期刊文献+
共找到7,534篇文章
< 1 2 250 >
每页显示 20 50 100
Blockwise Empirical Likelihood Method for Spatial Dependent Data
1
作者 TANG Jie ZOU Yunlong +1 位作者 QIN Yongsong LI Yufang 《应用数学》 北大核心 2025年第1期47-63,共17页
Existing blockwise empirical likelihood(BEL)method blocks the observations or their analogues,which is proven useful under some dependent data settings.In this paper,we introduce a new BEL(NBEL)method by blocking the ... Existing blockwise empirical likelihood(BEL)method blocks the observations or their analogues,which is proven useful under some dependent data settings.In this paper,we introduce a new BEL(NBEL)method by blocking the scoring functions under high dimensional cases.We study the construction of confidence regions for the parameters in spatial autoregressive models with spatial autoregressive disturbances(SARAR models)with high dimension of parameters by using the NBEL method.It is shown that the NBEL ratio statistics are asymptoticallyχ^(2)-type distributed,which are used to obtain the NBEL based confidence regions for the parameters in SARAR models.A simulation study is conducted to compare the performances of the NBEL and the usual EL methods. 展开更多
关键词 SARAR model Empirical likelihood Confidence region High-dimensional statistical inference
在线阅读 下载PDF
An Online Exploratory Maximum Likelihood Estimation Approach to Adaptive Kalman Filtering
2
作者 Jiajun Cheng Haonan Chen +2 位作者 Zhirui Xue Yulong Huang Yonggang Zhang 《IEEE/CAA Journal of Automatica Sinica》 2025年第1期228-254,共27页
Over the past few decades, numerous adaptive Kalman filters(AKFs) have been proposed. However, achieving online estimation with both high estimation accuracy and fast convergence speed is challenging, especially when ... Over the past few decades, numerous adaptive Kalman filters(AKFs) have been proposed. However, achieving online estimation with both high estimation accuracy and fast convergence speed is challenging, especially when both the process noise and measurement noise covariance matrices are relatively inaccurate. Maximum likelihood estimation(MLE) possesses the potential to achieve this goal, since its theoretical accuracy is guaranteed by asymptotic optimality and the convergence speed is fast due to weak dependence on accurate state estimation.Unfortunately, the maximum likelihood cost function is so intricate that the existing MLE methods can only simply ignore all historical measurement information to achieve online estimation,which cannot adequately realize the potential of MLE. In order to design online MLE-based AKFs with high estimation accuracy and fast convergence speed, an online exploratory MLE approach is proposed, based on which a mini-batch coordinate descent noise covariance matrix estimation framework is developed. In this framework, the maximum likelihood cost function is simplified for online estimation with fewer and simpler terms which are selected in a mini-batch and calculated with a backtracking method. This maximum likelihood cost function is sidestepped and solved by exploring possible estimated noise covariance matrices adaptively while the historical measurement information is adequately utilized. Furthermore, four specific algorithms are derived under this framework to meet different practical requirements in terms of convergence speed, estimation accuracy,and calculation load. Abundant simulations and experiments are carried out to verify the validity and superiority of the proposed algorithms as compared with existing state-of-the-art AKFs. 展开更多
关键词 Adaptive Kalman filtering coordinate descent maximum likelihood estimation mini-batch optimization unknown noise covariance matrix
在线阅读 下载PDF
Vulnerable brain regions in adolescent attention deficit hyperactivity disorder:An activation likelihood estimation meta-analysis
3
作者 Yan-Ping Shu Qin Zhang +4 位作者 Da Li Jiao-Ying Liu Xiao-Ming Wang Qiang He Yong-Zhe Hou 《World Journal of Psychiatry》 2025年第4期298-309,共12页
BACKGROUND Attention deficit hyperactivity disorder(ADHD)is a prevalent neurodevelopmental disorder in adolescents characterized by inattention,hyperactivity,and impulsivity,which impact cognitive,behavioral,and emoti... BACKGROUND Attention deficit hyperactivity disorder(ADHD)is a prevalent neurodevelopmental disorder in adolescents characterized by inattention,hyperactivity,and impulsivity,which impact cognitive,behavioral,and emotional functioning.Resting-state functional magnetic resonance imaging(rs-fMRI)provides critical insights into the functional architecture of the brain in ADHD.Despite extensive research,specific brain regions consistently affected in ADHD patients during these formative years have not been comprehensively delineated.AIM To identify consistent vulnerable brain regions in adolescent ADHD patients using rs-fMRI and activation likelihood estimation(ALE)meta-analysis.METHODS We conducted a comprehensive literature search up to August 31,2024,to identify studies investigating functional brain alterations in adolescents with ADHD.We utilized regional homogeneity(ReHo),amplitude of low-frequency fluctuations(ALFF),dynamic ALFF(dALFF)and fractional ALFF(fALFF)analyses.We compared the regions of aberrant spontaneous neural activity in adolescents with ADHD with those in healthy controls(HCs)using ALE.RESULTS Fifteen studies(468 adolescent ADHD patients and 466 HCs)were included.Combining the ReHo and ALFF/fALFF/dALFF data,the results revealed increased activity in the right lingual gyrus[LING,Brodmann Area(BA)18],left LING(BA 18),and right cuneus(CUN,BA 23)in adolescent ADHD patients compared with HCs(voxel size:592-32 mm³,P<0.05).Decreased activity was observed in the left medial frontal gyrus(MFG,BA 9)and left precuneus(PCUN,BA 31)in adolescent ADHD patients compared with HCs(voxel size:960-456 mm³,P<0.05).Jackknife sensitivity analyses demonstrated robust reproducibility in 11 of the 13 tests for the right LING,left LING,and right CUN and in 11 of the 14 tests for the left MFG and left PCUN.CONCLUSION We identified specific brain regions with both increased and decreased activity in adolescent ADHD patients,enhancing our understanding of the neural alterations that occur during this pivotal stage of development. 展开更多
关键词 Attention deficit hyperactivity disorder ADOLESCENT Resting-state functional magnetic resonance imaging Activation likelihood estimation META-ANALYSIS Medial frontal gyrus PRECUNEUS Cuneus Lingual gyrus
暂未订购
Beamspace maximum likelihood algorithm based on sum and difference beams for elevation estimation
4
作者 CHEN Sheng ZHAO Yongbo +1 位作者 HU Yili PANG Xiaojiao 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第3期589-598,共10页
Beamspace super-resolution methods for elevation estimation in multipath environment has attracted significant attention, especially the beamspace maximum likelihood(BML)algorithm. However, the difference beam is rare... Beamspace super-resolution methods for elevation estimation in multipath environment has attracted significant attention, especially the beamspace maximum likelihood(BML)algorithm. However, the difference beam is rarely used in superresolution methods, especially in low elevation estimation. The target airspace information in the difference beam is different from the target airspace information in the sum beam. And the use of difference beams does not significantly increase the complexity of the system and algorithms. Thus, this paper applies the difference beam to the beamformer to improve the elevation estimation performance of BML algorithm. And the direction and number of beams can be adjusted according to the actual needs. The theoretical target elevation angle root means square error(RMSE) and the computational complexity of the proposed algorithms are analyzed. Finally, computer simulations and real data processing results demonstrate the effectiveness of the proposed algorithms. 展开更多
关键词 elevation estimation BEAMSPACE multipath environment maximum likelihood
在线阅读 下载PDF
Empirical likelihood for spatial cross-sectional data models with matrix exponential spatial specification
5
作者 LIU Yan RONG Jian-rong QIN Yong-song 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2024年第1期125-139,共15页
In this paper,we study spatial cross-sectional data models in the form of matrix exponential spatial specification(MESS),where MESS appears in both dependent and error terms.The empirical likelihood(EL)ratio statistic... In this paper,we study spatial cross-sectional data models in the form of matrix exponential spatial specification(MESS),where MESS appears in both dependent and error terms.The empirical likelihood(EL)ratio statistics are established for the parameters of the MESS model.It is shown that the limiting distributions of EL ratio statistics follow chi-square distributions,which are used to construct the confidence regions of model parameters.Simulation experiments are conducted to compare the performances of confidence regions based on EL method and normal approximation method. 展开更多
关键词 MESS empirical likelihood con dence region
在线阅读 下载PDF
Optimization of Generator Based on Gaussian Process Regression Model with Conditional Likelihood Lower Bound Search
6
作者 Xiao Liu Pingting Lin +2 位作者 Fan Bu Shaoling Zhuang Shoudao Huang 《CES Transactions on Electrical Machines and Systems》 EI CSCD 2024年第1期32-42,共11页
The noise that comes from finite element simulation often causes the model to fall into the local optimal solution and over fitting during optimization of generator.Thus,this paper proposes a Gaussian Process Regressi... The noise that comes from finite element simulation often causes the model to fall into the local optimal solution and over fitting during optimization of generator.Thus,this paper proposes a Gaussian Process Regression(GPR)model based on Conditional Likelihood Lower Bound Search(CLLBS)to optimize the design of the generator,which can filter the noise in the data and search for global optimization by combining the Conditional Likelihood Lower Bound Search method.Taking the efficiency optimization of 15 kW Permanent Magnet Synchronous Motor as an example.Firstly,this method uses the elementary effect analysis to choose the sensitive variables,combining the evolutionary algorithm to design the super Latin cube sampling plan;Then the generator-converter system is simulated by establishing a co-simulation platform to obtain data.A Gaussian process regression model combing the method of the conditional likelihood lower bound search is established,which combined the chi-square test to optimize the accuracy of the model globally.Secondly,after the model reaches the accuracy,the Pareto frontier is obtained through the NSGA-II algorithm by considering the maximum output torque as a constraint.Last,the constrained optimization is transformed into an unconstrained optimizing problem by introducing maximum constrained improvement expectation(CEI)optimization method based on the re-interpolation model,which cross-validated the optimization results of the Gaussian process regression model.The above method increase the efficiency of generator by 0.76%and 0.5%respectively;And this method can be used for rapid modeling and multi-objective optimization of generator systems. 展开更多
关键词 Generator optimization Gaussian Process Regression(GPR) Conditional likelihood Lower Bound Search(CLLBS) Constraint improvement expectation(CEI) Finite element calculation
在线阅读 下载PDF
Multimodal abnormalities of brain structures in adolescents and young adults with major depressive disorder:An activation likelihood estimation meta-analysis
7
作者 Yan-Ping Shu Qin Zhang +4 位作者 Yong-Zhe Hou Shuang Liang Zu-Li Zheng Jia-Lin Li Gang Wu 《World Journal of Psychiatry》 SCIE 2024年第7期1106-1117,共12页
BACKGROUND Major depressive disorder(MDD)in adolescents and young adults contributes significantly to global morbidity,with inconsistent findings on brain structural changes from structural magnetic resonance imaging ... BACKGROUND Major depressive disorder(MDD)in adolescents and young adults contributes significantly to global morbidity,with inconsistent findings on brain structural changes from structural magnetic resonance imaging studies.Activation likeli-hood estimation(ALE)offers a method to synthesize these diverse findings and identify consistent brain anomalies.METHODS We performed a comprehensive literature search in PubMed,Web of Science,Embase,and Chinese National Knowledge Infrastructure databases for neuroi-maging studies on MDD among adolescents and young adults published up to November 19,2023.Two independent researchers performed the study selection,quality assessment,and data extraction.The ALE technique was employed to synthesize findings on localized brain function anomalies in MDD patients,which was supplemented by sensitivity analyses.RESULTS Twenty-two studies comprising fourteen diffusion tensor imaging(DTI)studies and eight voxel-based morphome-try(VBM)studies,and involving 451 MDD patients and 465 healthy controls(HCs)for DTI and 664 MDD patients and 946 HCs for VBM,were included.DTI-based ALE demonstrated significant reductions in fractional anisotropy(FA)values in the right caudate head,right insula,and right lentiform nucleus putamen in adolescents and young adults with MDD compared to HCs,with no regions exhibiting increased FA values.VBM-based ALE did not demonstrate significant alterations in gray matter volume.Sensitivity analyses highlighted consistent findings in the right caudate head(11 of 14 analyses),right insula(10 of 14 analyses),and right lentiform nucleus putamen(11 of 14 analyses).CONCLUSION Structural alterations in the right caudate head,right insula,and right lentiform nucleus putamen in young MDD patients may contribute to its recurrent nature,offering insights for targeted therapies. 展开更多
关键词 Major depressive disorder ADOLESCENT Young adults NEUROIMAGING Diffusion tensor imaging Voxel-based morphometry Activation likelihood estimation META-ANALYSIS
暂未订购
Vulnerable brain regions in adolescent major depressive disorder:A resting-state functional magnetic resonance imaging activation likelihood estimation meta-analysis
8
作者 Hui Ding Qin Zhang +6 位作者 Yan-Ping Shu Bin Tian Ji Peng Yong-Zhe Hou Gang Wu Li-Yun Lin Jia-Lin Li 《World Journal of Psychiatry》 SCIE 2024年第3期456-466,共11页
BACKGROUND Adolescent major depressive disorder(MDD)is a significant mental health concern that often leads to recurrent depression in adulthood.Resting-state functional magnetic resonance imaging(rs-fMRI)offers uniqu... BACKGROUND Adolescent major depressive disorder(MDD)is a significant mental health concern that often leads to recurrent depression in adulthood.Resting-state functional magnetic resonance imaging(rs-fMRI)offers unique insights into the neural mechanisms underlying this condition.However,despite previous research,the specific vulnerable brain regions affected in adolescent MDD patients have not been fully elucidated.AIM To identify consistent vulnerable brain regions in adolescent MDD patients using rs-fMRI and activation likelihood estimation(ALE)meta-analysis.METHODS We performed a comprehensive literature search through July 12,2023,for studies investigating brain functional changes in adolescent MDD patients.We utilized regional homogeneity(ReHo),amplitude of low-frequency fluctuations(ALFF)and fractional ALFF(fALFF)analyses.We compared the regions of aberrant spontaneous neural activity in adolescents with MDD vs healthy controls(HCs)using ALE.RESULTS Ten studies(369 adolescent MDD patients and 313 HCs)were included.Combining the ReHo and ALFF/fALFF data,the results revealed that the activity in the right cuneus and left precuneus was lower in the adolescent MDD patients than in the HCs(voxel size:648 mm3,P<0.05),and no brain region exhibited increased activity.Based on the ALFF data,we found decreased activity in the right cuneus and left precuneus in adolescent MDD patients(voxel size:736 mm3,P<0.05),with no regions exhibiting increased activity.CONCLUSION Through ALE meta-analysis,we consistently identified the right cuneus and left precuneus as vulnerable brain regions in adolescent MDD patients,increasing our understanding of the neuropathology of affected adolescents. 展开更多
关键词 Major depressive disorder Resting-state functional magnetic resonance imaging ADOLESCENT Activation likelihood estimation META-ANALYSIS
暂未订购
Local calibration of JPCP transverse cracking and IRI models using maximum likelihood estimation
9
作者 Rahul Raj Singh Syed Waqar Haider James Bryce 《Journal of Road Engineering》 2024年第4期433-445,共13页
The calibration of transfer functions is essential for accurate pavement performance predictions in the PavementME design. Several studies have used the least square approach to calibrate these transfer functions. Lea... The calibration of transfer functions is essential for accurate pavement performance predictions in the PavementME design. Several studies have used the least square approach to calibrate these transfer functions. Least square is a widely used simplistic approach based on certain assumptions. Literature shows that these least square approach assumptions may not apply to the non-normal distributions. This study introduces a new methodology for calibrating the transverse cracking and international roughness index(IRI) models in rigid pavements using maximum likelihood estimation(MLE). Synthetic data for transverse cracking, with and without variability, are generated to illustrate the applicability of MLE using different known probability distributions(exponential,gamma, log-normal, and negative binomial). The approach uses measured data from the Michigan Department of Transportation's(MDOT) pavement management system(PMS) database for 70 jointed plain concrete pavement(JPCP) sections to calibrate and validate transfer functions. The MLE approach is combined with resampling techniques to improve the robustness of calibration coefficients. The results show that the MLE transverse cracking model using the gamma distribution consistently outperforms the least square for synthetic and observed data. For observed data, MLE estimates of parameters produced lower SSE and bias than least squares(e.g., for the transverse cracking model, the SSE values are 3.98 vs. 4.02, and the bias values are 0.00 and-0.41). Although negative binomial distribution is the most suitable fit for the IRI model for MLE, the least square results are slightly better than MLE. The bias values are-0.312 and 0.000 for the MLE and least square methods. Overall, the findings indicate that MLE is a robust method for calibration, especially for non-normally distributed data such as transverse cracking. 展开更多
关键词 Mechanistic empirical pavement design guide Transfer function Maximum likelihood estimation Transverse cracking International roughness index Rigid pavements
在线阅读 下载PDF
A Likelihood-Based Multiple Change Point Algorithm for Count Data with Allowance for Over-Dispersion
10
作者 Shalyne Nyambura Anthony Waititu +1 位作者 Antony Wanjoya Herbert Imboga 《Open Journal of Statistics》 2024年第5期518-545,共28页
Count data is almost always over-dispersed where the variance exceeds the mean. Several count data models have been proposed by researchers but the problem of over-dispersion still remains unresolved, more so in the c... Count data is almost always over-dispersed where the variance exceeds the mean. Several count data models have been proposed by researchers but the problem of over-dispersion still remains unresolved, more so in the context of change point analysis. This study develops a likelihood-based algorithm that detects and estimates multiple change points in a set of count data assumed to follow the Negative Binomial distribution. Discrete change point procedures discussed in literature work well for equi-dispersed data. The new algorithm produces reliable estimates of change points in cases of both equi-dispersed and over-dispersed count data;hence its advantage over other count data change point techniques. The Negative Binomial Multiple Change Point Algorithm was tested using simulated data for different sample sizes and varying positions of change. Changes in the distribution parameters were detected and estimated by conducting a likelihood ratio test on several partitions of data obtained through step-wise recursive binary segmentation. Critical values for the likelihood ratio test were developed and used to check for significance of the maximum likelihood estimates of the change points. The change point algorithm was found to work best for large datasets, though it also works well for small and medium-sized datasets with little to no error in the location of change points. The algorithm correctly detects changes when present and fails to detect changes when change is absent in actual sense. Power analysis of the likelihood ratio test for change was performed through Monte-Carlo simulation in the single change point setting. Sensitivity analysis of the test power showed that likelihood ratio test is the most powerful when the simulated change points are located mid-way through the sample data as opposed to when changes were located in the periphery. Further, the test is more powerful when the change was located three-quarter-way through the sample data compared to when the change point is closer (quarter-way) to the first observation. 展开更多
关键词 OVER-DISPERSION Multiple Changepoint Binary Segmentation likelihood Ratio Test
在线阅读 下载PDF
立德树人视域下融入实践的大学数学课程教学改革 被引量:2
11
作者 张艳芳 赵宜宾 王福昌 《科技风》 2025年第10期54-56,共3页
大学数学课程内容有着深刻的实际应用背景,在各个领域都有广泛应用。在立德树人理念指导下,针对我校为应用型本科院校这一现实,团队教师充分调研讨论重构教学内容;整理教学实践内容,并将二者与数学理论知识有机融合,构建大学数学新教学... 大学数学课程内容有着深刻的实际应用背景,在各个领域都有广泛应用。在立德树人理念指导下,针对我校为应用型本科院校这一现实,团队教师充分调研讨论重构教学内容;整理教学实践内容,并将二者与数学理论知识有机融合,构建大学数学新教学模式。课堂中突出大学数学理论知识的应用性和实践性,培养学生正确的世界观、人生观和价值观。新教学模式充分体现了大学数学的应用性,提升了学生对数学软件的应用能力,扩展了学生视野,为专业课学习打好基础,为培养应用型和创新型人才提供借鉴。 展开更多
关键词 立德树人 实践教学 极大似然估计 教学设计
在线阅读 下载PDF
协议型商标共存的底层逻辑与制度构建--《商标法》第30条的适用和修订 被引量:1
12
作者 孔祥俊 《知识产权》 北大核心 2025年第1期6-32,共27页
《商标法》第30条规定了禁止商标共存原则,司法裁判则以不同理由准许特殊情况下的商标共存,但对于是否允许共存及允许共存的判断标准等仍然众说不一,司法态度时松时紧和时有摇摆。一概否定商标共存有悖经济生活的特殊和合理需求,也无助... 《商标法》第30条规定了禁止商标共存原则,司法裁判则以不同理由准许特殊情况下的商标共存,但对于是否允许共存及允许共存的判断标准等仍然众说不一,司法态度时松时紧和时有摇摆。一概否定商标共存有悖经济生活的特殊和合理需求,也无助于构建健全的禁止商标共存制度。准予共存的司法裁判通常基于共存商标能够相互区分及不产生混淆,如此认定更多是与真实事实不符的司法拟制,据此构建商标共存是对商标共存制度的误读。商标共存只能是禁止商标共存原则的例外,且并非以共存协议能够有效区分共存商标或者能够排除市场混淆为依据,而是基于商标的权利取向,在例外情况下对混淆性共存的允许。《商标法》第30条未规定商标共存的例外,解决商标共存问题的路径有两种:一是在重构共存关系的底层逻辑基础上,通过灵活适用第30条允许商标共存,消除司法的认识误区;二是修订第30条,增设商标共存制度。基于商标共存的现实需求,无论采取哪种路径,承认商标共存应当是方向。 展开更多
关键词 商标共存 商标共存协议 市场混淆的可能性 商标权 消费者保护
在线阅读 下载PDF
基于修正q-威布尔分布的矿用卡车可靠性分析
13
作者 刘威 高琪 +2 位作者 刘光伟 白润才 朱乙鑫 《辽宁工程技术大学学报(自然科学版)》 北大核心 2025年第2期237-246,共10页
为了更加准确地描述露天矿矿用卡车的失效规律,提高可靠性分析的准确性,构建了一种新的alpha变换。在此基础上,提出了一种四参数修正q-威布尔分布模型,并采用蜣螂优化算法与极大似然估计相结合的方式对模型的参数进行估计。通过实例对... 为了更加准确地描述露天矿矿用卡车的失效规律,提高可靠性分析的准确性,构建了一种新的alpha变换。在此基础上,提出了一种四参数修正q-威布尔分布模型,并采用蜣螂优化算法与极大似然估计相结合的方式对模型的参数进行估计。通过实例对比验证了使用修正q-威布尔分布模型评估矿用卡车可靠性的合理性和有效性。数值试验结果表明,利用修正q-威布尔分布模型对矿用卡车故障间隔时间进行分析,制定相应的预防性维修周期能够更好地保障矿用卡车安全、稳定运行。 展开更多
关键词 矿用卡车 可靠性分析 修正q-威布尔分布 蜣螂优化算法 预防性维修周期 极大似然估计
原文传递
基于路径似然模型与HMM序列匹配定位的地铁隧道三维重建
14
作者 胡钊政 王书恒 +3 位作者 孟杰 冯锋 朱紫威 李维刚 《电子与信息学报》 北大核心 2025年第7期2273-2284,共12页
在地铁隧道等退化场景下,主流的激光或视觉SLAM算法实用性低,无法有效完成三维重建工作。该文提出一种基于路径似然模型(PLM)与隐马尔可夫(HMM)序列匹配的大规模地铁隧道三维重建方法,将三维重建问题分解为里程计定位与基于图优化的高... 在地铁隧道等退化场景下,主流的激光或视觉SLAM算法实用性低,无法有效完成三维重建工作。该文提出一种基于路径似然模型(PLM)与隐马尔可夫(HMM)序列匹配的大规模地铁隧道三维重建方法,将三维重建问题分解为里程计定位与基于图优化的高精度三维重建两个过程。针对里程计定位,该文提出一种融合路径似然模型的里程计方法。在粒子滤波框架下,将轨道约束转化为观测,并与IMU和轮速计数据融合,实现在轨机器人定位。此外,还提出一种基于HMM序列匹配的回环检测方法,将回环检测问题转化为序列匹配问题,提升回环检测的性能。针对重建问题,提出一种基于大规模因子图优化的三维重建方法,通过多约束条件完成位姿图优化,从而实现大规模地铁隧道的高精度三维重建。在成都韦家碾-双水碾和沙河源-洞子口两段地铁站之间进行了实地测试。实验结果表明,该文提出的PLM和HMM序列匹配可以有效提升里程计定位精度和回环检测性能,从而实现大规模地铁隧道场景的高精度三维重建。 展开更多
关键词 地铁隧道 退化场景 路径似然 序列匹配 因子图优化
在线阅读 下载PDF
基于改进MLE参数辨识ARMAX模型的电力系统节点惯量评估
15
作者 赵伟 武家辉 +1 位作者 买力哈巴 李伟 《电力系统保护与控制》 北大核心 2025年第16期39-49,共11页
随着风电渗透率的持续上升,电力系统的惯量水平显著下降,对系统频率稳定性构成了新的挑战。为有效评估风电并网情况下电力系统节点惯量的变化,提出了一种基于受控自回归滑动平均(autoregressive moving average with exogenous variable... 随着风电渗透率的持续上升,电力系统的惯量水平显著下降,对系统频率稳定性构成了新的挑战。为有效评估风电并网情况下电力系统节点惯量的变化,提出了一种基于受控自回归滑动平均(autoregressive moving average with exogenous variable,ARMAX)模型的改进最大似然估计(maximum likelihood estimation,MLE)参数辨识方法对系统机组直接相连节点进行惯量评估。首先,构建ARMAX模型对发电机组直接相连节点的动态特性进行建模,并利用改进MLE对模型参数进行辨识,以评估与机组直接相连的节点惯量。然后,基于k-means聚类算法对发电机组节点惯量进行分区,计算得到系统区域惯量和中心频率,并进一步对非发电机组节点频率进行自适应多项式拟合计算,得到其系统节点惯量。最后,搭建IEEE39含风力发电机组节点系统,绘制热力图直观展示电力系统节点和区域的惯量分布,验证了所提改进方法的有效性。该方法有助于精准识别系统中不同节点的动态响应特性,为风电并网系统的分析和规划提供了有力支持。 展开更多
关键词 最大似然 参数辨识 节点惯量 惯量分区 多项式拟合
在线阅读 下载PDF
最好可能自我干预对抑郁倾向人群未来预期的改善效果
16
作者 周斌 陆丽冬 胡治国 《中国临床心理学杂志》 北大核心 2025年第5期1098-1102,1107,共6页
目的:考查最好可能自我(bestpossibleself, BPS)干预对抑郁倾向个体未来预期、情绪、抑郁水平的改善效果。方法:被试分为三组,实验组和对照组分别包括抑郁倾向者15人和16人,正常组包括非抑郁倾向者18人。实验组进行BPS干预,其余两组回... 目的:考查最好可能自我(bestpossibleself, BPS)干预对抑郁倾向个体未来预期、情绪、抑郁水平的改善效果。方法:被试分为三组,实验组和对照组分别包括抑郁倾向者15人和16人,正常组包括非抑郁倾向者18人。实验组进行BPS干预,其余两组回忆过去一天的事件,干预时长为7天,每天1次。干预前后被试分别完成贝克抑郁量表、积极消极情绪量表、贝克绝望量表,以及未来事件可能性评估实验,即要求被试评估给定的四类事件(与个人目标相关/无关的积极/消极事件)在未来发生在自己身上的可能性。结果:相比于其他两组,实验组在BPS干预后不仅积极情绪显著提高了,抑郁水平和绝望感显著下降了,而且认为与个人目标相关的积极未来事件发生在自己身上的可能性更高了。结论:BPS不仅能改善抑郁倾向人群的情绪状态,也能提高他们对未来的积极预期。 展开更多
关键词 最好可能自我 抑郁 未来预期 自我 可能性评估
原文传递
“虚”以求理,“实”以诉情——代言人类型与广告诉求的匹配效应研究 被引量:1
17
作者 汪旭晖 曹学义 黄海蒂 《营销科学学报》 2025年第2期115-134,共20页
在人工智能等新技术的赋能下,虚拟明星代言人逐渐兴起并渗透到多个消费领域。虚拟明星代言人与真实明星代言人存在替代效应和互补效应两种不同的作用效果,究其原因,主要是在不同的广告诉求情境下,消费者对代言人类型的期望存在差异。本... 在人工智能等新技术的赋能下,虚拟明星代言人逐渐兴起并渗透到多个消费领域。虚拟明星代言人与真实明星代言人存在替代效应和互补效应两种不同的作用效果,究其原因,主要是在不同的广告诉求情境下,消费者对代言人类型的期望存在差异。本研究基于精细加工可能性模型和语言预期理论,通过4个情景实验,揭示了明星代言人类型与广告诉求对消费者购买意愿的匹配效应及影响机制和边界条件,研究发现:(1)明星代言人类型与广告诉求存在匹配效应,即对于理性诉求(vs.感性诉求)的广告情境,消费者对基于虚拟明星代言人(vs.真实明星代言人)推荐的购买意愿更高;(2)感知诊断性中介了上述匹配效应,即在理性诉求(vs.感性诉求)广告情境下,基于虚拟明星代言人(vs.真实明星代言人)的推荐会提高消费者的感知诊断性,进而提升消费者的购买意愿;(3)再次验证了主效应和中介机制,同时排除了感知愉悦性和信息加工流畅性的替代解释;(4)产品类型调节了上述匹配效应,即对于实用型产品,在理性诉求的广告情境下明星代言人类型与广告诉求的匹配效应存在,而在感性诉求下此匹配效应被抑制;对于享乐型产品,在感性诉求的广告情境下明星代言人类型与广告诉求的匹配效应存在,而在理性诉求下此匹配效应被抑制。上述结论不仅有助于丰富关于明星代言人的理论研究,还为企业运用明星代言人代言策略提升广告推荐效果提供了营销启示。 展开更多
关键词 虚拟明星代言人 真实明星代言人 广告诉求 感知诊断性 精细加工可能性模型
在线阅读 下载PDF
基于FIML和DAE的水稻种质资源数据自适应填充算法设计
18
作者 李艳玲 韩茹菲 +3 位作者 苏楠 李飞涛 FERNANDO Bacao 司海平 《河南农业大学学报》 北大核心 2025年第2期316-325,共10页
【目的】设计一种基于FIML和DAE的填充缺失值的方法,即聚类全信息选择性过滤编码器数据填补算法(clustering-based comprehensive information selective filtering encoder data imputation algorithm,CFSM-DAE),为水稻种质资源缺失数... 【目的】设计一种基于FIML和DAE的填充缺失值的方法,即聚类全信息选择性过滤编码器数据填补算法(clustering-based comprehensive information selective filtering encoder data imputation algorithm,CFSM-DAE),为水稻种质资源缺失数据进行填充。【方法】利用聚类辅助避免数据异常值对算法的影响,采用选择性过滤层用于识别高质量估算、减少低质量估算的影响。传统的DAE框架通常没有选择性过滤层,所有的估算值都被视为同等重要,无法区分高质量和低质量的估算值。为了进一步提高估算精度,研究采用集成框架将全信息最大似然性(FIML)与多对抗性自编码器(DAE)结合的方法(CFSM-DAE),在选择性过滤层基础上,自适应填充,即当估算值不符合设定阈值时,采用FIML填充策略以确保填充结果的稳定性和精确度,从而进一步来提高整体估算精度。在3种缺失数据机制(随机缺失(MAR)、完全随机缺失(MCAR)和非随机缺失(MNAR))下对模拟数据和实际水稻种质资源数据集进行研究,将CFSM-DAE方法与多种常用填充算法比较(全信息最大似然性(FIML)、对抗自编码器(DAE)、K近邻填充(KNN)、随机森林(RF)、链式方程多重插补(MICE))。【结果】CFSM-DAE在模拟数据上的表现为S_(RME)=0.0676,E_(MA)=0.0093,R^(2)=0.9958;在水稻种质资源数据上的表现为S_(RME)=0.0395,E_(MA)=0.0078,R^(2)=0.8913。相比之下,其他算法如DAE在这两类数据下的SRME表现分别为0.8896和0.7707;KNN算法的EMA表现分别为0.1183和0.1305;FIML算法的R2表现为0.3382和0.7321。因此,CFSM-DAE在多个评价指标上相较于其他算法都表现出了一定的提升,CFSM-DAE在模拟数据和水稻种质资源数据的表现优于其他算法。【结论】CFSM-DAE方法通过结合聚类、选择性过滤和全信息最大似然性等策略,显著提高了水稻种质资源数据中缺失值的填补精度,展示了其在处理复杂缺失值问题上的有效性和潜力。 展开更多
关键词 水稻种质资源 聚类 全信息最大似然性 对抗性自编码器 选择性过滤层 数据缺失
在线阅读 下载PDF
基于阻尼GARCH扩散模型的碳期权定价研究
19
作者 吴鑫育 朱志田 李心丹 《系统管理学报》 北大核心 2025年第5期1401-1415,共15页
本文在GARCH扩散模型中引入阻尼结构,构建了用于碳期权定价的阻尼GARCH扩散模型。该模型能够更充分地捕捉碳金融市场的波动率动态特征,尤其是在极端波动情境下的表现。通过Radon-Nikodym导数推导风险中性收益率动态性过程,并采用蒙特卡... 本文在GARCH扩散模型中引入阻尼结构,构建了用于碳期权定价的阻尼GARCH扩散模型。该模型能够更充分地捕捉碳金融市场的波动率动态特征,尤其是在极端波动情境下的表现。通过Radon-Nikodym导数推导风险中性收益率动态性过程,并采用蒙特卡罗模拟方法计算碳期权价格。使用序贯极大似然方法,结合碳期权价格数据及其标的期货收益率数据,对定价模型参数进行估计。基于欧盟碳期权数据的实证结果表明:阻尼GARCH扩散模型在样本内和样本外定价精度上均显著优于Black模型与标准GARCH扩散模型。具体而言:样本内定价的均方根误差(RMSE)分别降低了91.03%和5.39%;样本外定价误差分别减少了86.73%和2.84%。该结论在不同评价指标下均保持稳健。进一步比较发现,阻尼GARCH扩散模型相比随机波动率跳跃(SVJ)模型在碳期权定价方面表现更优。研究结果凸显了引入阻尼扩散结构对提升碳期权定价效果的重要作用。 展开更多
关键词 碳期权定价 阻尼GARCH扩散模型 阻尼结构 粒子滤波 序贯极大似然估计
在线阅读 下载PDF
地基层析ArcSAR三维点云生成方法
20
作者 田卫明 晏凯 +2 位作者 高嵩 周涵璞 邓云开 《信号处理》 北大核心 2025年第8期1348-1357,共10页
因高度向分辨能力缺失,地基干涉雷达应用于建筑成像时会发生严重的高度向叠掩现象。层析合成孔径雷达(Tomographic Synthetic Aperture Radar,TomoSAR)技术具备高度向分辨能力,能够实现建筑三维成像。地基层析圆弧扫描合成孔径雷达(Grou... 因高度向分辨能力缺失,地基干涉雷达应用于建筑成像时会发生严重的高度向叠掩现象。层析合成孔径雷达(Tomographic Synthetic Aperture Radar,TomoSAR)技术具备高度向分辨能力,能够实现建筑三维成像。地基层析圆弧扫描合成孔径雷达(Ground-based Tomographic Arc-scanning Synthetic Aperture Radar,GB-TomoArcSAR)通过双轴转台控制天线在不同俯仰角度的水平面内进行圆周扫描来获取高度向合成孔径,实现三维层析成像。本文提出了GB-TomoArcSAR的三维点云生成方法,首先构建了适用于高度向弧形采样条件的层析成像几何模型。其次利用基于巴特沃斯滤波器的奇异值分解(Singular Value Decomposition,SVD)方法进行谱估计,找出层析谱中的峰值及其对应的峰值位置,构成层析向目标候选集。随后利用自对消顺序广义似然比(Sequential Generalized Likelihood Ratio Test with Cancellation,SGLRTC)检测器估计散射体的数目与位置,通过设置检测门限将真实目标的峰值及对应的峰值位置从候选集中筛选出来。最后采用基于空间几何分布的点云优化方法剔除误差点,生成点云图像。文章通过点目标和面目标的仿真实验,验证了所提方法适用于GB-TomoArcSAR,能够有效解决高度向多散射体目标的叠掩问题;进一步开展了实测数据验证,基于所提方法获取了北京市一处建筑基坑的层析点云,其与实际场景几何特征一致。 展开更多
关键词 地基层析ArcSAR 三维点云生成 奇异值分解 顺序广义似然比 点云优化
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部