期刊文献+
共找到13,873篇文章
< 1 2 250 >
每页显示 20 50 100
Improved lightweight road damage detection based on YOLOv5
1
作者 LIU Chang SUN Yu +2 位作者 CHEN Jin YANG Jing WANG Fengchao 《Optoelectronics Letters》 2025年第5期314-320,共7页
There is a problem of real-time detection difficulty in road surface damage detection. This paper proposes an improved lightweight model based on you only look once version 5(YOLOv5). Firstly, this paper fully utilize... There is a problem of real-time detection difficulty in road surface damage detection. This paper proposes an improved lightweight model based on you only look once version 5(YOLOv5). Firstly, this paper fully utilized the convolutional neural network(CNN) + ghosting bottleneck(G_bneck) architecture to reduce redundant feature maps. Afterwards, we upgraded the original upsampling algorithm to content-aware reassembly of features(CARAFE) and increased the receptive field. Finally, we replaced the spatial pyramid pooling fast(SPPF) module with the basic receptive field block(Basic RFB) pooling module and added dilated convolution. After comparative experiments, we can see that the number of parameters and model size of the improved algorithm in this paper have been reduced by nearly half compared to the YOLOv5s. The frame rate per second(FPS) has been increased by 3.25 times. The mean average precision(m AP@0.5: 0.95) has increased by 8%—17% compared to other lightweight algorithms. 展开更多
关键词 road surface damage detection convolutional neural network feature maps convolutional neural network cnn lightweight model yolov improved lightweight model spatial pyram
原文传递
Steel surface defect detection based on lightweight YOLOv7
2
作者 SHI Tao WU Rongxin +1 位作者 ZHU Wenxu MA Qingliang 《Optoelectronics Letters》 2025年第5期306-313,共8页
Aiming at the problems of low detection efficiency and difficult positioning of traditional steel surface defect detection methods,a lightweight steel surface defect detection model based on you only look once version... Aiming at the problems of low detection efficiency and difficult positioning of traditional steel surface defect detection methods,a lightweight steel surface defect detection model based on you only look once version 7(YOLOv7)is proposed.First,a cascading style sheets(CSS)block module is proposed,which uses more lightweight operations to obtain redundant information in the feature map,reduces the amount of computation,and effectively improves the detection speed.Secondly,the improved spatial pyramid pooling with cross stage partial convolutions(SPPCSPC)structure is adopted to ensure that the model can also pay attention to the defect location information while predicting the defect category information,obtain richer defect features.In addition,the convolution operation in the original model is simplified,which significantly reduces the size of the model and helps to improve the detection speed.Finally,using efficient intersection over union(EIOU)loss to focus on high-quality anchors,speed up convergence and improve positioning accuracy.Experiments were carried out on the Northeastern University-defect(NEU-DET)steel surface defect dataset.Compared with the original YOLOv7 model,the number of parameters of this model was reduced by 40%,the frames per second(FPS)reached 112,and the average accuracy reached 79.1%,the detection accuracy and speed have been improved,which can meet the needs of steel surface defect detection. 展开更多
关键词 obtain redundant information defect detection steel surface cascading style sheets block module lightweight yolov lightweight operations spatial pyramid pooling steel surface defect detection
原文传递
Research on YOLO algorithm for lightweight PCB defect detection based on MobileViT
3
作者 LIU Yuchen LIU Fuzheng JIANG Mingshun 《Optoelectronics Letters》 2025年第8期483-490,共8页
Current you only look once(YOLO)-based algorithm model is facing the challenge of overwhelming parameters and calculation complexity under the printed circuit board(PCB)defect detection application scenario.In order t... Current you only look once(YOLO)-based algorithm model is facing the challenge of overwhelming parameters and calculation complexity under the printed circuit board(PCB)defect detection application scenario.In order to solve this problem,we propose a new method,which combined the lightweight network mobile vision transformer(Mobile Vi T)with the convolutional block attention module(CBAM)mechanism and the new regression loss function.This method needed less computation resources,making it more suitable for embedded edge detection devices.Meanwhile,the new loss function improved the positioning accuracy of the bounding box and enhanced the robustness of the model.In addition,experiments on public datasets demonstrate that the improved model achieves an average accuracy of 87.9%across six typical defect detection tasks,while reducing computational costs by nearly 90%.It significantly reduces the model's computational requirements while maintaining accuracy,ensuring reliable performance for edge deployment. 展开更多
关键词 YOLO lightweight network mobile vision transformer mobile lightweight Network convolutional block attention module cbam mechanism MobileViT CBAM PCB Defect Detection Regression Loss Function
原文传递
Substantially improved room-temperature tensile ductility in lightweight refractory Ti-V-Zr-Nb medium entropy alloys by tuning Ti and V content 被引量:2
4
作者 Yuefei Jia Gengchen Li +6 位作者 Chang Ren Yongkun Mu Kang Sun Shiwei Wu Xilei Bian Yandong Jia Gang Wang 《Journal of Materials Science & Technology》 2025年第3期234-247,共14页
Lightweight high/medium-entropy alloys(H/MEAs)possess attractive properties such as high strength-to-weight ratios,however,their limited room-temperature tensile ductility hinders their widespread engi-neering impleme... Lightweight high/medium-entropy alloys(H/MEAs)possess attractive properties such as high strength-to-weight ratios,however,their limited room-temperature tensile ductility hinders their widespread engi-neering implementation,for instance in aerospace structural components.This work achieved a transfor-mative improvement of room-temperature tensile ductility in Ti-V-Zr-Nb MEAs with densities of 5.4-6.5 g/cm3,via ingenious composition modulation.Through the systematic co-adjustment of Ti and V contents,an intrinsic ductility mechanism was unveiled,manifested by a transition from predominant intergranular brittle fracture to pervasive ductile dimpled rupture.Notably,the modulated deformation mechanisms evolved from solitary slip toward collaborative multiple slip modes,without significantly compromising strength.Compared to equimolar Ti-V-Zr-Nb,a(Ti1.5V)3ZrNb composition demonstrated an impressive 360%improvement in elongation while sustaining a high yield strength of around 800 MPa.Increasing Ti and V not only purified the grain boundaries by reducing detrimental phases,but also tai-lored the deformation dislocation configurations.These insights expanded the applicability of lightweight HEAs to areas demanding combined high strength and ductility. 展开更多
关键词 DUCTILITY lightweight high-entropy alloys High strength Composition modulation
原文传递
LT-YOLO:A Lightweight Network for Detecting Tomato Leaf Diseases 被引量:1
5
作者 Zhenyang He Mengjun Tong 《Computers, Materials & Continua》 2025年第3期4301-4317,共17页
Tomato plant diseases often first manifest on the leaves,making the detection of tomato leaf diseases particularly crucial for the tomato cultivation industry.However,conventional deep learning models face challenges ... Tomato plant diseases often first manifest on the leaves,making the detection of tomato leaf diseases particularly crucial for the tomato cultivation industry.However,conventional deep learning models face challenges such as large model sizes and slow detection speeds when deployed on resource-constrained platforms and agricultural machinery.This paper proposes a lightweight model for detecting tomato leaf diseases,named LT-YOLO,based on the YOLOv8n architecture.First,we enhance the C2f module into a RepViT Block(RVB)with decoupled token and channel mixers to reduce the cost of feature extraction.Next,we incorporate a novel Efficient Multi-Scale Attention(EMA)mechanism in the deeper layers of the backbone to improve detection of critical disease features.Additionally,we design a lightweight detection head,LT-Detect,using Partial Convolution(PConv)to significantly reduce the classification and localization costs during detection.Finally,we introduce a Receptive Field Block(RFB)in the shallow layers of the backbone to expand the model’s receptive field,enabling effective detection of diseases at various scales.The improved model reduces the number of parameters by 43%and the computational load by 50%.Additionally,it achieves a mean Average Precision(mAP)of 90.9%on a publicly available dataset containing 3641 images of tomato leaf diseases,with only a 0.7%decrease compared to the baseline model.This demonstrates that the model maintains excellent accuracy while being lightweight,making it suitable for rapid detection of tomato leaf diseases. 展开更多
关键词 YOLOv8n target detection lightweight TOMATO attention mechanism
在线阅读 下载PDF
TELL-Me:A time-series-decomposition-based ensembled lightweight learning model for diverse battery prognosis and diagnosis 被引量:1
6
作者 Kun-Yu Liu Ting-Ting Wang +2 位作者 Bo-Bo Zou Hong-Jie Peng Xinyan Liu 《Journal of Energy Chemistry》 2025年第7期1-8,共8页
As batteries become increasingly essential for energy storage technologies,battery prognosis,and diagnosis remain central to ensure reliable operation and effective management,as well as to aid the in-depth investigat... As batteries become increasingly essential for energy storage technologies,battery prognosis,and diagnosis remain central to ensure reliable operation and effective management,as well as to aid the in-depth investigation of degradation mechanisms.However,dynamic operating conditions,cell-to-cell inconsistencies,and limited availability of labeled data have posed significant challenges to accurate and robust prognosis and diagnosis.Herein,we introduce a time-series-decomposition-based ensembled lightweight learning model(TELL-Me),which employs a synergistic dual-module framework to facilitate accurate and reliable forecasting.The feature module formulates features with physical implications and sheds light on battery aging mechanisms,while the gradient module monitors capacity degradation rates and captures aging trend.TELL-Me achieves high accuracy in end-of-life prediction using minimal historical data from a single battery without requiring offline training dataset,and demonstrates impressive generality and robustness across various operating conditions and battery types.Additionally,by correlating feature contributions with degradation mechanisms across different datasets,TELL-Me is endowed with the diagnostic ability that not only enhances prediction reliability but also provides critical insights into the design and optimization of next-generation batteries. 展开更多
关键词 Battery prognosis Interpretable machine learning Degradation diagnosis Ensemble learning Online prediction lightweight model
在线阅读 下载PDF
Lightweight consensus mechanisms in the Internet of Blockchained Things:Thorough analysis and research directions 被引量:1
7
作者 Somia Sahraoui Abdelmalik Bachir 《Digital Communications and Networks》 2025年第4期1245-1260,共16页
The Internet of Things(IoT)has gained substantial attention in both academic research and real-world applications.The proliferation of interconnected devices across various domains promises to deliver intelligent and ... The Internet of Things(IoT)has gained substantial attention in both academic research and real-world applications.The proliferation of interconnected devices across various domains promises to deliver intelligent and advanced services.However,this rapid expansion also heightens the vulnerability of the IoT ecosystem to security threats.Consequently,innovative solutions capable of effectively mitigating risks while accommodating the unique constraints of IoT environments are urgently needed.Recently,the convergence of Blockchain technology and IoT has introduced a decentralized and robust framework for securing data and interactions,commonly referred to as the Internet of Blockchained Things(IoBT).Extensive research efforts have been devoted to adapting Blockchain technology to meet the specific requirements of IoT deployments.Within this context,consensus algorithms play a critical role in assessing the feasibility of integrating Blockchain into IoT ecosystems.The adoption of efficient and lightweight consensus mechanisms for block validation has become increasingly essential.This paper presents a comprehensive examination of lightweight,constraint-aware consensus algorithms tailored for IoBT.The study categorizes these consensus mechanisms based on their core operations,the security of the block validation process,the incorporation of AI techniques,and the specific applications they are designed to support. 展开更多
关键词 Blockchain Internet of Things lightweight consensus
在线阅读 下载PDF
Excellent ductilization and strengthening of lightweight refractory high-entropy alloys via stable B2 nanoprecipitates 被引量:1
8
作者 Rui-Xin Wang Wei-Jian Shen +5 位作者 Yu-Jie Chen Yuan-Lin Ai Shun Li Shu-Xin Bai Yu Tang Qian Yu 《Rare Metals》 2025年第3期2128-2135,共8页
Introducing B2 ordering can effectively improve the mechanical properties of lightweight refractory high-entropy alloys(LRHEAs).However,(Zr,Al)-enriched B2 precipitates generally reduce the ductility because their ord... Introducing B2 ordering can effectively improve the mechanical properties of lightweight refractory high-entropy alloys(LRHEAs).However,(Zr,Al)-enriched B2 precipitates generally reduce the ductility because their ordering characteristic is destroyed after dislocation shearing.Meanwhile,the local chemical order(LCO)cannot provide an adequate strengthening effect due to its small size. 展开更多
关键词 dislocation shearingmeanwhilethe strengthening effect improve mechanical properties local chemical order lco cannot lightweight refractory high entropy alloys b precipitates ordering characteristic strengthening
原文传递
Research on SAR Image Lightweight Detection Based on Improved YOLOV8
9
作者 WANG Qing SI Zhan-jun 《印刷与数字媒体技术研究》 北大核心 2025年第1期93-100,共8页
In recent years,with the development of synthetic aperture radar(SAR)technology and the widespread application of deep learning,lightweight detection of SAR images has emerged as a research direction.The ultimate goal... In recent years,with the development of synthetic aperture radar(SAR)technology and the widespread application of deep learning,lightweight detection of SAR images has emerged as a research direction.The ultimate goal is to reduce computational and storage requirements while ensuring detection accuracy and reliability,making it an ideal choice for achieving rapid response and efficient processing.In this regard,a lightweight SAR ship target detection algorithm based on YOLOv8 was proposed in this study.Firstly,the C2f-Sc module was designed by fusing the C2f in the backbone network with the ScConv to reduce spatial redundancy and channel redundancy between features in convolutional neural networks.At the same time,the Ghost module was introduced into the neck network to effectively reduce model parameters and computational complexity.A relatively lightweight EMA attention mechanism was added to the neck network to promote the effective fusion of features at different levels.Experimental results showed that the Parameters and GFLOPs of the improved model are reduced by 8.5%and 7.0%when mAP@0.5 and mAP@0.5:0.95 are increased by 0.7%and 1.8%,respectively.It makes the model lightweight and improves the detection accuracy,which has certain application value. 展开更多
关键词 YOLOv8 Synthetic aperture radar image lightweight Target detection
在线阅读 下载PDF
LSBSP: A Lightweight Sharding Method of Blockchain Based on State Pruning for Efficient Data Sharing in IoMT
10
作者 Guoqiong Liao Yinxiang Lei +1 位作者 Yufang Xie Neal N.Xiong 《Computers, Materials & Continua》 2025年第2期3309-3335,共27页
As the Internet of Medical Things (IoMT) continues to expand, smart health-monitoring devices generate vast amounts of valuable data while simultaneously raising critical security and privacy challenges. Blockchain te... As the Internet of Medical Things (IoMT) continues to expand, smart health-monitoring devices generate vast amounts of valuable data while simultaneously raising critical security and privacy challenges. Blockchain technology presents a promising avenue to address these concerns due to its inherent decentralization and security features. However, scalability remains a persistent hurdle, particularly for IoMT applications that involve large-scale networks and resource-constrained devices. This paper introduces a novel lightweight sharding method tailored to the unique demands of IoMT data sharing. Our approach enhances state bootstrapping efficiency and reduces operational overhead by utilizing a dual-chain structure comprising a main chain and a snapshot chain. The snapshot chain periodically records key blockchain states, allowing nodes to synchronize more efficiently. This mechanism is critical in reducing the time and resources needed for new nodes to join the network or existing nodes to recover from outages. Additionally, a block state pruning technique is implemented, significantly minimizing storage requirements and lowering transaction execution overhead during initialization and reconfiguration processes. This is crucial given the substantial data volumes inherent in IoMT ecosystems. By adopting an optimistic sharding strategy, our model allows nodes to swiftly join the snapshot shard, while full shards retain the complete ledger history to ensure comprehensive transaction verification. Extensive evaluations across diverse shard configurations demonstrate that this method significantly outperforms existing baseline models. It provides a comprehensive solution for IoMT blockchain applications, striking an optimal balance between security, scalability, and operational efficiency. 展开更多
关键词 Internet of medical things blockchain sharding lightweight SNAPSHOT
在线阅读 下载PDF
Proof-of-trusted-work:A lightweight blockchain consensus for decentralized IoT networks
11
作者 Pengzhan Jiang Long Shi +3 位作者 Bin Cao Taotao Wang Baofeng Ji Jun Li 《Digital Communications and Networks》 2025年第4期1054-1065,共12页
Traditional Internet of Things(IoT)architectures that rely on centralized servers for data management and decision-making are vulnerable to security threats and privacy leakage.To address this issue,blockchain has bee... Traditional Internet of Things(IoT)architectures that rely on centralized servers for data management and decision-making are vulnerable to security threats and privacy leakage.To address this issue,blockchain has been advocated for decentralized data management in a tamper-resistance,traceable,and transparent manner.However,a major issue that hinders the integration of blockchain and IoT lies in that,it is rather challenging for resource-constrained IoT devices to perform computation-intensive blockchain consensuses such as Proof-of-Work(PoW).Furthermore,the incentive mechanism of PoW pushes lightweight IoT nodes to aggregate their computing power to increase the possibility of successful block generation.Nevertheless,this eventually leads to the formation of computing power alliances,and significantly compromises the decentralization and security of BlockChain-aided IoT(BC-IoT)networks.To cope with these issues,we propose a lightweight consensus protocol for BC-IoT,called Proof-of-Trusted-Work(PoTW).The goal of the proposed consensus is to disincentivize the centralization of computing power and encourage the independent participation of lightweight IoT nodes in blockchain consensus.First,we put forth an on-chain reputation evaluation rule and a reputation chain for PoTW to enable the verifiability and traceability of nodes’reputations based on their contributions of computing power to the blockchain consensus,and we incorporate the multi-level block generation difficulty as a rewards for nodes to accumulate reputations.Second,we model the block generation process of PoTW and analyze the block throughput using the continuous time Markov chain.Additionally,we define and optimize the relative throughput gain to quantify and maximize the capability of PoTW that suppresses the computing power centralization(i.e.,centralization suppression).Furthermore,we investigate the impact of the computing power of the computing power alliance and the levels of block generation difficulty on the centralization suppression capability of PoTW.Finally,simulation results demonstrate the consistency of the analytical results in terms of block throughput.In particular,the results show that PoTW effectively reduces the block generation proportion of the computing power alliance compared with PoW,while simultaneously improving that of individual lightweight nodes.This indicates that PoTW is capable of suppressing the centralization of computing power to a certain degree.Moreover,as the levels of block generation difficulty in PoTW increase,its centralization suppression capability strengthens. 展开更多
关键词 Internet of things Blockchain DECENTRALIZATION lightweight consensus Proof-of-trusted-work
在线阅读 下载PDF
Microstructure evolution and mechanical properties improvement of(Ti_(8)Zr_(6)Nb_(4)V_(5)Cr_(4))_(100−x)Al_(x) lightweight high-entropy alloy by Laves phase transformation
12
作者 Qin Xu Cheng-yuan Guo +3 位作者 Qi Wang Peng-yu Sun Ya-jun Yin Rui-run Chen 《Journal of Iron and Steel Research International》 2025年第6期1753-1762,共10页
(Ti_(8)Zr_(6)Nb_(4)V_(5)Cr_(4))_(100−x)Al_(x)(x=0,0.1,0.2,0.3,0.4 at.%)lightweight high-entropy alloys with different contents of Al were prepared via vacuum non-consumable arc melting method.Effects of adding varying... (Ti_(8)Zr_(6)Nb_(4)V_(5)Cr_(4))_(100−x)Al_(x)(x=0,0.1,0.2,0.3,0.4 at.%)lightweight high-entropy alloys with different contents of Al were prepared via vacuum non-consumable arc melting method.Effects of adding varying Al contents on phase constitution,microstructure characteristics and mechanical properties of the lightweight alloys were studied.Results show that Ti_(8)Zr_(6)Nb_(4)V_(5)Cr_(4)alloy is composed of body-centered cubic(BCC)phase and C15 Laves phase,while(Ti_(8)Zr_(6)Nb_(4)V_(5)Cr_(4))_(100−x)Al_(x)lightweight high-entropy alloys by addition of Al are composed of BCC phase and C14 Laves phase.Addition of Al into Ti_(8)Zr_(6)Nb_(4)V_(5)Cr_(4)lightweight high-entropy alloy can transform C15 Laves phase to C14 Laves phase.With further addition of Al,BCC phase of alloys is significantly refined,and the volume fraction of C14 Laves phase is raised obviously.Meanwhile,the dimension of BCC phase in the alloy by addition of 0.3 at.%Al is the most refined and that of Laves phase is also obviously refined.Adding Al to Ti_(8)Zr_(6)Nb_(4)V_(5)Cr_(4)alloy can not only reduce the density of(Ti_(8)Zr_(6)Nb_(4)V_(5)Cr_(4))_(100−x)Al_(x)alloy,but also improve strength of(Ti_(8)Zr_(6)Nb_(4)V_(5)Cr_(4))_(100−x)Al_(x)alloy.As Al content increased from 0 to 0.4 at.%,the density of the alloy decreased from 6.22±0.875 to 5.79±0.679 g cm^(−3).Moreover,compressive strength of the alloy by 0.3 at.%Al addition is the highest to 1996.9 MPa,while fracture strain of the alloy is 16.82%.Strength improvement of alloys mainly results from microstructure refinement and precipitation of C14 Laves by Al addition into Ti_(8)Zr_(6)Nb_(4)V_(5)Cr_(4)lightweight high-entropy alloy. 展开更多
关键词 lightweight high-entropy alloy Phase transformation Microstructure Mechanical property REFINEMENT Strengthening
原文传递
SW-YOLO:Lightweight Attitude Estimation Algorithm Based on Weighted Convolution and Star Network
13
作者 Qian Xu 《Journal of Electronic Research and Application》 2025年第5期192-199,共8页
This paper proposes SW-YOLO(StarNet Weighted-Conv YOLO),a lightweight human pose estimation network for edge devices.Current mainstream pose estimation algorithms are computationally inefficient and have poor feature ... This paper proposes SW-YOLO(StarNet Weighted-Conv YOLO),a lightweight human pose estimation network for edge devices.Current mainstream pose estimation algorithms are computationally inefficient and have poor feature capture capabilities for complex poses and occlusion scenarios.This work introduces a lightweight backbone architecture that integrates WConv(Weighted Convolution)and StarNet modules to address these issues.Leveraging StarNet’s superior capabilities in multi-level feature fusion and long-range dependency modeling,this architecture enhances the model’s spatial perception of human joint structures and contextual information integration.These improvements significantly enhance robustness in complex scenarios involving occlusion and deformation.Additionally,the introduction of WConv convolution operations,based on weight recalibration and receptive field optimization,dynamically adjusts feature importance during convolution.This reduces redundant computations while maintaining or enhancing feature representation capabilities at an extremely low computational cost.Consequently,SW-YOLO substantially reduces model complexity and inference latency while preserving high accuracy,significantly outperforming existing lightweight networks. 展开更多
关键词 YOLO11-Pose WConv StarNet lightweight algorithms Feature fusion
在线阅读 下载PDF
Real-Time Lightweight Convolutional Neural Network for Polyp Detection in Endoscope Images
14
作者 SI Bingqi PANG Chenxi +2 位作者 WANG Zhiwu JIANG Pingping YAN Guozheng 《Journal of Shanghai Jiaotong university(Science)》 2025年第3期521-534,共14页
Colorectal cancer is the most common cancer with a second mortality rate.Polyp lesion is a precursor symptom of colorectal cancer.Detection and removal of polyps can effectively reduce the mortality of patients in the... Colorectal cancer is the most common cancer with a second mortality rate.Polyp lesion is a precursor symptom of colorectal cancer.Detection and removal of polyps can effectively reduce the mortality of patients in the early period.However,mass images will be generated during an endoscopy,which will greatly increase the workload of doctors,and long-term mechanical screening of endoscopy images will also lead to a high misdiagnosis rate.Aiming at the problem that computer-aided diagnosis models deeply depend on the computational power in the polyp detection task,we propose a lightweight model,coordinate attention-YOLOv5-Lite-Prune,based on the YOLOv5 algorithm,which is different from state-of-the-art methods proposed by the existing research that applied object detection models or their variants directly to prediction task without any lightweight processing,such as faster region-based convolutional neural networks,YOLOv3,YOLOv4,and single shot multibox detector.The innovations of our model are as follows:First,the lightweight EfficientNetLite network is introduced as the new feature extraction network.Second,the depthwise separable convolution and its improved modules with different attention mechanisms are used to replace the standard convolution in the detection head structure.Then,theα-intersection over union loss function is applied to improve the precision and convergence speed of the model.Finally,the model size is compressed with a pruning algorithm.Our model effectively reduces parameter amount and computational complexity without significant accuracy loss.Therefore,the model can be successfully deployed on the embedded deep learning platform,and detect polyps with a speed above 30 frames per second,which means the model gets rid of the limitation that deep learning models must rely on high-performance servers. 展开更多
关键词 YOLOv5 polyp lesions object detection lightweight weight pruning
原文传递
Microstructure,phase stability,and mechanical properties of Al-Li-Mg-Ti-M(M=Zn,Zr,V) lightweight high-entropy alloys
15
作者 Quan DONG Meng LI +1 位作者 Yu-fei ZHANG Jing ZHANG 《Transactions of Nonferrous Metals Society of China》 2025年第6期1742-1757,共16页
The microstructural evolution,phase stability,and mechanical properties of Al-Li-Mg-Ti-M(M=Zn,Zr,V)lightweight high-entropy alloys(LW-HEAs)were investigated.The LW-HEAs with three components,Al_(20)Li_(20)Mg_(10)-Ti_(... The microstructural evolution,phase stability,and mechanical properties of Al-Li-Mg-Ti-M(M=Zn,Zr,V)lightweight high-entropy alloys(LW-HEAs)were investigated.The LW-HEAs with three components,Al_(20)Li_(20)Mg_(10)-Ti_(40)Zn_(10)(#Zn),Al_(20)Li_(20)Mg_(10)Ti_(30)Zr_(20)(#Zr),and Al_(20)Li_(20)Mg_(10)Ti_(30)V_(20)(#V),were designed according to the thermo-dynamic design criteria of HEA,and prepared via a combination process of mechanical alloying and cold-press sintering.The effects of alloy composition and sintering temperature on the microstructure and mechanical properties of the LW-HEAs were studied.The results show that the as-milled Al-Li-Mg-Ti-M(M=Zn,Zr,V)LW-HEAs form a simple structure with HCP-type solid solution as the primary phase,a dual-HCP type solid solution phase,and a BCC phase,respectively.After cold-press sintering,the#Zn and#V alloys undergo obvious phase transformation;while the#Zr alloy with dual-HCP phases exhibits the best phase stability during heat treatment.The#V-750°C alloy demonstrates the maximum hardness and specific strength of HV 595.2 and 625 MPa∙cm3/g,respectively,under the combined effect of solid solution strengthening of BCC phase and precipitation strengthening ofβ-AlTi_(3).Moreover,the#Zr-650°C,#Zr-750°C,and#Zn-650°C alloys are expected to have excellent plasticity. 展开更多
关键词 lightweight high-entropy alloy mechanical alloying microstructural evolution phase stability specific strength PLASTICITY
在线阅读 下载PDF
SFC_DeepLabv3+:A Lightweight Grape Image Segmentation Method Based on Content-Guided Attention Fusion
16
作者 Yuchao Xia Jing Qiu 《Computers, Materials & Continua》 2025年第8期2531-2547,共17页
In recent years,fungal diseases affecting grape crops have attracted significant attention.Currently,the assessment of black rot severitymainly depends on the ratio of lesion area to leaf surface area.However,effectiv... In recent years,fungal diseases affecting grape crops have attracted significant attention.Currently,the assessment of black rot severitymainly depends on the ratio of lesion area to leaf surface area.However,effectively and accurately segmenting leaf lesions presents considerable challenges.Existing grape leaf lesion segmentationmodels have several limitations,such as a large number of parameters,long training durations,and limited precision in extracting small lesions and boundary details.To address these issues,we propose an enhanced DeepLabv3+model incorporating Strip Pooling,Content-Guided Fusion,and Convolutional Block Attention Module(SFC_DeepLabv3+),an enhanced lesion segmentation method based on DeepLabv3+.This approach uses the lightweight MobileNetv2 backbone to replace the original Xception,incorporates a lightweight convolutional block attention module,and introduces a content-guided feature fusion module to improve the detection accuracy of small lesions and blurred boundaries.Experimental results showthat the enhancedmodel achieves a mean Intersection overUnion(mIoU)of 90.98%,amean Pixel Accuracy(mPA)of 94.33%,and a precision of 95.84%.This represents relative gains of 2.22%,1.78%,and 0.89%respectively compared to the original model.Additionally,its complexity is significantly reduced without sacrificing performance,the parameter count is reduced to 6.27 M,a decrease of 88.5%compared to the original model,floating point of operations(GFLOPs)drops from 83.62 to 29.00 G,a reduction of 65.1%.Additionally,Frames Per Second(FPS)increases from 63.7 to 74.3 FPS,marking an improvement of 16.7%.Compared to other models,the improved architecture shows faster convergence and superior segmentation accuracy,making it highly suitable for applications in resource-constrained environments. 展开更多
关键词 Grape leaf leaf segmentation lightweight feature fusion DeepLabv3+
在线阅读 下载PDF
Lightweight Residual Multi-Head Convolution with Channel Attention(ResMHCNN)for End-to-End Classification of Medical Images
17
作者 Sudhakar Tummala Sajjad Hussain Chauhdary +3 位作者 Vikash Singh Roshan Kumar Seifedine Kadry Jungeun Kim 《Computer Modeling in Engineering & Sciences》 2025年第9期3585-3605,共21页
Lightweight deep learning models are increasingly required in resource-constrained environments such as mobile devices and the Internet of Medical Things(IoMT).Multi-head convolution with channel attention can facilit... Lightweight deep learning models are increasingly required in resource-constrained environments such as mobile devices and the Internet of Medical Things(IoMT).Multi-head convolution with channel attention can facilitate learning activations relevant to different kernel sizes within a multi-head convolutional layer.Therefore,this study investigates the capability of novel lightweight models incorporating residual multi-head convolution with channel attention(ResMHCNN)blocks to classify medical images.We introduced three novel lightweight deep learning models(BT-Net,LCC-Net,and BC-Net)utilizing the ResMHCNN block as their backbone.These models were crossvalidated and tested on three publicly available medical image datasets:a brain tumor dataset from Figshare consisting of T1-weighted magnetic resonance imaging slices of meningioma,glioma,and pituitary tumors;the LC25000 dataset,which includes microscopic images of lung and colon cancers;and the BreaKHis dataset,containing benign and malignant breast microscopic images.The lightweight models achieved accuracies of 96.9%for 3-class brain tumor classification using BT-Net,and 99.7%for 5-class lung and colon cancer classification using LCC-Net.For 2-class breast cancer classification,BC-Net achieved an accuracy of 96.7%.The parameter counts for the proposed lightweight models—LCC-Net,BC-Net,and BT-Net—are 0.528,0.226,and 1.154 million,respectively.The presented lightweight models,featuring ResMHCNN blocks,may be effectively employed for accurate medical image classification.In the future,these models might be tested for viability in resource-constrained systems such as mobile devices and IoMT platforms. 展开更多
关键词 lightweight models brain tumor breast cancer lung cancer colon cancer multi-head CNN
在线阅读 下载PDF
SSANet-Based Lightweight and Efficient Crop Disease Detection
18
作者 Hao Sun Di Cai Dae-Ki Kang 《Computers, Materials & Continua》 2025年第10期1675-1692,共18页
Accurately identifying crop pests and diseases ensures agricultural productivity and safety.Although current YOLO-based detection models offer real-time capabilities,their conventional convolutional layers involve hig... Accurately identifying crop pests and diseases ensures agricultural productivity and safety.Although current YOLO-based detection models offer real-time capabilities,their conventional convolutional layers involve high computational redundancy and a fixed receptive field,making it challenging to capture local details and global semantics in complex scenarios simultaneously.This leads to significant issues like missed detections of small targets and heightened sensitivity to background interference.To address these challenges,this paper proposes a lightweight adaptive detection network—StarSpark-AdaptiveNet(SSANet),which optimizes features through a dual-module collaborative mechanism.Specifically,the StarNet module utilizes Depthwise separable convolutions(DW-Conv)and dynamic star operations to establish multi-stage feature extraction pathways,enhancing local detail perception within a lightweight framework.Moreover,the Multi-scale Adaptive Spatial Attention Gate(MASAG)module integrates cross-layer feature fusion and dynamic weight allocation to capture multi-scale global contextual information,effectively suppressing background noise.These modules jointly form a“local enhancement-global calibration”bidirectional optimization mechanism,significantly improving the model’s adaptability to complex disease patterns.Furthermore,the proposed Scale-based Dynamic Loss(SD Loss)dynamically adjusts the weight of scale and localization losses,improving regression stability and localization accuracy,especially for small targets.Experiments on the eggplant fruit disease dataset demonstrate that SSANet achieves an mAP50 of 83.9%and a detection speed of 273.5 FPS with only 2.11 M parameters and 5.1 GFLOPs computational cost,outperforming the baseline YOLO11 model by reducing parameters by 18.1%,increasing mAP50 by 1.3%,and improving inference speed by 9.1%.Ablation studies further confirm the effectiveness and complementarity of the modules.SSANet offers a high-accuracy,low-cost solution suitable for real-time pest and disease detection in crops,facilitating edge device deployment and promoting precision agriculture. 展开更多
关键词 Crop disease detection lightweight network adaptive attention scale-based loss YOLO real-time detection
在线阅读 下载PDF
Persimmon Fruit Quality Grading Detection Based on an Improved YOLOv8s Lightweight Model
19
作者 Haogang Wang Yunge Jing 《Journal of Electronic Research and Application》 2025年第5期209-218,共10页
Addressing challenges in accurately detecting persimmon fruit quality in orchards—such as reliance on manual grading,low efficiency,severe foliage obstruction,and subtle differences between quality grades—this paper... Addressing challenges in accurately detecting persimmon fruit quality in orchards—such as reliance on manual grading,low efficiency,severe foliage obstruction,and subtle differences between quality grades—this paper proposes a lightweight persimmon detection model based on an improved YOLOv8s architecture.First,the Conv layer in the backbone network is replaced with an ADown module to reduce model complexity.Second,MSFAN is introduced in the Neck layer to fully extract texture features from persimmon images,highlighting differences between quality grades.Finally,the Wise-IoU loss function mitigates the impact of low-quality sample data on grading accuracy.The improved model accurately identifies and separates persimmons of varying quality,effectively addressing quality grading detection in complex backgrounds.This provides a viable technical approach for achieving persimmon quality grading detection. 展开更多
关键词 Persimmon quality grading YOLOv8 Deep learning lightweight Image detection
在线阅读 下载PDF
An Improved Lightweight Safety Helmet Detection Algorithm for YOLOv8
20
作者 Lieping Zhang Hao Ma +2 位作者 Jiancheng Huang Cui Zhang Xiaolin Gao 《Computers, Materials & Continua》 2025年第5期2245-2265,共21页
Detecting individuals wearing safety helmets in complex environments faces several challenges.These factors include limited detection accuracy and frequent missed or false detections.Additionally,existing algorithms o... Detecting individuals wearing safety helmets in complex environments faces several challenges.These factors include limited detection accuracy and frequent missed or false detections.Additionally,existing algorithms often have excessive parameter counts,complex network structures,and high computational demands.These challenges make it difficult to deploy such models efficiently on resource-constrained devices like embedded systems.Aiming at this problem,this research proposes an optimized and lightweight solution called FGP-YOLOv8,an improved version of YOLOv8n.The YOLOv8 backbone network is replaced with the FasterNet model to reduce parameters and computational demands while local convolution layers are added.This modification minimizes computational costs with only a minor impact on accuracy.A new GSTA(GSConv-Triplet Attention)module is introduced to enhance feature fusion and reduce computational complexity.This is achieved using attention weights generated from dimensional interactions within the feature map.Additionally,the ParNet-C2f module replaces the original C2f(CSP Bottleneck with 2 Convolutions)module,improving feature extraction for safety helmets of various shapes and sizes.The CIoU(Complete-IoU)is replaced with the WIoU(Wise-IoU)to boost performance further,enhancing detection accuracy and generalization capabilities.Experimental results validate the improvements.The proposedmodel reduces the parameter count by 19.9% and the computational load by 18.5%.At the same time,mAP(mean average precision)increases by 2.3%,and precision improves by 1.2%.These results demonstrate the model’s robust performance in detecting safety helmets across diverse environments. 展开更多
关键词 YOLO safety helmet detection complex environments lightweight WIoU loss function
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部