCP-functions.Numerical results indicate that the performance of the proposed neural networks is effective and robust.
基金supported by the National Science and Technology Innovation 2030-Major Program(2022ZD 0115403)the National Natural Science Foundation of China(61991414)+1 种基金Chongqing Natural Science Foundation(CSTB2023NSCQJQX0018)Beijing Natural Science Foundation(L221005)
文摘Dear Editor,This letter studies output consensus problem of heterogeneous linear multiagent systems over directed graphs. A novel adaptive dynamic event-triggered controller is presented based only on the feedback combination of the agent's own state and neighbors' output,which can achieve exponential output consensus through intermittent communication. The controller is obtained by solving two linear matrix equations, and Zeno behavior is excluded.
基金supported by the National Natural Science Foundation of China(Nos.22471185 and 52225311)Science and Technology Program of Suzhou(No.ZXL2022480)+1 种基金Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)Program of Innovative Research Team of Soochow University。
文摘Polydopamine-based melanin-like materials have been widely used in the fields of ultraviolet(UV)shielding,solar desalination and anti-inflammatory treatment owing to their unique physical properties.The well-established synthesis of polydopamine nanoparticles involves the oxidative polymerization of dopamine-derived monomers,resulting in cross-linked nanostructures with high complexity and heterogeneity.Therefore,the controlled synthesis of polydopamine-based melanin-like materials with well-defined structures and predictable properties remains challenging.Herein,we propose a mechanochemical Suzuki polymerization approach for the synthesis of linear melanin-like polymers with tunable physical properties.Compared with polydopamine nanoparticles,the mechanochemical approach offers a more flexible chain-like structure,thereby enhancing its antioxidant performance.Furthermore,this approach also enables the preparation of a melanin-like alternating copolymer that exhibits green fluorescence owing to itsπ-conjugated structure.This study not only offers opportunities for exploring novel synthetic melanin materials,but also provides new insights into the structure-function relationships of polydopamine-based materials.
基金Project supported by the National Natural Science Foundation of China(Nos.12272242 and U1934201)。
文摘Piecewise linear systems are prevalent in engineering practice,and can be categorized into symmetric and asymmetric piecewise linear systems.Considering that symmetry is a special case of asymmetry,it is essential to investigate the broader model,namely the asymmetric piecewise linear system.The traditional averaging method is frequently used for studying nonlinear systems,particularly symmetric piecewise linear systems,with the harmonic response of the oscillator serving as a key prerequisite for calculating steady-state solutions.However,asymmetric systems inherently exhibit nonharmonic,asymmetric responses,rendering the traditional averaging method inapplicable.To overcome this limitation,this paper introduces an improved averaging method tailored for an oscillator characterized by asymmetric gaps and springs.Unlike the traditional method,which assumes a purely harmonic response,the improved averaging method redefines the system response as a superposition of a direct current(DC)term and a first harmonic component.Herein,the DC term can be regarded as the offset induced by model asymmetry.Furthermore,the DC term is treated as a slow variable function of time,with its time derivative assumed to be zero when calculating the steady-state solution,akin to the amplitude and phase in the traditional averaging method.Numerical validation demonstrates that the responses computed in both time and frequency domains with the improved averaging method exhibit greater accuracy compared with those derived from the traditional method.Leveraging these improved results,the study also examines the parameter effect,stability,and bifurcation phenomena within the amplitude-frequency responses.