期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Lightning Nowcasting with an Algorithm of Thunderstorm Tracking Based on Lightning Location Data over the Beijing Area 被引量:3
1
作者 Abhay SRIVASTAVA Dongxia LIU +6 位作者 Chen XU Shanfeng YUAN Dongfang WANG Ogunsua BABALOLA Zhuling SUN Zhixiong CHEN Hongbo ZHANG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2022年第1期178-188,共11页
A thunderstorm tracking algorithm is proposed to nowcast the possibility of lightning activity over an area of concern by using the total lightning data and neighborhood technique.The lightning radiation sources obser... A thunderstorm tracking algorithm is proposed to nowcast the possibility of lightning activity over an area of concern by using the total lightning data and neighborhood technique.The lightning radiation sources observed from the Beijing Lightning Network(BLNET)were used to obtain information about the thunderstorm cells,which are significantly valuable in real-time.The boundaries of thunderstorm cells were obtained through the neighborhood technique.After smoothing,these boundaries were used to track the movement of thunderstorms and then extrapolated to nowcast the lightning approaching in an area of concern.The algorithm can deliver creditable results prior to a thunderstorm arriving at the area of concern,with accuracies of 63%,80%,and 91%for lead times of 30,15,and 5 minutes,respectively.The real-time observations of total lightning appear to be significant for thunderstorm tracking and lightning nowcasting,as total lightning tracking could help to fill the observational gaps in radar reflectivity due to the attenuation by hills or other obstacles.The lightning data used in the algorithm performs well in tracking the active thunderstorm cells associated with lightning activities. 展开更多
关键词 neighborhood technique lightning nowcasting thunderstorm tracking lightning location data
在线阅读 下载PDF
Convective Storm VIL and Lightning Nowcasting Using Satellite and Weather Radar Measurements Based on Multi-Task Learning Models 被引量:1
2
作者 Yang LI Yubao LIU +3 位作者 Rongfu SUN Fengxia GUO Xiaofeng XU Haixiang XU 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2023年第5期887-899,共13页
Convective storms and lightning are among the most important weather phenomena that are challenging to forecast.In this study,a novel multi-task learning(MTL)encoder-decoder U-net neural network was developed to forec... Convective storms and lightning are among the most important weather phenomena that are challenging to forecast.In this study,a novel multi-task learning(MTL)encoder-decoder U-net neural network was developed to forecast convective storms and lightning with lead times for up to 90 min,using GOES-16 geostationary satellite infrared brightness temperatures(IRBTs),lightning flashes from Geostationary Lightning Mapper(GLM),and vertically integrated liquid(VIL)from Next Generation Weather Radar(NEXRAD).To cope with the heavily skewed distribution of lightning data,a spatiotemporal exponent-weighted loss function and log-transformed lightning normalization approach were developed.The effects of MTL,single-task learning(STL),and IRBTs as auxiliary input features on convection and lightning nowcasting were investigated.The results showed that normalizing the heavily skew-distributed lightning data along with a log-transformation dramatically outperforms the min-max normalization method for nowcasting an intense lightning event.The MTL model significantly outperformed the STL model for both lightning nowcasting and VIL nowcasting,particularly for intense lightning events.The MTL also helped delay the lightning forecast performance decay with the lead times.Furthermore,incorporating satellite IRBTs as auxiliary input features substantially improved lightning nowcasting,but produced little difference in VIL forecasting.Finally,the MTL model performed better for forecasting both lightning and the VIL of organized convective storms than for isolated cells. 展开更多
关键词 convection/lightning nowcasting multi-task learning geostationary satellite weather radar U-net model
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部