In this study,an inverse design framework was established to find lightweight honeycomb structures(HCSs)with high impact resistance.The hybrid HCS,composed of re-entrant(RE)and elliptical annular re-entrant(EARE)honey...In this study,an inverse design framework was established to find lightweight honeycomb structures(HCSs)with high impact resistance.The hybrid HCS,composed of re-entrant(RE)and elliptical annular re-entrant(EARE)honeycomb cells,was created by constructing arrangement matrices to achieve structural lightweight.The machine learning(ML)framework consisted of a neural network(NN)forward regression model for predicting impact resistance and a multi-objective optimization algorithm for generating high-performance designs.The surrogate of the local design space was initially realized by establishing the NN in the small sample dataset,and the active learning strategy was used to continuously extended the local optimal design until the model converged in the global space.The results indicated that the active learning strategy significantly improved the inference capability of the NN model in unknown design domains.By guiding the iteration direction of the optimization algorithm,lightweight designs with high impact resistance were identified.The energy absorption capacity of the optimal design reached 94.98%of the EARE honeycomb,while the initial peak stress and mass decreased by 28.85%and 19.91%,respectively.Furthermore,Shapley Additive Explanations(SHAP)for global explanation of the NN indicated a strong correlation between the arrangement mode of HCS and its impact resistance.By reducing the stiffness of the cells at the top boundary of the structure,the initial impact damage sustained by the structure can be significantly improved.Overall,this study proposed a general lightweight design method for array structures under impact loads,which is beneficial for the widespread application of honeycomb-based protective structures.展开更多
The ubiquity of mobile devices has driven advancements in mobile object detection.However,challenges in multi-scale object detection in open,complex environments persist due to limited computational resources.Traditio...The ubiquity of mobile devices has driven advancements in mobile object detection.However,challenges in multi-scale object detection in open,complex environments persist due to limited computational resources.Traditional approaches like network compression,quantization,and lightweight design often sacrifice accuracy or feature representation robustness.This article introduces the Fast Multi-scale Channel Shuffling Network(FMCSNet),a novel lightweight detection model optimized for mobile devices.FMCSNet integrates a fully convolutional Multilayer Perceptron(MLP)module,offering global perception without significantly increasing parameters,effectively bridging the gap between CNNs and Vision Transformers.FMCSNet achieves a delicate balance between computation and accuracy mainly by two key modules:the ShiftMLP module,including a shift operation and an MLP module,and a Partial group Convolutional(PGConv)module,reducing computation while enhancing information exchange between channels.With a computational complexity of 1.4G FLOPs and 1.3M parameters,FMCSNet outperforms CNN-based and DWConv-based ShuffleNetv2 by 1%and 4.5%mAP on the Pascal VOC 2007 dataset,respectively.Additionally,FMCSNet achieves a mAP of 30.0(0.5:0.95 IoU threshold)with only 2.5G FLOPs and 2.0M parameters.It achieves 32 FPS on low-performance i5-series CPUs,meeting real-time detection requirements.The versatility of the PGConv module’s adaptability across scenarios further highlights FMCSNet as a promising solution for real-time mobile object detection.展开更多
Electromagnetic interference(EMI)shielding materials principally attain shielding by reflecting electromagnetic waves through impedance mismatch caused by high conductivity,which inevitably leads to secondary electrom...Electromagnetic interference(EMI)shielding materials principally attain shielding by reflecting electromagnetic waves through impedance mismatch caused by high conductivity,which inevitably leads to secondary electromagnetic wave pollution.Consequently,the development of multifunctional,low-reflection electromagnetic shielding materials remains a significant challenge.Materials that are lightweight,possess high mechanical strength,exhibit excellent electromagnetic shielding absorption,and demonstrate low reflectivity have historically been the focus of significant interest.Natural silk,lightweight and strong,is an ideal composite matrix.Regenerated silk fibroin(RSF)synthesized via a bottom-up approach and cross-linked with polyvinyl alcohol(PVA)forms an aerogel matrix with remarkable compressive strength.In accordance with the principle of integrating functional design with structural design,spherical NiFe_(2)O_(4)particles were grown on the MXene surface via electrostatic self-assembly and combined with RSF/PVA as the aerogel absorptive layer,while RSF/PVA/MXene served as the reflective layer.A vertically oriented structure of Janus aerogel was prepared through sequential directed freezing.The resulting aerogel with 0.058 g/cm^(3) reveals the high compression strength(3.52 MPa).Reasonable functional and structural design enables aerogel to effectively dissipate incident electromagnetic waves through absorption,reflection,and reabsorption processes,achieving an average SET value of 48.05±1.75 dB and reaching a minimum reflection coefficient of 0.19.Furthermore,the aerogel displays remarkable infrared stealth capabilities.This lightweight,rigid,multifunctional aerogel is poised to play a significant role in the field of next-generation electronic devices.展开更多
In printed circuit board(PCB)manufacturing,surface defects can significantly affect product quality.To address the performance degradation,high false detection rates,and missed detections caused by complex backgrounds...In printed circuit board(PCB)manufacturing,surface defects can significantly affect product quality.To address the performance degradation,high false detection rates,and missed detections caused by complex backgrounds in current intelligent inspection algorithms,this paper proposes CG-YOLOv8,a lightweight and improved model based on YOLOv8n for PCB surface defect detection.The proposed method optimizes the network architecture and compresses parameters to reduce model complexity while maintaining high detection accuracy,thereby enhancing the capability of identifying diverse defects under complex conditions.Specifically,a cascaded multi-receptive field(CMRF)module is adopted to replace the SPPF module in the backbone to improve feature perception,and an inverted residual mobile block(IRMB)is integrated into the C2f module to further enhance performance.Additionally,conventional convolution layers are replaced with GSConv to reduce computational cost,and a lightweight Convolutional Block Attention Module based Convolution(CBAMConv)module is introduced after Grouped Spatial Convolution(GSConv)to preserve accuracy through attention mechanisms.The detection head is also optimized by removing medium and large-scale detection layers,thereby enhancing the model’s ability to detect small-scale defects and further reducing complexity.Experimental results show that,compared to the original YOLOv8n,the proposed CG-YOLOv8 reduces parameter count by 53.9%,improves mAP@0.5 by 2.2%,and increases precision and recall by 2.0%and 1.8%,respectively.These improvements demonstrate that CG-YOLOv8 offers an efficient and lightweight solution for PCB surface defect detection.展开更多
This study proposes a lightweight rice disease detection model optimized for edge computing environments.The goal is to enhance the You Only Look Once(YOLO)v5 architecture to achieve a balance between real-time diagno...This study proposes a lightweight rice disease detection model optimized for edge computing environments.The goal is to enhance the You Only Look Once(YOLO)v5 architecture to achieve a balance between real-time diagnostic performance and computational efficiency.To this end,a total of 3234 high-resolution images(2400×1080)were collected from three major rice diseases Rice Blast,Bacterial Blight,and Brown Spot—frequently found in actual rice cultivation fields.These images served as the training dataset.The proposed YOLOv5-V2 model removes the Focus layer from the original YOLOv5s and integrates ShuffleNet V2 into the backbone,thereby resulting in both model compression and improved inference speed.Additionally,YOLOv5-P,based on PP-PicoDet,was configured as a comparative model to quantitatively evaluate performance.Experimental results demonstrated that YOLOv5-V2 achieved excellent detection performance,with an mAP 0.5 of 89.6%,mAP 0.5–0.95 of 66.7%,precision of 91.3%,and recall of 85.6%,while maintaining a lightweight model size of 6.45 MB.In contrast,YOLOv5-P exhibited a smaller model size of 4.03 MB,but showed lower performance with an mAP 0.5 of 70.3%,mAP 0.5–0.95 of 35.2%,precision of 62.3%,and recall of 74.1%.This study lays a technical foundation for the implementation of smart agriculture and real-time disease diagnosis systems by proposing a model that satisfies both accuracy and lightweight requirements.展开更多
Lightweight high/medium-entropy alloys(H/MEAs)possess attractive properties such as high strength-to-weight ratios,however,their limited room-temperature tensile ductility hinders their widespread engi-neering impleme...Lightweight high/medium-entropy alloys(H/MEAs)possess attractive properties such as high strength-to-weight ratios,however,their limited room-temperature tensile ductility hinders their widespread engi-neering implementation,for instance in aerospace structural components.This work achieved a transfor-mative improvement of room-temperature tensile ductility in Ti-V-Zr-Nb MEAs with densities of 5.4-6.5 g/cm3,via ingenious composition modulation.Through the systematic co-adjustment of Ti and V contents,an intrinsic ductility mechanism was unveiled,manifested by a transition from predominant intergranular brittle fracture to pervasive ductile dimpled rupture.Notably,the modulated deformation mechanisms evolved from solitary slip toward collaborative multiple slip modes,without significantly compromising strength.Compared to equimolar Ti-V-Zr-Nb,a(Ti1.5V)3ZrNb composition demonstrated an impressive 360%improvement in elongation while sustaining a high yield strength of around 800 MPa.Increasing Ti and V not only purified the grain boundaries by reducing detrimental phases,but also tai-lored the deformation dislocation configurations.These insights expanded the applicability of lightweight HEAs to areas demanding combined high strength and ductility.展开更多
Introducing B2 ordering can effectively improve the mechanical properties of lightweight refractory high-entropy alloys(LRHEAs).However,(Zr,Al)-enriched B2 precipitates generally reduce the ductility because their ord...Introducing B2 ordering can effectively improve the mechanical properties of lightweight refractory high-entropy alloys(LRHEAs).However,(Zr,Al)-enriched B2 precipitates generally reduce the ductility because their ordering characteristic is destroyed after dislocation shearing.Meanwhile,the local chemical order(LCO)cannot provide an adequate strengthening effect due to its small size.展开更多
Current you only look once(YOLO)-based algorithm model is facing the challenge of overwhelming parameters and calculation complexity under the printed circuit board(PCB)defect detection application scenario.In order t...Current you only look once(YOLO)-based algorithm model is facing the challenge of overwhelming parameters and calculation complexity under the printed circuit board(PCB)defect detection application scenario.In order to solve this problem,we propose a new method,which combined the lightweight network mobile vision transformer(Mobile Vi T)with the convolutional block attention module(CBAM)mechanism and the new regression loss function.This method needed less computation resources,making it more suitable for embedded edge detection devices.Meanwhile,the new loss function improved the positioning accuracy of the bounding box and enhanced the robustness of the model.In addition,experiments on public datasets demonstrate that the improved model achieves an average accuracy of 87.9%across six typical defect detection tasks,while reducing computational costs by nearly 90%.It significantly reduces the model's computational requirements while maintaining accuracy,ensuring reliable performance for edge deployment.展开更多
The microstructural evolution,phase stability,and mechanical properties of Al-Li-Mg-Ti-M(M=Zn,Zr,V)lightweight high-entropy alloys(LW-HEAs)were investigated.The LW-HEAs with three components,Al_(20)Li_(20)Mg_(10)-Ti_(...The microstructural evolution,phase stability,and mechanical properties of Al-Li-Mg-Ti-M(M=Zn,Zr,V)lightweight high-entropy alloys(LW-HEAs)were investigated.The LW-HEAs with three components,Al_(20)Li_(20)Mg_(10)-Ti_(40)Zn_(10)(#Zn),Al_(20)Li_(20)Mg_(10)Ti_(30)Zr_(20)(#Zr),and Al_(20)Li_(20)Mg_(10)Ti_(30)V_(20)(#V),were designed according to the thermo-dynamic design criteria of HEA,and prepared via a combination process of mechanical alloying and cold-press sintering.The effects of alloy composition and sintering temperature on the microstructure and mechanical properties of the LW-HEAs were studied.The results show that the as-milled Al-Li-Mg-Ti-M(M=Zn,Zr,V)LW-HEAs form a simple structure with HCP-type solid solution as the primary phase,a dual-HCP type solid solution phase,and a BCC phase,respectively.After cold-press sintering,the#Zn and#V alloys undergo obvious phase transformation;while the#Zr alloy with dual-HCP phases exhibits the best phase stability during heat treatment.The#V-750°C alloy demonstrates the maximum hardness and specific strength of HV 595.2 and 625 MPa∙cm3/g,respectively,under the combined effect of solid solution strengthening of BCC phase and precipitation strengthening ofβ-AlTi_(3).Moreover,the#Zr-650°C,#Zr-750°C,and#Zn-650°C alloys are expected to have excellent plasticity.展开更多
Tomato plant diseases often first manifest on the leaves,making the detection of tomato leaf diseases particularly crucial for the tomato cultivation industry.However,conventional deep learning models face challenges ...Tomato plant diseases often first manifest on the leaves,making the detection of tomato leaf diseases particularly crucial for the tomato cultivation industry.However,conventional deep learning models face challenges such as large model sizes and slow detection speeds when deployed on resource-constrained platforms and agricultural machinery.This paper proposes a lightweight model for detecting tomato leaf diseases,named LT-YOLO,based on the YOLOv8n architecture.First,we enhance the C2f module into a RepViT Block(RVB)with decoupled token and channel mixers to reduce the cost of feature extraction.Next,we incorporate a novel Efficient Multi-Scale Attention(EMA)mechanism in the deeper layers of the backbone to improve detection of critical disease features.Additionally,we design a lightweight detection head,LT-Detect,using Partial Convolution(PConv)to significantly reduce the classification and localization costs during detection.Finally,we introduce a Receptive Field Block(RFB)in the shallow layers of the backbone to expand the model’s receptive field,enabling effective detection of diseases at various scales.The improved model reduces the number of parameters by 43%and the computational load by 50%.Additionally,it achieves a mean Average Precision(mAP)of 90.9%on a publicly available dataset containing 3641 images of tomato leaf diseases,with only a 0.7%decrease compared to the baseline model.This demonstrates that the model maintains excellent accuracy while being lightweight,making it suitable for rapid detection of tomato leaf diseases.展开更多
As batteries become increasingly essential for energy storage technologies,battery prognosis,and diagnosis remain central to ensure reliable operation and effective management,as well as to aid the in-depth investigat...As batteries become increasingly essential for energy storage technologies,battery prognosis,and diagnosis remain central to ensure reliable operation and effective management,as well as to aid the in-depth investigation of degradation mechanisms.However,dynamic operating conditions,cell-to-cell inconsistencies,and limited availability of labeled data have posed significant challenges to accurate and robust prognosis and diagnosis.Herein,we introduce a time-series-decomposition-based ensembled lightweight learning model(TELL-Me),which employs a synergistic dual-module framework to facilitate accurate and reliable forecasting.The feature module formulates features with physical implications and sheds light on battery aging mechanisms,while the gradient module monitors capacity degradation rates and captures aging trend.TELL-Me achieves high accuracy in end-of-life prediction using minimal historical data from a single battery without requiring offline training dataset,and demonstrates impressive generality and robustness across various operating conditions and battery types.Additionally,by correlating feature contributions with degradation mechanisms across different datasets,TELL-Me is endowed with the diagnostic ability that not only enhances prediction reliability but also provides critical insights into the design and optimization of next-generation batteries.展开更多
The Internet of Things(IoT)has gained substantial attention in both academic research and real-world applications.The proliferation of interconnected devices across various domains promises to deliver intelligent and ...The Internet of Things(IoT)has gained substantial attention in both academic research and real-world applications.The proliferation of interconnected devices across various domains promises to deliver intelligent and advanced services.However,this rapid expansion also heightens the vulnerability of the IoT ecosystem to security threats.Consequently,innovative solutions capable of effectively mitigating risks while accommodating the unique constraints of IoT environments are urgently needed.Recently,the convergence of Blockchain technology and IoT has introduced a decentralized and robust framework for securing data and interactions,commonly referred to as the Internet of Blockchained Things(IoBT).Extensive research efforts have been devoted to adapting Blockchain technology to meet the specific requirements of IoT deployments.Within this context,consensus algorithms play a critical role in assessing the feasibility of integrating Blockchain into IoT ecosystems.The adoption of efficient and lightweight consensus mechanisms for block validation has become increasingly essential.This paper presents a comprehensive examination of lightweight,constraint-aware consensus algorithms tailored for IoBT.The study categorizes these consensus mechanisms based on their core operations,the security of the block validation process,the incorporation of AI techniques,and the specific applications they are designed to support.展开更多
Plaintext-checking(PC)oracle-based key recovery attack stands out as one of the most critical threat targeting Kyber due to its high effciency and ease of implementation.In practical scenarios,however,the output of th...Plaintext-checking(PC)oracle-based key recovery attack stands out as one of the most critical threat targeting Kyber due to its high effciency and ease of implementation.In practical scenarios,however,the output of the oracle may suffer accuracy degradation when instantiating it through a side-channel trace distinguisher due to the environmental noise and the cross-device issue.While various deep learning-based approaches have been proposed to address the inaccuracy problem caused by the cross-device issue,they often suffer from complexity and limited interpretability.This work investigates realistic numerous side-channel attack(SCA)scenarios and focuses on the cross-device issue when implementing a reliable PC oracle in SCAs against Kyber.TtLR is proposed,it combines the ttest with a logistic regression model to implement a lightweight but effcient side-channel distinguisher against Kyber KEM.The proposed approach is validated through experiments on STM32F407G boards equipped with ARM Cortex-M4 microcontrollers,using the Kyber512 implementations from the pqm4 library.The results demonstrate that the proposed method achieves high PC oracle accuracy across different boards with low computational and memory overhead.This makes the proposed distinguisher practical for deployment on resource-constrained platforms such as the Raspberry Pi running a Linux system.展开更多
Significant advancements have been achieved in the field of Single Image Super-Resolution(SISR)through the utilization of Convolutional Neural Networks(CNNs)to attain state-of-the-art performance.Recent efforts have e...Significant advancements have been achieved in the field of Single Image Super-Resolution(SISR)through the utilization of Convolutional Neural Networks(CNNs)to attain state-of-the-art performance.Recent efforts have explored the incorporation of Transformers to augment network performance in SISR.However,the high computational cost of Transformers makes them less suitable for deployment on lightweight devices.Moreover,the majority of enhancements for CNNs rely predominantly on small spatial convolutions,thereby neglecting the potential advantages of large kernel convolution.In this paper,the authors propose a Multi-Perception Large Kernel convNet(MPLKN)which delves into the exploration of large kernel convolution.Specifically,the authors have architected a Multi-Perception Large Kernel(MPLK)module aimed at extracting multi-scale features and employ a stepwise feature fusion strategy to seamlessly integrate these features.In addition,to enhance the network's capacity for nonlinear spatial information processing,the authors have designed a Spatial-Channel Gated Feed-forward Network(SCGFN)that is capable of adapting to feature interactions across both spatial and channel dimensions.Experimental results demonstrate that MPLKN outperforms other lightweight image super-resolution models while maintaining a minimal number of parameters and FLOPs.展开更多
In recent years,with the development of synthetic aperture radar(SAR)technology and the widespread application of deep learning,lightweight detection of SAR images has emerged as a research direction.The ultimate goal...In recent years,with the development of synthetic aperture radar(SAR)technology and the widespread application of deep learning,lightweight detection of SAR images has emerged as a research direction.The ultimate goal is to reduce computational and storage requirements while ensuring detection accuracy and reliability,making it an ideal choice for achieving rapid response and efficient processing.In this regard,a lightweight SAR ship target detection algorithm based on YOLOv8 was proposed in this study.Firstly,the C2f-Sc module was designed by fusing the C2f in the backbone network with the ScConv to reduce spatial redundancy and channel redundancy between features in convolutional neural networks.At the same time,the Ghost module was introduced into the neck network to effectively reduce model parameters and computational complexity.A relatively lightweight EMA attention mechanism was added to the neck network to promote the effective fusion of features at different levels.Experimental results showed that the Parameters and GFLOPs of the improved model are reduced by 8.5%and 7.0%when mAP@0.5 and mAP@0.5:0.95 are increased by 0.7%and 1.8%,respectively.It makes the model lightweight and improves the detection accuracy,which has certain application value.展开更多
Semantic segmentation of eye images is a complex task with important applications in human–computer interaction,cognitive science,and neuroscience.Achieving real-time,accurate,and robust segmentation algorithms is cr...Semantic segmentation of eye images is a complex task with important applications in human–computer interaction,cognitive science,and neuroscience.Achieving real-time,accurate,and robust segmentation algorithms is crucial for computationally limited portable devices such as augmented reality and virtual reality.With the rapid advancements in deep learning,many network models have been developed specifically for eye image segmentation.Some methods divide the segmentation process into multiple stages to achieve model parameter miniaturization while enhancing output through post processing techniques to improve segmentation accuracy.These approaches significantly increase the inference time.Other networks adopt more complex encoding and decoding modules to achieve end-to-end output,which requires substantial computation.Therefore,balancing the model’s size,accuracy,and computational complexity is essential.To address these challenges,we propose a lightweight asymmetric UNet architecture and a projection loss function.We utilize ResNet-3 layer blocks to enhance feature extraction efficiency in the encoding stage.In the decoding stage,we employ regular convolutions and skip connections to upscale the feature maps from the latent space to the original image size,balancing the model size and segmentation accuracy.In addition,we leverage the geometric features of the eye region and design a projection loss function to further improve the segmentation accuracy without adding any additional inference computational cost.We validate our approach on the OpenEDS2019 dataset for virtual reality and achieve state-of-the-art performance with 95.33%mean intersection over union(mIoU).Our model has only 0.63M parameters and 350 FPS,which are 68%and 200%of the state-of-the-art model RITNet,respectively.展开更多
There is a problem of real-time detection difficulty in road surface damage detection. This paper proposes an improved lightweight model based on you only look once version 5(YOLOv5). Firstly, this paper fully utilize...There is a problem of real-time detection difficulty in road surface damage detection. This paper proposes an improved lightweight model based on you only look once version 5(YOLOv5). Firstly, this paper fully utilized the convolutional neural network(CNN) + ghosting bottleneck(G_bneck) architecture to reduce redundant feature maps. Afterwards, we upgraded the original upsampling algorithm to content-aware reassembly of features(CARAFE) and increased the receptive field. Finally, we replaced the spatial pyramid pooling fast(SPPF) module with the basic receptive field block(Basic RFB) pooling module and added dilated convolution. After comparative experiments, we can see that the number of parameters and model size of the improved algorithm in this paper have been reduced by nearly half compared to the YOLOv5s. The frame rate per second(FPS) has been increased by 3.25 times. The mean average precision(m AP@0.5: 0.95) has increased by 8%—17% compared to other lightweight algorithms.展开更多
The exponential expansion of the Internet of Things(IoT),Industrial Internet of Things(IIoT),and Transportation Management of Things(TMoT)produces vast amounts of real-time streaming data.Ensuring system dependability...The exponential expansion of the Internet of Things(IoT),Industrial Internet of Things(IIoT),and Transportation Management of Things(TMoT)produces vast amounts of real-time streaming data.Ensuring system dependability,operational efficiency,and security depends on the identification of anomalies in these dynamic and resource-constrained systems.Due to their high computational requirements and inability to efficiently process continuous data streams,traditional anomaly detection techniques often fail in IoT systems.This work presents a resource-efficient adaptive anomaly detection model for real-time streaming data in IoT systems.Extensive experiments were carried out on multiple real-world datasets,achieving an average accuracy score of 96.06%with an execution time close to 7.5 milliseconds for each individual streaming data point,demonstrating its potential for real-time,resourceconstrained applications.The model uses Principal Component Analysis(PCA)for dimensionality reduction and a Z-score technique for anomaly detection.It maintains a low computational footprint with a sliding window mechanism,enabling incremental data processing and identification of both transient and sustained anomalies without storing historical data.The system uses a Multivariate Linear Regression(MLR)based imputation technique that estimates missing or corrupted sensor values,preserving data integrity prior to anomaly detection.The suggested solution is appropriate for many uses in smart cities,industrial automation,environmental monitoring,IoT security,and intelligent transportation systems,and is particularly well-suited for resource-constrained edge devices.展开更多
Aiming at the problems of low detection efficiency and difficult positioning of traditional steel surface defect detection methods,a lightweight steel surface defect detection model based on you only look once version...Aiming at the problems of low detection efficiency and difficult positioning of traditional steel surface defect detection methods,a lightweight steel surface defect detection model based on you only look once version 7(YOLOv7)is proposed.First,a cascading style sheets(CSS)block module is proposed,which uses more lightweight operations to obtain redundant information in the feature map,reduces the amount of computation,and effectively improves the detection speed.Secondly,the improved spatial pyramid pooling with cross stage partial convolutions(SPPCSPC)structure is adopted to ensure that the model can also pay attention to the defect location information while predicting the defect category information,obtain richer defect features.In addition,the convolution operation in the original model is simplified,which significantly reduces the size of the model and helps to improve the detection speed.Finally,using efficient intersection over union(EIOU)loss to focus on high-quality anchors,speed up convergence and improve positioning accuracy.Experiments were carried out on the Northeastern University-defect(NEU-DET)steel surface defect dataset.Compared with the original YOLOv7 model,the number of parameters of this model was reduced by 40%,the frames per second(FPS)reached 112,and the average accuracy reached 79.1%,the detection accuracy and speed have been improved,which can meet the needs of steel surface defect detection.展开更多
In the field of Weakly Supervised Semantic Segmentation(WSSS),methods based on image-level annotation face challenges in accurately capturing objects of varying sizes,lacking sensitivity to image details,and having hi...In the field of Weakly Supervised Semantic Segmentation(WSSS),methods based on image-level annotation face challenges in accurately capturing objects of varying sizes,lacking sensitivity to image details,and having high computational costs.To address these issues,we improve the dual-branch architecture of the Conformer as the fundamental network for generating class activation graphs,proposing a multi-scale efficient weakly-supervised semantic segmentation method based on the improved Conformer.In the Convolution Neural Network(CNN)branch,a cross-scale feature integration convolution module is designed,incorporating multi-receptive field convolution layers to enhance the model’s ability to capture long-range dependencies and improve sensitivity to multi-scale objects.In the Vision Transformer(ViT)branch,an efficient multi-head self-attention module is developed,reducing unnecessary computation through spatial compression and feature partitioning,thereby improving overall network efficiency.Finally,a multi-feature coupling module is introduced to complement the features generated by both branches.This design retains the strength of Convolution Neural Network in extracting local details while harnessing the strength of Vision Transformer to capture comprehensive global features.Experimental results show that the mean Intersection over Union of the image segmentation results of the proposed method on the validation and test sets of the PASCAL VOC 2012 datasets are improved by 2.9%and 3.6%,respectively,over the TransCAM algorithm.Besides,the improved model demonstrates a 1.3%increase of the mean Intersections over Union on the COCO 2014 datasets.Additionally,the number of parameters and the floating-point operations are reduced by 16.2%and 12.9%.However,the proposed method still has limitations of poor performance when dealing with complex scenarios.There is a need for further enhancing the performance of this method to address this issue.展开更多
基金the financial supports from National Key R&D Program for Young Scientists of China(Grant No.2022YFC3080900)National Natural Science Foundation of China(Grant No.52374181)+1 种基金BIT Research and Innovation Promoting Project(Grant No.2024YCXZ017)supported by Science and Technology Innovation Program of Beijing institute of technology under Grant No.2022CX01025。
文摘In this study,an inverse design framework was established to find lightweight honeycomb structures(HCSs)with high impact resistance.The hybrid HCS,composed of re-entrant(RE)and elliptical annular re-entrant(EARE)honeycomb cells,was created by constructing arrangement matrices to achieve structural lightweight.The machine learning(ML)framework consisted of a neural network(NN)forward regression model for predicting impact resistance and a multi-objective optimization algorithm for generating high-performance designs.The surrogate of the local design space was initially realized by establishing the NN in the small sample dataset,and the active learning strategy was used to continuously extended the local optimal design until the model converged in the global space.The results indicated that the active learning strategy significantly improved the inference capability of the NN model in unknown design domains.By guiding the iteration direction of the optimization algorithm,lightweight designs with high impact resistance were identified.The energy absorption capacity of the optimal design reached 94.98%of the EARE honeycomb,while the initial peak stress and mass decreased by 28.85%and 19.91%,respectively.Furthermore,Shapley Additive Explanations(SHAP)for global explanation of the NN indicated a strong correlation between the arrangement mode of HCS and its impact resistance.By reducing the stiffness of the cells at the top boundary of the structure,the initial impact damage sustained by the structure can be significantly improved.Overall,this study proposed a general lightweight design method for array structures under impact loads,which is beneficial for the widespread application of honeycomb-based protective structures.
基金funded by the National Natural Science Foundation of China under Grant No.62371187the Open Program of Hunan Intelligent Rehabilitation Robot and Auxiliary Equipment Engineering Technology Research Center under Grant No.2024JS101.
文摘The ubiquity of mobile devices has driven advancements in mobile object detection.However,challenges in multi-scale object detection in open,complex environments persist due to limited computational resources.Traditional approaches like network compression,quantization,and lightweight design often sacrifice accuracy or feature representation robustness.This article introduces the Fast Multi-scale Channel Shuffling Network(FMCSNet),a novel lightweight detection model optimized for mobile devices.FMCSNet integrates a fully convolutional Multilayer Perceptron(MLP)module,offering global perception without significantly increasing parameters,effectively bridging the gap between CNNs and Vision Transformers.FMCSNet achieves a delicate balance between computation and accuracy mainly by two key modules:the ShiftMLP module,including a shift operation and an MLP module,and a Partial group Convolutional(PGConv)module,reducing computation while enhancing information exchange between channels.With a computational complexity of 1.4G FLOPs and 1.3M parameters,FMCSNet outperforms CNN-based and DWConv-based ShuffleNetv2 by 1%and 4.5%mAP on the Pascal VOC 2007 dataset,respectively.Additionally,FMCSNet achieves a mAP of 30.0(0.5:0.95 IoU threshold)with only 2.5G FLOPs and 2.0M parameters.It achieves 32 FPS on low-performance i5-series CPUs,meeting real-time detection requirements.The versatility of the PGConv module’s adaptability across scenarios further highlights FMCSNet as a promising solution for real-time mobile object detection.
基金supported by Key R&D Program of Shandong Province,China(No.2025CXGC010407).
文摘Electromagnetic interference(EMI)shielding materials principally attain shielding by reflecting electromagnetic waves through impedance mismatch caused by high conductivity,which inevitably leads to secondary electromagnetic wave pollution.Consequently,the development of multifunctional,low-reflection electromagnetic shielding materials remains a significant challenge.Materials that are lightweight,possess high mechanical strength,exhibit excellent electromagnetic shielding absorption,and demonstrate low reflectivity have historically been the focus of significant interest.Natural silk,lightweight and strong,is an ideal composite matrix.Regenerated silk fibroin(RSF)synthesized via a bottom-up approach and cross-linked with polyvinyl alcohol(PVA)forms an aerogel matrix with remarkable compressive strength.In accordance with the principle of integrating functional design with structural design,spherical NiFe_(2)O_(4)particles were grown on the MXene surface via electrostatic self-assembly and combined with RSF/PVA as the aerogel absorptive layer,while RSF/PVA/MXene served as the reflective layer.A vertically oriented structure of Janus aerogel was prepared through sequential directed freezing.The resulting aerogel with 0.058 g/cm^(3) reveals the high compression strength(3.52 MPa).Reasonable functional and structural design enables aerogel to effectively dissipate incident electromagnetic waves through absorption,reflection,and reabsorption processes,achieving an average SET value of 48.05±1.75 dB and reaching a minimum reflection coefficient of 0.19.Furthermore,the aerogel displays remarkable infrared stealth capabilities.This lightweight,rigid,multifunctional aerogel is poised to play a significant role in the field of next-generation electronic devices.
基金funded by the Joint Funds of the National Natural Science Foundation of China(U2341223)the Beijing Municipal Natural Science Foundation(No.4232067).
文摘In printed circuit board(PCB)manufacturing,surface defects can significantly affect product quality.To address the performance degradation,high false detection rates,and missed detections caused by complex backgrounds in current intelligent inspection algorithms,this paper proposes CG-YOLOv8,a lightweight and improved model based on YOLOv8n for PCB surface defect detection.The proposed method optimizes the network architecture and compresses parameters to reduce model complexity while maintaining high detection accuracy,thereby enhancing the capability of identifying diverse defects under complex conditions.Specifically,a cascaded multi-receptive field(CMRF)module is adopted to replace the SPPF module in the backbone to improve feature perception,and an inverted residual mobile block(IRMB)is integrated into the C2f module to further enhance performance.Additionally,conventional convolution layers are replaced with GSConv to reduce computational cost,and a lightweight Convolutional Block Attention Module based Convolution(CBAMConv)module is introduced after Grouped Spatial Convolution(GSConv)to preserve accuracy through attention mechanisms.The detection head is also optimized by removing medium and large-scale detection layers,thereby enhancing the model’s ability to detect small-scale defects and further reducing complexity.Experimental results show that,compared to the original YOLOv8n,the proposed CG-YOLOv8 reduces parameter count by 53.9%,improves mAP@0.5 by 2.2%,and increases precision and recall by 2.0%and 1.8%,respectively.These improvements demonstrate that CG-YOLOv8 offers an efficient and lightweight solution for PCB surface defect detection.
文摘This study proposes a lightweight rice disease detection model optimized for edge computing environments.The goal is to enhance the You Only Look Once(YOLO)v5 architecture to achieve a balance between real-time diagnostic performance and computational efficiency.To this end,a total of 3234 high-resolution images(2400×1080)were collected from three major rice diseases Rice Blast,Bacterial Blight,and Brown Spot—frequently found in actual rice cultivation fields.These images served as the training dataset.The proposed YOLOv5-V2 model removes the Focus layer from the original YOLOv5s and integrates ShuffleNet V2 into the backbone,thereby resulting in both model compression and improved inference speed.Additionally,YOLOv5-P,based on PP-PicoDet,was configured as a comparative model to quantitatively evaluate performance.Experimental results demonstrated that YOLOv5-V2 achieved excellent detection performance,with an mAP 0.5 of 89.6%,mAP 0.5–0.95 of 66.7%,precision of 91.3%,and recall of 85.6%,while maintaining a lightweight model size of 6.45 MB.In contrast,YOLOv5-P exhibited a smaller model size of 4.03 MB,but showed lower performance with an mAP 0.5 of 70.3%,mAP 0.5–0.95 of 35.2%,precision of 62.3%,and recall of 74.1%.This study lays a technical foundation for the implementation of smart agriculture and real-time disease diagnosis systems by proposing a model that satisfies both accuracy and lightweight requirements.
基金supported by the National Natural Science Foundation of China(Nos.51925103,52271149,52171159)the Innovation Program of Shanghai Municipal Education Commission(No.2021-01-07-00-09-E00114)+5 种基金the Natural Science Foundation of Shanghai(22ZR1422500)the Innovation Program of Shanghai Science and Technology(No.23520760700)the Aviation Foundation(No.2023Z0530S6004)the Fund of the State Key Laboratory of Solidification Processing in NWPU(No.SKLSP202221)the financial support from Program 173(No.2020-JCIQ-ZD-186-01)the Space Utilization System of China Manned Space Engineering(No.KJZ-YY-NCL08).
文摘Lightweight high/medium-entropy alloys(H/MEAs)possess attractive properties such as high strength-to-weight ratios,however,their limited room-temperature tensile ductility hinders their widespread engi-neering implementation,for instance in aerospace structural components.This work achieved a transfor-mative improvement of room-temperature tensile ductility in Ti-V-Zr-Nb MEAs with densities of 5.4-6.5 g/cm3,via ingenious composition modulation.Through the systematic co-adjustment of Ti and V contents,an intrinsic ductility mechanism was unveiled,manifested by a transition from predominant intergranular brittle fracture to pervasive ductile dimpled rupture.Notably,the modulated deformation mechanisms evolved from solitary slip toward collaborative multiple slip modes,without significantly compromising strength.Compared to equimolar Ti-V-Zr-Nb,a(Ti1.5V)3ZrNb composition demonstrated an impressive 360%improvement in elongation while sustaining a high yield strength of around 800 MPa.Increasing Ti and V not only purified the grain boundaries by reducing detrimental phases,but also tai-lored the deformation dislocation configurations.These insights expanded the applicability of lightweight HEAs to areas demanding combined high strength and ductility.
基金supported by the National Natural Science Foundation of China(Nos.52171166 and U20A20231)the Natural Science Foundation of Hunan Province,China(Nos.2024JJ2060 and 2024JJ5406)+1 种基金the Key Laboratory of Materials in Dynamic Extremes of Sichuan Province(No.2023SCKT1102)the Postgraduate Scientific Research Innovation Project of National University of Defense Technology(No.XJJC2024065).
文摘Introducing B2 ordering can effectively improve the mechanical properties of lightweight refractory high-entropy alloys(LRHEAs).However,(Zr,Al)-enriched B2 precipitates generally reduce the ductility because their ordering characteristic is destroyed after dislocation shearing.Meanwhile,the local chemical order(LCO)cannot provide an adequate strengthening effect due to its small size.
基金supported by the National Natural Science Foundation of China(Nos.62373215,62373219 and 62073193)the Natural Science Foundation of Shandong Province(No.ZR2023MF100)+1 种基金the Key Projects of the Ministry of Industry and Information Technology(No.TC220H057-2022)the Independently Developed Instrument Funds of Shandong University(No.zy20240201)。
文摘Current you only look once(YOLO)-based algorithm model is facing the challenge of overwhelming parameters and calculation complexity under the printed circuit board(PCB)defect detection application scenario.In order to solve this problem,we propose a new method,which combined the lightweight network mobile vision transformer(Mobile Vi T)with the convolutional block attention module(CBAM)mechanism and the new regression loss function.This method needed less computation resources,making it more suitable for embedded edge detection devices.Meanwhile,the new loss function improved the positioning accuracy of the bounding box and enhanced the robustness of the model.In addition,experiments on public datasets demonstrate that the improved model achieves an average accuracy of 87.9%across six typical defect detection tasks,while reducing computational costs by nearly 90%.It significantly reduces the model's computational requirements while maintaining accuracy,ensuring reliable performance for edge deployment.
基金financially supported by China Aeronautical Science Foundation (No.2023Z0530Q9002)the Program for Chongqing Talents,China (No.cstc2024ycjh-bgzxm0066)。
文摘The microstructural evolution,phase stability,and mechanical properties of Al-Li-Mg-Ti-M(M=Zn,Zr,V)lightweight high-entropy alloys(LW-HEAs)were investigated.The LW-HEAs with three components,Al_(20)Li_(20)Mg_(10)-Ti_(40)Zn_(10)(#Zn),Al_(20)Li_(20)Mg_(10)Ti_(30)Zr_(20)(#Zr),and Al_(20)Li_(20)Mg_(10)Ti_(30)V_(20)(#V),were designed according to the thermo-dynamic design criteria of HEA,and prepared via a combination process of mechanical alloying and cold-press sintering.The effects of alloy composition and sintering temperature on the microstructure and mechanical properties of the LW-HEAs were studied.The results show that the as-milled Al-Li-Mg-Ti-M(M=Zn,Zr,V)LW-HEAs form a simple structure with HCP-type solid solution as the primary phase,a dual-HCP type solid solution phase,and a BCC phase,respectively.After cold-press sintering,the#Zn and#V alloys undergo obvious phase transformation;while the#Zr alloy with dual-HCP phases exhibits the best phase stability during heat treatment.The#V-750°C alloy demonstrates the maximum hardness and specific strength of HV 595.2 and 625 MPa∙cm3/g,respectively,under the combined effect of solid solution strengthening of BCC phase and precipitation strengthening ofβ-AlTi_(3).Moreover,the#Zr-650°C,#Zr-750°C,and#Zn-650°C alloys are expected to have excellent plasticity.
文摘Tomato plant diseases often first manifest on the leaves,making the detection of tomato leaf diseases particularly crucial for the tomato cultivation industry.However,conventional deep learning models face challenges such as large model sizes and slow detection speeds when deployed on resource-constrained platforms and agricultural machinery.This paper proposes a lightweight model for detecting tomato leaf diseases,named LT-YOLO,based on the YOLOv8n architecture.First,we enhance the C2f module into a RepViT Block(RVB)with decoupled token and channel mixers to reduce the cost of feature extraction.Next,we incorporate a novel Efficient Multi-Scale Attention(EMA)mechanism in the deeper layers of the backbone to improve detection of critical disease features.Additionally,we design a lightweight detection head,LT-Detect,using Partial Convolution(PConv)to significantly reduce the classification and localization costs during detection.Finally,we introduce a Receptive Field Block(RFB)in the shallow layers of the backbone to expand the model’s receptive field,enabling effective detection of diseases at various scales.The improved model reduces the number of parameters by 43%and the computational load by 50%.Additionally,it achieves a mean Average Precision(mAP)of 90.9%on a publicly available dataset containing 3641 images of tomato leaf diseases,with only a 0.7%decrease compared to the baseline model.This demonstrates that the model maintains excellent accuracy while being lightweight,making it suitable for rapid detection of tomato leaf diseases.
基金supported by the National Natural Science Foundation of China(22379021 and 22479021)。
文摘As batteries become increasingly essential for energy storage technologies,battery prognosis,and diagnosis remain central to ensure reliable operation and effective management,as well as to aid the in-depth investigation of degradation mechanisms.However,dynamic operating conditions,cell-to-cell inconsistencies,and limited availability of labeled data have posed significant challenges to accurate and robust prognosis and diagnosis.Herein,we introduce a time-series-decomposition-based ensembled lightweight learning model(TELL-Me),which employs a synergistic dual-module framework to facilitate accurate and reliable forecasting.The feature module formulates features with physical implications and sheds light on battery aging mechanisms,while the gradient module monitors capacity degradation rates and captures aging trend.TELL-Me achieves high accuracy in end-of-life prediction using minimal historical data from a single battery without requiring offline training dataset,and demonstrates impressive generality and robustness across various operating conditions and battery types.Additionally,by correlating feature contributions with degradation mechanisms across different datasets,TELL-Me is endowed with the diagnostic ability that not only enhances prediction reliability but also provides critical insights into the design and optimization of next-generation batteries.
文摘The Internet of Things(IoT)has gained substantial attention in both academic research and real-world applications.The proliferation of interconnected devices across various domains promises to deliver intelligent and advanced services.However,this rapid expansion also heightens the vulnerability of the IoT ecosystem to security threats.Consequently,innovative solutions capable of effectively mitigating risks while accommodating the unique constraints of IoT environments are urgently needed.Recently,the convergence of Blockchain technology and IoT has introduced a decentralized and robust framework for securing data and interactions,commonly referred to as the Internet of Blockchained Things(IoBT).Extensive research efforts have been devoted to adapting Blockchain technology to meet the specific requirements of IoT deployments.Within this context,consensus algorithms play a critical role in assessing the feasibility of integrating Blockchain into IoT ecosystems.The adoption of efficient and lightweight consensus mechanisms for block validation has become increasingly essential.This paper presents a comprehensive examination of lightweight,constraint-aware consensus algorithms tailored for IoBT.The study categorizes these consensus mechanisms based on their core operations,the security of the block validation process,the incorporation of AI techniques,and the specific applications they are designed to support.
基金National Natural Science Foundation of China(62172374)。
文摘Plaintext-checking(PC)oracle-based key recovery attack stands out as one of the most critical threat targeting Kyber due to its high effciency and ease of implementation.In practical scenarios,however,the output of the oracle may suffer accuracy degradation when instantiating it through a side-channel trace distinguisher due to the environmental noise and the cross-device issue.While various deep learning-based approaches have been proposed to address the inaccuracy problem caused by the cross-device issue,they often suffer from complexity and limited interpretability.This work investigates realistic numerous side-channel attack(SCA)scenarios and focuses on the cross-device issue when implementing a reliable PC oracle in SCAs against Kyber.TtLR is proposed,it combines the ttest with a logistic regression model to implement a lightweight but effcient side-channel distinguisher against Kyber KEM.The proposed approach is validated through experiments on STM32F407G boards equipped with ARM Cortex-M4 microcontrollers,using the Kyber512 implementations from the pqm4 library.The results demonstrate that the proposed method achieves high PC oracle accuracy across different boards with low computational and memory overhead.This makes the proposed distinguisher practical for deployment on resource-constrained platforms such as the Raspberry Pi running a Linux system.
文摘Significant advancements have been achieved in the field of Single Image Super-Resolution(SISR)through the utilization of Convolutional Neural Networks(CNNs)to attain state-of-the-art performance.Recent efforts have explored the incorporation of Transformers to augment network performance in SISR.However,the high computational cost of Transformers makes them less suitable for deployment on lightweight devices.Moreover,the majority of enhancements for CNNs rely predominantly on small spatial convolutions,thereby neglecting the potential advantages of large kernel convolution.In this paper,the authors propose a Multi-Perception Large Kernel convNet(MPLKN)which delves into the exploration of large kernel convolution.Specifically,the authors have architected a Multi-Perception Large Kernel(MPLK)module aimed at extracting multi-scale features and employ a stepwise feature fusion strategy to seamlessly integrate these features.In addition,to enhance the network's capacity for nonlinear spatial information processing,the authors have designed a Spatial-Channel Gated Feed-forward Network(SCGFN)that is capable of adapting to feature interactions across both spatial and channel dimensions.Experimental results demonstrate that MPLKN outperforms other lightweight image super-resolution models while maintaining a minimal number of parameters and FLOPs.
文摘In recent years,with the development of synthetic aperture radar(SAR)technology and the widespread application of deep learning,lightweight detection of SAR images has emerged as a research direction.The ultimate goal is to reduce computational and storage requirements while ensuring detection accuracy and reliability,making it an ideal choice for achieving rapid response and efficient processing.In this regard,a lightweight SAR ship target detection algorithm based on YOLOv8 was proposed in this study.Firstly,the C2f-Sc module was designed by fusing the C2f in the backbone network with the ScConv to reduce spatial redundancy and channel redundancy between features in convolutional neural networks.At the same time,the Ghost module was introduced into the neck network to effectively reduce model parameters and computational complexity.A relatively lightweight EMA attention mechanism was added to the neck network to promote the effective fusion of features at different levels.Experimental results showed that the Parameters and GFLOPs of the improved model are reduced by 8.5%and 7.0%when mAP@0.5 and mAP@0.5:0.95 are increased by 0.7%and 1.8%,respectively.It makes the model lightweight and improves the detection accuracy,which has certain application value.
基金supported by the HFIPS Director’s Foundation(YZJJ202207-TS),the National Natural Science Foundation of China(82371931)the Natural Science Foundation of Anhui Province(2008085MC69)+3 种基金the Natural Science Foundation of Hefei City(2021033)the General Scientific Research Project of Anhui Provincial Health Commission(AHWJ2021b150)the Collaborative Innovation Program of Hefei Science Center,CAS(2021HSC-CIP013)the Anhui Province Key Research and Development Project(202204295107020004).
文摘Semantic segmentation of eye images is a complex task with important applications in human–computer interaction,cognitive science,and neuroscience.Achieving real-time,accurate,and robust segmentation algorithms is crucial for computationally limited portable devices such as augmented reality and virtual reality.With the rapid advancements in deep learning,many network models have been developed specifically for eye image segmentation.Some methods divide the segmentation process into multiple stages to achieve model parameter miniaturization while enhancing output through post processing techniques to improve segmentation accuracy.These approaches significantly increase the inference time.Other networks adopt more complex encoding and decoding modules to achieve end-to-end output,which requires substantial computation.Therefore,balancing the model’s size,accuracy,and computational complexity is essential.To address these challenges,we propose a lightweight asymmetric UNet architecture and a projection loss function.We utilize ResNet-3 layer blocks to enhance feature extraction efficiency in the encoding stage.In the decoding stage,we employ regular convolutions and skip connections to upscale the feature maps from the latent space to the original image size,balancing the model size and segmentation accuracy.In addition,we leverage the geometric features of the eye region and design a projection loss function to further improve the segmentation accuracy without adding any additional inference computational cost.We validate our approach on the OpenEDS2019 dataset for virtual reality and achieve state-of-the-art performance with 95.33%mean intersection over union(mIoU).Our model has only 0.63M parameters and 350 FPS,which are 68%and 200%of the state-of-the-art model RITNet,respectively.
基金supported by the Shanghai Sailing Program,China (No.20YF1447600)the Research Start-Up Project of Shanghai Institute of Technology (No.YJ2021-60)+1 种基金the Collaborative Innovation Project of Shanghai Institute of Technology (No.XTCX2020-12)the Science and Technology Talent Development Fund for Young and Middle-Aged Teachers at Shanghai Institute of Technology (No.ZQ2022-6)。
文摘There is a problem of real-time detection difficulty in road surface damage detection. This paper proposes an improved lightweight model based on you only look once version 5(YOLOv5). Firstly, this paper fully utilized the convolutional neural network(CNN) + ghosting bottleneck(G_bneck) architecture to reduce redundant feature maps. Afterwards, we upgraded the original upsampling algorithm to content-aware reassembly of features(CARAFE) and increased the receptive field. Finally, we replaced the spatial pyramid pooling fast(SPPF) module with the basic receptive field block(Basic RFB) pooling module and added dilated convolution. After comparative experiments, we can see that the number of parameters and model size of the improved algorithm in this paper have been reduced by nearly half compared to the YOLOv5s. The frame rate per second(FPS) has been increased by 3.25 times. The mean average precision(m AP@0.5: 0.95) has increased by 8%—17% compared to other lightweight algorithms.
基金funded by the Ongoing Research Funding Program(ORF-2025-890)King Saud University,Riyadh,Saudi Arabia and was supported by the Competitive Research Fund of theUniversity of Aizu,Japan.
文摘The exponential expansion of the Internet of Things(IoT),Industrial Internet of Things(IIoT),and Transportation Management of Things(TMoT)produces vast amounts of real-time streaming data.Ensuring system dependability,operational efficiency,and security depends on the identification of anomalies in these dynamic and resource-constrained systems.Due to their high computational requirements and inability to efficiently process continuous data streams,traditional anomaly detection techniques often fail in IoT systems.This work presents a resource-efficient adaptive anomaly detection model for real-time streaming data in IoT systems.Extensive experiments were carried out on multiple real-world datasets,achieving an average accuracy score of 96.06%with an execution time close to 7.5 milliseconds for each individual streaming data point,demonstrating its potential for real-time,resourceconstrained applications.The model uses Principal Component Analysis(PCA)for dimensionality reduction and a Z-score technique for anomaly detection.It maintains a low computational footprint with a sliding window mechanism,enabling incremental data processing and identification of both transient and sustained anomalies without storing historical data.The system uses a Multivariate Linear Regression(MLR)based imputation technique that estimates missing or corrupted sensor values,preserving data integrity prior to anomaly detection.The suggested solution is appropriate for many uses in smart cities,industrial automation,environmental monitoring,IoT security,and intelligent transportation systems,and is particularly well-suited for resource-constrained edge devices.
基金supported by the National Natural Science Foundation of China(No.62103298)the Natural Science Foundation of Hebei Province(No.F2018209289)。
文摘Aiming at the problems of low detection efficiency and difficult positioning of traditional steel surface defect detection methods,a lightweight steel surface defect detection model based on you only look once version 7(YOLOv7)is proposed.First,a cascading style sheets(CSS)block module is proposed,which uses more lightweight operations to obtain redundant information in the feature map,reduces the amount of computation,and effectively improves the detection speed.Secondly,the improved spatial pyramid pooling with cross stage partial convolutions(SPPCSPC)structure is adopted to ensure that the model can also pay attention to the defect location information while predicting the defect category information,obtain richer defect features.In addition,the convolution operation in the original model is simplified,which significantly reduces the size of the model and helps to improve the detection speed.Finally,using efficient intersection over union(EIOU)loss to focus on high-quality anchors,speed up convergence and improve positioning accuracy.Experiments were carried out on the Northeastern University-defect(NEU-DET)steel surface defect dataset.Compared with the original YOLOv7 model,the number of parameters of this model was reduced by 40%,the frames per second(FPS)reached 112,and the average accuracy reached 79.1%,the detection accuracy and speed have been improved,which can meet the needs of steel surface defect detection.
文摘In the field of Weakly Supervised Semantic Segmentation(WSSS),methods based on image-level annotation face challenges in accurately capturing objects of varying sizes,lacking sensitivity to image details,and having high computational costs.To address these issues,we improve the dual-branch architecture of the Conformer as the fundamental network for generating class activation graphs,proposing a multi-scale efficient weakly-supervised semantic segmentation method based on the improved Conformer.In the Convolution Neural Network(CNN)branch,a cross-scale feature integration convolution module is designed,incorporating multi-receptive field convolution layers to enhance the model’s ability to capture long-range dependencies and improve sensitivity to multi-scale objects.In the Vision Transformer(ViT)branch,an efficient multi-head self-attention module is developed,reducing unnecessary computation through spatial compression and feature partitioning,thereby improving overall network efficiency.Finally,a multi-feature coupling module is introduced to complement the features generated by both branches.This design retains the strength of Convolution Neural Network in extracting local details while harnessing the strength of Vision Transformer to capture comprehensive global features.Experimental results show that the mean Intersection over Union of the image segmentation results of the proposed method on the validation and test sets of the PASCAL VOC 2012 datasets are improved by 2.9%and 3.6%,respectively,over the TransCAM algorithm.Besides,the improved model demonstrates a 1.3%increase of the mean Intersections over Union on the COCO 2014 datasets.Additionally,the number of parameters and the floating-point operations are reduced by 16.2%and 12.9%.However,the proposed method still has limitations of poor performance when dealing with complex scenarios.There is a need for further enhancing the performance of this method to address this issue.