Vehicle re-identification involves matching images of vehicles across varying camera views.The diversity of camera locations along different roadways leads to significant intra-class variation and only minimal inter-c...Vehicle re-identification involves matching images of vehicles across varying camera views.The diversity of camera locations along different roadways leads to significant intra-class variation and only minimal inter-class similarity in the collected vehicle images,which increases the complexity of re-identification tasks.To tackle these challenges,this study proposes AG-GCN(Attention-Guided Graph Convolutional Network),a novel framework integrating several pivotal components.Initially,AG-GCN embeds a lightweight attention module within the ResNet-50 structure to learn feature weights automatically,thereby improving the representation of vehicle features globally by highlighting salient features and suppressing extraneous ones.Moreover,AG-GCN adopts a graph-based structure to encapsulate deep local features.A graph convolutional network then amalgamates these features to understand the relationships among vehicle-related characteristics.Subsequently,we amalgamate feature maps from both the attention and graph-based branches for a more comprehensive representation of vehicle features.The framework then gauges feature similarities and ranks them,thus enhancing the accuracy of vehicle re-identification.Comprehensive qualitative and quantitative analyses on two publicly available datasets verify the efficacy of AG-GCN in addressing intra-class and inter-class variability issues.展开更多
基金funded by the National Natural Science Foundation of China(grant number:62172292).
文摘Vehicle re-identification involves matching images of vehicles across varying camera views.The diversity of camera locations along different roadways leads to significant intra-class variation and only minimal inter-class similarity in the collected vehicle images,which increases the complexity of re-identification tasks.To tackle these challenges,this study proposes AG-GCN(Attention-Guided Graph Convolutional Network),a novel framework integrating several pivotal components.Initially,AG-GCN embeds a lightweight attention module within the ResNet-50 structure to learn feature weights automatically,thereby improving the representation of vehicle features globally by highlighting salient features and suppressing extraneous ones.Moreover,AG-GCN adopts a graph-based structure to encapsulate deep local features.A graph convolutional network then amalgamates these features to understand the relationships among vehicle-related characteristics.Subsequently,we amalgamate feature maps from both the attention and graph-based branches for a more comprehensive representation of vehicle features.The framework then gauges feature similarities and ranks them,thus enhancing the accuracy of vehicle re-identification.Comprehensive qualitative and quantitative analyses on two publicly available datasets verify the efficacy of AG-GCN in addressing intra-class and inter-class variability issues.