The Radon-ambiguity transform (RAT), although efficient for detecting the linear frequency modulated signals (LFMs), is troubled by the energy accumulation of noise in low signal-to-noise ratio (SNR). A secondor...The Radon-ambiguity transform (RAT), although efficient for detecting the linear frequency modulated signals (LFMs), is troubled by the energy accumulation of noise in low signal-to-noise ratio (SNR). A secondorder difference (SOD) method is proposed to treat with this problem. In the SOD method, the optimal search step and difference step are derived from the LFM rate resolution formula. The sharpness of the peaks of RAT is measured by curvature, and the sharpness, but not the magnitude of the peaks, is used to detect the LFMs. The SOD method removes the noise energy accumulation and reserves the drastically changing components integrally; thus, it improves the detection probability of LFMs in low SNR. The expected performance of the new method is verified by 100 Monte Carlo simulations.展开更多
Reflection imaging results generally reveal large-scale continuous geological information,and it is difficult to identify small-scale geological bodies such as breakpoints,pinch points,small fault blocks,caves,and fra...Reflection imaging results generally reveal large-scale continuous geological information,and it is difficult to identify small-scale geological bodies such as breakpoints,pinch points,small fault blocks,caves,and fractures,etc.Diffraction imaging is an important method to identify small-scale geological bodies and it has higher resolution than reflection imaging.In the common-offset domain,reflections are mostly expressed as smooth linear events,whereas diffractions are characterized by hyperbolic events.This paper proposes a diffraction extraction method based on double sparse transforms.The linear events can be sparsely expressed by the high-resolution linear Radon transform,and the curved events can be sparsely expressed by the Curvelet transform.A sparse inversion model is built and the alternating direction method is used to solve the inversion model.Simulation data and field data experimental results proved that the diffractions extraction method based on double sparse transforms can effectively improve the imaging quality of faults and other small-scale geological bodies.展开更多
基金supported by the Program for New Century Excellent Talents in University, Ministry of Education (NCET-05-0803)
文摘The Radon-ambiguity transform (RAT), although efficient for detecting the linear frequency modulated signals (LFMs), is troubled by the energy accumulation of noise in low signal-to-noise ratio (SNR). A secondorder difference (SOD) method is proposed to treat with this problem. In the SOD method, the optimal search step and difference step are derived from the LFM rate resolution formula. The sharpness of the peaks of RAT is measured by curvature, and the sharpness, but not the magnitude of the peaks, is used to detect the LFMs. The SOD method removes the noise energy accumulation and reserves the drastically changing components integrally; thus, it improves the detection probability of LFMs in low SNR. The expected performance of the new method is verified by 100 Monte Carlo simulations.
基金supported by National Natural Science Foundation of China(41974166)Natural Science Foundation of Hebei Province(D2019403082,D2021403010)+1 种基金Hebei Province“three-threethree talent project”(A202005009)Funding for the Science and Technology Innovation Team Project of Hebei GEO University(KJCXTD202106)
文摘Reflection imaging results generally reveal large-scale continuous geological information,and it is difficult to identify small-scale geological bodies such as breakpoints,pinch points,small fault blocks,caves,and fractures,etc.Diffraction imaging is an important method to identify small-scale geological bodies and it has higher resolution than reflection imaging.In the common-offset domain,reflections are mostly expressed as smooth linear events,whereas diffractions are characterized by hyperbolic events.This paper proposes a diffraction extraction method based on double sparse transforms.The linear events can be sparsely expressed by the high-resolution linear Radon transform,and the curved events can be sparsely expressed by the Curvelet transform.A sparse inversion model is built and the alternating direction method is used to solve the inversion model.Simulation data and field data experimental results proved that the diffractions extraction method based on double sparse transforms can effectively improve the imaging quality of faults and other small-scale geological bodies.