针对输电线路巡检中无人机拍摄角度下器械易形变及带臂机械不同工作状态下特征复杂难以捕获的问题,提出一种基于阶梯式特征融合的外力破坏检测方法。该方法首先通过融合可变形大卷积核注意力网络提取无人机拍摄图像的特征信息;其次,利...针对输电线路巡检中无人机拍摄角度下器械易形变及带臂机械不同工作状态下特征复杂难以捕获的问题,提出一种基于阶梯式特征融合的外力破坏检测方法。该方法首先通过融合可变形大卷积核注意力网络提取无人机拍摄图像的特征信息;其次,利用多尺度序列特征融合模块进行阶梯式特征融合;然后,对检测头进行轻量化操作以减少参数量;最后,提出渐变完全交并比抑制(gradual complete intersection over union non-maximum suppression,GCIoU NMS)损失函数优化模型。在自建数据集上的实验表明,该方法的mAP50%和mAP50%-95%分别提高10.5和10.2百分点,达到86.8%和58.4%;在VOC数据集上,mAP50%和mAP50%-95%分别提高7.3和8.1百分点,达到79.5%和58.8%。实验结果表明,该方法有效提升了目标检测性能,对复杂环境下输电线路外部破坏检测具有重要参考价值。展开更多
针对无人机航拍图像目标检测中计算资源受限和多尺度小目标检测难度大,基于YOLOv10n模型,提出一种轻量化检测模型YOLOv10n-CIG。首先,设计C2f-CW(C2f with convolutional wise)替换C2f模块,通过结合部分卷积和逐点卷积优化计算资源,提...针对无人机航拍图像目标检测中计算资源受限和多尺度小目标检测难度大,基于YOLOv10n模型,提出一种轻量化检测模型YOLOv10n-CIG。首先,设计C2f-CW(C2f with convolutional wise)替换C2f模块,通过结合部分卷积和逐点卷积优化计算资源,提升推理速度并增强多尺度特征融合效果。其次,去除Backbone的最后一次下采样层,并改进SPPF为SPPF-IP(SPPF with involution parallel structure),以保留小目标的细粒度空间信息,进一步提高多尺度特征融合性能。最后,引入了基于组卷积的轻量化检测头GHead(GConv Head,GHead),通过优化组卷积参数,使得检测精度、模型大小与推理速度之间达到了平衡。实验结果表明,YOLOv10n-CIG模型相较于原YOLOv10n模型而言,在mAP50上提升了5.3%,在模型大小上减少了1.12 MB,在推理速度上,分别在Ubuntu和Jetson提升59 FPS和9 FPS。与当前主流算法相比,YOLOv10n-CIG在各项指标上综合表现较好。展开更多
在人体姿态检测任务中,现有的深度学习网络存在检测精度不足、网络参数复杂和计算成本高等问题,严重限制了它们的应用。为了解决这些问题,提出一种轻量且高精度的姿态检测改进网络HG-YOLO(High-precision and Ghost YOLO)。针对检测精...在人体姿态检测任务中,现有的深度学习网络存在检测精度不足、网络参数复杂和计算成本高等问题,严重限制了它们的应用。为了解决这些问题,提出一种轻量且高精度的姿态检测改进网络HG-YOLO(High-precision and Ghost YOLO)。针对检测精度不足的问题,在HG-YOLO的主干网络,融合基于Transformer的检测网络RT-DETR(Real-Time DEtection TRansformer),并将大型可分离核注意力(LSKA)模块嵌入主干网络中,以在不增加内存占用和计算复杂性的基础上,提高网络应对复杂场景的特征提取能力,从而提高人体姿态的检测精度。针对网络参数复杂和计算成本高的问题,引入轻量化的Ghost卷积模块替换部分标准卷积,此外,在HG-YOLO的检测头部分,设计一种共享卷积检测头,以通过参数和权重共享机制减少卷积计算,从而降低网络的参数量和计算复杂度。在COCO(Common Objects in COntext)2017-Keypoints数据集和CrowdPose数据集上的实验结果表明,与基准的YOLOv8-Pose网络相比,HG-YOLO的参数量减少了32%,浮点运算量减少了18%;在规模为小型(s)时,在COCO 2017-Keypoints数据集上,AP50(Average Precision at OKS(Object Keypoint Similarity)of 0.50)提升了0.8个百分点,在CrowdPose数据集上,AP提升了2.9个百分点。可见,HG-YOLO不仅轻量,而且检测精度高,是人体姿态检测领域的优秀网络模型。展开更多
车辆检测是智能交通系统和自动驾驶的重要组成部分。然而,实际交通场景中存在许多不确定因素,导致车辆检测模型的准确率低实时性差。为了解决这个问题,提出了一种快速准确的车辆检测算法——YOLOv8-DEL。使用DGCST(dynamic group convol...车辆检测是智能交通系统和自动驾驶的重要组成部分。然而,实际交通场景中存在许多不确定因素,导致车辆检测模型的准确率低实时性差。为了解决这个问题,提出了一种快速准确的车辆检测算法——YOLOv8-DEL。使用DGCST(dynamic group convolution shuffle transformer)模块代替C2f模块来重构主干网络,以增强特征提取能力并使网络更轻量;添加的P2检测层能使模型更敏锐地定位和检测小目标,同时采用Efficient RepGFPN进行多尺度特征融合,以丰富特征信息并提高模型的特征表达能力;通过结合GroupNorm和共享卷积的优点,设计了一种轻量型共享卷积检测头,在保持精度的前提下,有效减少参数量并提升检测速度。与YOLOv8相比,提出的YOLOv8-DEL在BDD100K数据集和KITTI数据集上,mAP@0.5分别提高了4.8个百分点和1.2个百分点,具有实时检测速度(208.6 FPS和216.4 FPS),在检测精度和速度方面实现了更有利的折中。展开更多
文摘针对输电线路巡检中无人机拍摄角度下器械易形变及带臂机械不同工作状态下特征复杂难以捕获的问题,提出一种基于阶梯式特征融合的外力破坏检测方法。该方法首先通过融合可变形大卷积核注意力网络提取无人机拍摄图像的特征信息;其次,利用多尺度序列特征融合模块进行阶梯式特征融合;然后,对检测头进行轻量化操作以减少参数量;最后,提出渐变完全交并比抑制(gradual complete intersection over union non-maximum suppression,GCIoU NMS)损失函数优化模型。在自建数据集上的实验表明,该方法的mAP50%和mAP50%-95%分别提高10.5和10.2百分点,达到86.8%和58.4%;在VOC数据集上,mAP50%和mAP50%-95%分别提高7.3和8.1百分点,达到79.5%和58.8%。实验结果表明,该方法有效提升了目标检测性能,对复杂环境下输电线路外部破坏检测具有重要参考价值。