期刊文献+
共找到42篇文章
< 1 2 3 >
每页显示 20 50 100
NONTRIVIAL SOLUTIONS FOR ASYMPTOTICALLY LINEAR HAMILTONIAN SYSTEMS WITH LAGRANGIAN BOUNDARY CONDITIONS 被引量:1
1
作者 刘春根 张清业 《Acta Mathematica Scientia》 SCIE CSCD 2012年第4期1545-1558,共14页
In this article, we study the existence of nontrivial solutions for a class of asymptotically linear Hamiltonian systems with Lagrangian boundary conditions by the Galerkin approximation methods and the L-index theory... In this article, we study the existence of nontrivial solutions for a class of asymptotically linear Hamiltonian systems with Lagrangian boundary conditions by the Galerkin approximation methods and the L-index theory developed by the first author. 展开更多
关键词 kLagrangian boundary conditions hamiltonian systems asymptotically linear Maslov-type index
在线阅读 下载PDF
Essential Numerical Ranges of Linear Relations and Singular Discrete Linear Hamiltonian Systems
2
作者 Li ZHU Huaqing SUN 《Chinese Annals of Mathematics,Series B》 2025年第1期63-84,共22页
Abstract In the paper,a concept of the essential numerical range W_(e)(T)of a linear relation T in a Hilbert space is given,other various essential numerical ranges W_(ei)(T),i=1,2,3,4,are introduced,and relationships... Abstract In the paper,a concept of the essential numerical range W_(e)(T)of a linear relation T in a Hilbert space is given,other various essential numerical ranges W_(ei)(T),i=1,2,3,4,are introduced,and relationships among W_(e)(T)and W_(ei)(T)are established.These results generalize relevant results obtained by Bogli et al.in[Bogli,S.,Marletta,M.and Tretter,C.,The essential numerical range for unbounded linear operators,J.Funct.Anal.,279,2020,47-12].Moreover,several fundamental properties of closed relations related to its operator parts are presented.In addition,singular discrete linear Hamiltonian systems including non-symmetric cases are considered,several properties for the associated minimal relations H_(0)are derived,and the above results for abstract linear relations are applied to H_(0). 展开更多
关键词 linear relation Numerical range Essential numerical range Essential spectrum Singular discrete linear hamiltonian system
原文传递
SYMPLECTIC MULTISTEP METHODS FOR LINEAR HAMILTONIAN SYSTEMS 被引量:3
3
作者 Li Wang-yao(Computing Center, Academia Sinica, Beijing China) 《Journal of Computational Mathematics》 SCIE CSCD 1994年第3期235-236,234-238,共4页
Three classes of symplectic multistep methods for linear Hamiltonian systems are constructed and their stabilities are discussed in this paper.
关键词 SYMPLECTIC MULTISTEP METHODS FOR linear hamiltonian systemS
原文传递
ESSENTIALLY SYMPLECTIC BOUNDARY VALUE METHODS FOR LINEAR HAMILTONIAN SYSTEMS 被引量:1
4
作者 L. Brugnano(Diprtimento di Enerpetica, University di Firenze, 50134 Firenze, Italy) 《Journal of Computational Mathematics》 SCIE CSCD 1997年第3期233-252,共20页
In this paper we are concerned with finite difference schemes for the numerical approximation of linear Hamiltonian systems of ODEs. Numerical methods which preserves the qualitative properties of Hamiltonian flows ar... In this paper we are concerned with finite difference schemes for the numerical approximation of linear Hamiltonian systems of ODEs. Numerical methods which preserves the qualitative properties of Hamiltonian flows are called symplectic intoprators. Several symplectic methods are known in the class of Runge-Kutta methods. However, no higll order symplectic integrators are known in the class of Linear Multistep Methods (LMMs). Here, by using LMMs as Boundary Value Methods (BVMs), we show that symplectic integrators of arbitrary high order are also available in this class. Moreover, these methods can be used to solve both initial and boundary value problems. In both cases, the properties of the flow of Hamiltonian systems are 'essentially' maintained by the discrete map, at least for linear problems. 展开更多
关键词 MATH ESSENTIALLY SYMPLECTIC BOUNDARY VALUE METHODS FOR linear hamiltonian systemS
原文传递
A Symplectic Conservative Perturbation Series Expansion Method for Linear Hamiltonian Systems with Perturbations and Its Applications
5
作者 Zhiping Qiu Nan Jiang 《Advances in Applied Mathematics and Mechanics》 SCIE 2021年第6期1535-1557,共23页
In this paper,a novel symplectic conservative perturbation series expansion method is proposed to investigate the dynamic response of linear Hamiltonian systems accounting for perturbations,which mainly originate from... In this paper,a novel symplectic conservative perturbation series expansion method is proposed to investigate the dynamic response of linear Hamiltonian systems accounting for perturbations,which mainly originate from parameters dispersions and measurement errors.Taking the perturbations into account,the perturbed system is regarded as a modification of the nominal system.By combining the perturbation series expansion method with the deterministic linear Hamiltonian system,the solution to the perturbed system is expressed in the form of asymptotic series by introducing a small parameter and a series of Hamiltonian canonical equations to predict the dynamic response are derived.Eventually,the response of the perturbed system can be obtained successfully by solving these Hamiltonian canonical equations using the symplectic difference schemes.The symplectic conservation of the proposed method is demonstrated mathematically indicating that the proposed method can preserve the characteristic property of the system.The performance of the proposed method is evaluated by three examples compared with the Runge-Kutta algorithm.Numerical examples illustrate the superiority of the proposed method in accuracy and stability,especially symplectic conservation for solving linear Hamiltonian systems with perturbations and the applicability in structural dynamic response estimation. 展开更多
关键词 linear hamiltonian system perturbation series expansion method symplectic structure symplectic algorithm structural dynamic response
在线阅读 下载PDF
MASLOV-TYPE INDEX, DEGENERATE CRITICAL POINTS, AND ASYMPTOTICALLY LINEAR HAMILTONIAN SYSTEMS 被引量:17
6
作者 龙以明 《Science China Mathematics》 SCIE 1990年第12期1409-1419,共11页
<正> This paper introduces a Maslov-type index theory for paths in the symplectic groups, especially for the degenerate paths via rotational perturbation method, therefore gives a full classification of the line... <正> This paper introduces a Maslov-type index theory for paths in the symplectic groups, especially for the degenerate paths via rotational perturbation method, therefore gives a full classification of the linear Hamiltonian systems with continuous, periodic, and symmetric coefficients. Associating this index with each periodic solution, we establish the existence of muhiple periodic solutions of asymptotically linear Hamihonian systems. 展开更多
关键词 Maslov-type index DEGENERATE critical points ROTATIONAL PERTURBATION method periodic solutions ASYMPTOTICALLY linear hamiltonian systems.
原文传递
Establishment of infinite dimensional Hamiltonian system of multilayer quasi-geostrophic flow & study on its linear stability
7
作者 黄思训 王宇 项杰 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第11期300-309,共10页
A multilayer flow is a stratified fluid composed of a finite number of layers with densities homogeneous within one layer but different from each other. It is an intermediate system between the single-layer barotropic... A multilayer flow is a stratified fluid composed of a finite number of layers with densities homogeneous within one layer but different from each other. It is an intermediate system between the single-layer barotropic model and the continuously stratified baroclinic model. Since this system can simulate the baroclinic effect simply, it is widely used to study the large-scale dynamic process in atmosphere and ocean. The present paper is concerned with the linear stability of the multilayer quasi-geostrophic flow, and the associated linear stability criteria are established. Firstly, the nonlinear model is turned into the form of a Hamiltonian system, and a basic flow is defined. But it cannot be an extreme point of the Hamiltonian function since the system is an infinite-dimensional one. Therefore, it is necessary to reconstruct a new Hamiltonian function so that the basic flow becomes an extreme point of it. Secondly, the linearized equations of disturbances in the multilayer quasi-geostrophic flow are derived by introducing infinitesimal disturbances superposed on the basic flows. Finally, the properties of the linearized system are discussed, and the linear stability criteria in the sense of Liapunov are derived under two different conditions with respect to certain norms. 展开更多
关键词 infinite dimensional hamiltonian system multilayer quasi-geostrophic flow linear stability
原文传递
A necessary and sufficient condition for transforming autonomous systems into linear autonomous Birkhoffian systems 被引量:1
8
作者 崔金超 刘世兴 宋端 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第10期349-353,共5页
The problem of transforming autonomous systems into Birkhoffian systems is studied. A reasonable form of linear autonomous Birkhoff equations is given. By combining them with the undetermined tensor method, a necessar... The problem of transforming autonomous systems into Birkhoffian systems is studied. A reasonable form of linear autonomous Birkhoff equations is given. By combining them with the undetermined tensor method, a necessary and sufficient condition for an autonomous system to have a representation in terms of linear autonomous Birkhoff equations is obtained. The methods of constructing Birkhoffian dynamical functions are given. Two examples are given to illustrate the application of the results. 展开更多
关键词 autonomous systems linear autonomous Birkhoff's equations non-hamiltonian systems Whit-taker's equations
原文传递
Lyapunov-type Inequalities For A System of Nonlinear Difference Equations
9
作者 WEI Geng-ping 《Chinese Quarterly Journal of Mathematics》 2019年第1期88-98,共11页
This paper establishes several new Lyapunov-type inequalities for the system of nonlinear difference equations■,which extend/supplement and improve some related existing ones.
关键词 Lyapunov-type inequality linear difference system Nonlinear difference system hamiltonian difference system
在线阅读 下载PDF
二阶非自治离散Hamiltonian系统的多重周期解 被引量:3
10
作者 张申贵 《西南师范大学学报(自然科学版)》 CAS CSCD 北大核心 2012年第9期13-18,共6页
研究了二阶非自治离散Hamiltonian系统周期解的存在性.在非线性项是线性增长时,将这类Hamiltonian系统的周期解转化为定义在一个适当空间上泛函的临界点,然后利用临界点理论建立此类系统周期解的存在性结果.
关键词 二阶离散hamiltonian系统 线性增长 周期解 临界点
在线阅读 下载PDF
一类非自治离散Hamiltonian系统的周期解 被引量:1
11
作者 张申贵 《徐州师范大学学报(自然科学版)》 CAS 2011年第1期31-34,共4页
研究了一阶非自治离散Hamiltonian系统周期解的存在性.在非线性项是线性增长条件时,将这类Hamilto-nian系统的周期解转化为定义在一个适当空间上泛函的临界点,然后利用临界点理论中的鞍点定理,建立了此类系统周期解的存在性结果.
关键词 一阶离散hamiltonian系统 线性增长条件 周期解 临界点
在线阅读 下载PDF
一类量子求解算法的电路设计及有效仿真
12
作者 高嘉佩 李雪莲 高军涛 《西安电子科技大学学报》 北大核心 2025年第5期72-87,共16页
量子算法的经典模拟对于评估算法性能、验证理论正确性具有重要意义。对于高阶稀疏矩阵,其对应的哈密顿量通常具有复杂的结构和特性,导致经典模拟量子求解算法的复杂度过高,严重制约了模拟效率与精度。针对哈密顿量模拟的难题,提出模块... 量子算法的经典模拟对于评估算法性能、验证理论正确性具有重要意义。对于高阶稀疏矩阵,其对应的哈密顿量通常具有复杂的结构和特性,导致经典模拟量子求解算法的复杂度过高,严重制约了模拟效率与精度。针对哈密顿量模拟的难题,提出模块分解技术和构建函数技术来近似模拟哈密顿量的演化,构建了在普通计算机上实现HHL(Harrow-Hassidim-Lloyd)算法的通用电路设计方案。基于Qiskit量子计算框架实现了13/14量子比特(基础规模)和20/21量子比特(扩展规模)的多规模电路对比,同时选取多组8阶厄米矩阵和列向量验证所设计电路的适用性。最后对比了不同线性系统在相应条件下的保真度和误差及其所占用的时间空间资源。实验结果表明,随着量子比特规模的扩大,两种技术对应的量子电路在求解线性系统时呈现出保真度提升与误差下降的同步优化特征。与其它方法相比,这两种技术均展现出大规模电路处理优势,为利用量子算法求解高维线性系统提供了可扩展的技术路线。 展开更多
关键词 线性系统 哈密顿量模拟 电路仿真 模块分解技术 构造函数技术
在线阅读 下载PDF
不连续平面分段线性系统的两点和四点极限环
13
作者 李争康 《数学物理学报(A辑)》 北大核心 2025年第3期824-842,共19页
该文研究一类具有折线边界的不连续平面分段线性系统中两点和四点极限环的存在性、共存性及最大共存个数.文献[29,30](Llibre&Teixeira,2017&2018)提出了两个公开问题:无平衡点或仅具有中心型平衡点的平面分段线性系统是否存在... 该文研究一类具有折线边界的不连续平面分段线性系统中两点和四点极限环的存在性、共存性及最大共存个数.文献[29,30](Llibre&Teixeira,2017&2018)提出了两个公开问题:无平衡点或仅具有中心型平衡点的平面分段线性系统是否存在极限环?该文假设两个子系统由无平衡点的线性Hamiltonian系统或具有中心型平衡点的线性系统构成,利用首次积分方法,证明了与折线边界交于两个点的两点极限环的最大个数为2,与折线边界交于四个点的四点极限环的最大个数为1.在1个四点极限环存在的前提下,仅具有唯一的两点极限环可以与其共存.此外,该文还利用数值模拟提供了精确的数值结果. 展开更多
关键词 极限环 不连续平面分段线性系统 首次积分 hamiltonian系统 中心型平衡点
在线阅读 下载PDF
一类平面分段光滑线性系统极限环个数的估计 被引量:5
14
作者 赵凌燕 李宝毅 张永康 《天津师范大学学报(自然科学版)》 CAS 2017年第4期6-10,共5页
利用Hamilton函数改变量,研究一类平面分段光滑线性系统,给出了其一阶Melnikov函数的计算公式,并证明了该系统可以存在5个极限环.
关键词 分段光滑线性系统 HAMILTON系统 MELNIKOV函数 极限环
在线阅读 下载PDF
Hamilton系统特征值问题的摄动方法及其应用 被引量:2
15
作者 吴志刚 高强 《振动工程学报》 EI CSCD 北大核心 2004年第1期7-10,共4页
研究了 Ham ilton系统特征值的摄动问题 ,给出了系统特征值和特征函数的摄动展开式。并基于 H∞ 控制系统的性能指标与相关的 Hamilton微分方程特征值的关系 ,利用特征值摄动方法计算参数摄动控制系统的最优H∞ 性能指标。
关键词 HAMILTON系统 特征值摄动方法 鲁棒控制 特征函数 计算 微分方程
在线阅读 下载PDF
哈密顿系统正则变换在时变最优控制中的应用 被引量:1
16
作者 吴志刚 谭述君 《力学学报》 EI CSCD 北大核心 2008年第1期86-97,共12页
利用哈密顿系统正则变换和生成函数理论求解线性时变最优控制问题,构造了新的最优控制律形式并提出了控制增益计算的保结构算法.利用生成函数求解最优控制导出的哈密顿系统两端边值问题,并构造线性时变系统的最优控制律,由第2类生成函... 利用哈密顿系统正则变换和生成函数理论求解线性时变最优控制问题,构造了新的最优控制律形式并提出了控制增益计算的保结构算法.利用生成函数求解最优控制导出的哈密顿系统两端边值问题,并构造线性时变系统的最优控制律,由第2类生成函数所构造的最优控制律避免了末端时刻出现无穷大反馈增益.控制系统设计中需求解生成函数满足的时变矩阵微分方程组.根据生成函数与哈密顿系统状态转移矩阵之间的关系,从正则变换的辛矩阵描述出发,导出了求解这组微分方程组的保结构递推算法.为了保持递推计算中的辛矩阵结构,哈密顿系统状态转移矩阵的计算中利用了Magnus级数. 展开更多
关键词 最优控制 正则变换 生成函数 哈密顿系统 线性时变系统
在线阅读 下载PDF
一类平面Hamilton系统的大范围非线性化近似方法 被引量:1
17
作者 化存才 陈关荣 《力学季刊》 CSCD 北大核心 2009年第4期569-576,共8页
在非线性动力系统的研究已经进入了占主导地位的时期,对其提出大范围的非线性化近似方法具有特别重要的意义。在本文中,我们主要对于一类典型的Hamilton系统,根据等势线有两个,或者三个交点的不同情形,给出7种不同的大范围最低次非线性... 在非线性动力系统的研究已经进入了占主导地位的时期,对其提出大范围的非线性化近似方法具有特别重要的意义。在本文中,我们主要对于一类典型的Hamilton系统,根据等势线有两个,或者三个交点的不同情形,给出7种不同的大范围最低次非线性化近似系统,并通过积分近似系统给出近似解(轨道)。结果表明,近似椭圆周期轨道可通过线性化近似系统得到,而同(异)宿轨道则可通过2、3次非线性化近似系统得到。最后,将近似方法应用于一个具体Hamilton系统的分析。 展开更多
关键词 HAMILTON系统 大范围非线性化近似方法 近似解析解
在线阅读 下载PDF
一类二阶哈密顿系统的无穷多同宿轨 被引量:1
18
作者 张申贵 李琰 《河北科技师范学院学报》 CAS 2014年第3期45-48,63,共5页
利用临界点理论研究二阶哈密顿系统同宿轨的存在性。在具有线性增长非线性项时,得到了无穷多同宿轨存在性的充分条件。
关键词 二阶哈密顿系统 线性增长非线性项 临界点理论
在线阅读 下载PDF
一类无界算子矩阵的闭性研究
19
作者 布和 包双宝 《内蒙古农业大学学报(自然科学版)》 CAS 北大核心 2009年第3期223-227,共5页
本文提出并论证了2×2分块算子矩阵H={A BC-A.}是闭算子的充分必要条件,其中A表示Hilbert空间H中稠定闭线性算子,B,C是自伴算子。
关键词 闭算子 线性算子 hamiltonian系统
在线阅读 下载PDF
线性哈密尔顿系统的块方法(英文)
20
作者 田红炯 陈佰林 《上海师范大学学报(自然科学版)》 2014年第1期9-21,共13页
对于哈密尔顿系统的数值求解,辛算法被认为是最合适的选择.主要研究一类具有至少k+1阶收敛性的k维块方法求解线性哈密尔顿系统的适用性,证明了当维数k不超过8时该类方法具有保持辛结构和二次型的性质.数值例子验证了理论结果.
关键词 块方法 哈密尔顿系统 线性系统 辛算法 二次型
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部