In this paper, we deal with isommetric immersions of globally null warped product manifolds into Lorentzian manifolds with constant curvature c in codimension k≥3. Under the assumptions that the globally null warped ...In this paper, we deal with isommetric immersions of globally null warped product manifolds into Lorentzian manifolds with constant curvature c in codimension k≥3. Under the assumptions that the globally null warped product manifold has no points with the same constant sectional curvature c as the Lorentzian ambient, we show that such isometric immersion splits into warped product of isometric immersions.展开更多
We study totally umbilical screen transversal lightlike submanifolds immersed in a semi-Riemannian product manifold and obtain necessary and sufficient conditions for induced connection ▽ on a totally umbilical radic...We study totally umbilical screen transversal lightlike submanifolds immersed in a semi-Riemannian product manifold and obtain necessary and sufficient conditions for induced connection ▽ on a totally umbilical radical screen transversal lightlike submanifold to be metric connection. We prove a theorem which classifies totally umbilical ST-anti-invariant lightlike submanifold immersed in a semi-Riemannian product manifold.展开更多
Lightlike warped product manifolds are considered in this paper. The geometry of lightlike submanifolds is difficult to study since the normal vector bundle intersects with the tangent bundle. Due to the degenerate me...Lightlike warped product manifolds are considered in this paper. The geometry of lightlike submanifolds is difficult to study since the normal vector bundle intersects with the tangent bundle. Due to the degenerate metric, the induced connection is not metric and it follows that the Riemannian curvature tensor is not algebraic. In this situation, some basic techniques of calulus are not useable. In this paper, we consider lightlike warped product as submanifold of semi-Riemannian manifold and establish some remarkable geometric properties from which we establish some conditions on the algebraicity of the induced Riemannian curvature tensor.展开更多
In this paper, we consider Osserman conditions on lightlike warped product (sub-)manifolds with respect to the Jacobi Operator. We define the Jacobi operator for lightlike warped product manifold and introduce a study...In this paper, we consider Osserman conditions on lightlike warped product (sub-)manifolds with respect to the Jacobi Operator. We define the Jacobi operator for lightlike warped product manifold and introduce a study of lightlike warped product Osserman manifolds. For the coisotropic case with totally degenerates first factor, we prove that this class consists of Einstein and locally Osserman lightlike warped product.展开更多
Anti de Sitter space is a maximally symmetric, vacuum solution of Einstein's field equation with an attractive cosmological constant, and is the hyperquadric of semi-Euclidean space with index 2. So it is meaningf...Anti de Sitter space is a maximally symmetric, vacuum solution of Einstein's field equation with an attractive cosmological constant, and is the hyperquadric of semi-Euclidean space with index 2. So it is meaningful to study the submanifold in semi-Euclidean 4-space with index 2. However, the research on the submanifold in semi-Euclidean 4-space with index 2 has not been found from theory of singularity until now. In this paper, as a generalization of the study on lightlike hypersurface in Minkowski space and a preparation for the further study on anti de Sitter space, the singularities of lightlike hypersurface and Lorentzian surface in semi- Euclidean 4-space with index 2 will be studied. To do this, we reveal the relationships between the singularity of distance-squared function and that of lightlike hypersurface. In addition some geometric properties of lightlike hypersurface and Lorentzian surface are studied from geometrical point of view.展开更多
This is a Unified Field description based on the holographic Time Dilation Cosmology, TDC, model, which is an eternal continuum evolving forward in the forward direction of time, at the speed of light, c, at an invari...This is a Unified Field description based on the holographic Time Dilation Cosmology, TDC, model, which is an eternal continuum evolving forward in the forward direction of time, at the speed of light, c, at an invariant 1 s/s rate of time. This is the Fundamental Direction of Evolution, FDE. There is also an evolution down time dilation gradients, the Gravitational Direction of Evolution, GDE. These evolutions are gravity, which is the evolutionary force in time. Gravitational velocities are compensation for the difference in the rate of time, dRt, in a dilation field, and the dRtis equal to the compensatory velocity’s percentage of c, and is a measure of the force in time inducing the velocity. In applied force induced velocities, the dRt is a measure of the resistance in time to the induced velocity, which might be called “anti-gravity” or “negative gravity”. The two effects keep the continuum uniformly evolving forward at c. It is demonstrated that gravity is already a part of the electromagnetic field equations in way of the dRt element contained in the TDC velocity formula. Einstein’s energy formula is defined as a velocity formula and a modified version is used for charged elementary particle solutions. A time dilation-based derivation of the Lorentz force ties gravity directly to the electromagnetic field proving the unified field of gravity and the EMF. It is noted how we could possibly create gravity drives. This is followed by a discussion of black holes, proving supermassive objects, like massive black hole singularities, are impossible, and that black holes are massless Magnetospheric Eternally Collapsing Objects (MECOs) that are vortices in spacetime. .展开更多
<p align="justify"> <span style="font-family:Verdana;"></span><span style="font-family:Verdana;"></span>It is well known that Einstein published in June 1905...<p align="justify"> <span style="font-family:Verdana;"></span><span style="font-family:Verdana;"></span>It is well known that Einstein published in June 1905 his theory of Special Relativity (SR) without entirely based on space-time Lorentz Transformation (LT) with invariance of Light Velocity. It is much less known that Poincaré published, practically at the same time, a SR also based entirely on LT with also an invariant velocity. However, according to Poincaré, the invariant is not only that of light wave but also that of Gravific Wave in Ether. Poincaré’s Gravific ether exerts also a Gravific pressure, in the same paper, on <i>charged </i>(e) Electron (a “Hole in Ether” according to Poincaré). There are thus two SR: That of Einstein (ESR), without ether and without gravitation, and that of Poincaré (PSR), with Electro-Gravific-Ether. The crucial question arises then: Does “SPECIAL” Poincaré’s (e)-G field fall in the framework of Einstein’s GENERAL Relativity? Our answer is positive. On the basis of Einstein’s equation of gravitation (1917) with Minkowskian Metric (MM) and Zero Constant Cosmological (CC) we rediscover usual Static Vacuum (without <i>charge e </i>of electron). On the other hand with MM and <i>Non-Zero </i>CC, we discover the gravific field of a Cosmological Black Hole (CBH) with density of dark energy compatible with expanding vacuum. Hawking’s Stellar Black Hole (SBH) emits outgoing Black Radiation, whilst Poincaré’s CBH emits (at time zero) incoming Black Radiation. We show that Poincaré’s G-electron involves a (quantum) GRAVITON (on the model of Einstein’s quantum photon) underlying a de Broglie’s G-Wave. There is therefore a Gackground Cosmological model in Poincaré’s basic paper which predicts a density and a temperature of CBR very close to the observed (COBE) values. </p>展开更多
We consider an associated Riemannian metric induced by a rigging defined on a neighborhood of the null hypersurface in a Lorentzian manifold,and we connect this null geometry with the associated Riemannian geometry.Us...We consider an associated Riemannian metric induced by a rigging defined on a neighborhood of the null hypersurface in a Lorentzian manifold,and we connect this null geometry with the associated Riemannian geometry.Using a rigging defined on some open set containing the lightlike hypersurface,we introduce a global geometric invariant Rad^(ζ)(M)related to injectivity radius to a closed complete noncompact null hypersurface in a Lorentzian manifold.Using some comparison theorems from non-degenerated geometry,we give the relationship between geometry and topology of a closed complete noncompact null hypersurface with associated Riemannian metric and the asymptotic properties of injectivity radiuses at infinity.展开更多
文摘In this paper, we deal with isommetric immersions of globally null warped product manifolds into Lorentzian manifolds with constant curvature c in codimension k≥3. Under the assumptions that the globally null warped product manifold has no points with the same constant sectional curvature c as the Lorentzian ambient, we show that such isometric immersion splits into warped product of isometric immersions.
文摘We study totally umbilical screen transversal lightlike submanifolds immersed in a semi-Riemannian product manifold and obtain necessary and sufficient conditions for induced connection ▽ on a totally umbilical radical screen transversal lightlike submanifold to be metric connection. We prove a theorem which classifies totally umbilical ST-anti-invariant lightlike submanifold immersed in a semi-Riemannian product manifold.
文摘Lightlike warped product manifolds are considered in this paper. The geometry of lightlike submanifolds is difficult to study since the normal vector bundle intersects with the tangent bundle. Due to the degenerate metric, the induced connection is not metric and it follows that the Riemannian curvature tensor is not algebraic. In this situation, some basic techniques of calulus are not useable. In this paper, we consider lightlike warped product as submanifold of semi-Riemannian manifold and establish some remarkable geometric properties from which we establish some conditions on the algebraicity of the induced Riemannian curvature tensor.
文摘In this paper, we consider Osserman conditions on lightlike warped product (sub-)manifolds with respect to the Jacobi Operator. We define the Jacobi operator for lightlike warped product manifold and introduce a study of lightlike warped product Osserman manifolds. For the coisotropic case with totally degenerates first factor, we prove that this class consists of Einstein and locally Osserman lightlike warped product.
基金supported by National Natural Science Foundation of China (Grant No.10871035)the New Century Excellent Talents in University of China (Grant No. 05-0319)
文摘Anti de Sitter space is a maximally symmetric, vacuum solution of Einstein's field equation with an attractive cosmological constant, and is the hyperquadric of semi-Euclidean space with index 2. So it is meaningful to study the submanifold in semi-Euclidean 4-space with index 2. However, the research on the submanifold in semi-Euclidean 4-space with index 2 has not been found from theory of singularity until now. In this paper, as a generalization of the study on lightlike hypersurface in Minkowski space and a preparation for the further study on anti de Sitter space, the singularities of lightlike hypersurface and Lorentzian surface in semi- Euclidean 4-space with index 2 will be studied. To do this, we reveal the relationships between the singularity of distance-squared function and that of lightlike hypersurface. In addition some geometric properties of lightlike hypersurface and Lorentzian surface are studied from geometrical point of view.
文摘This is a Unified Field description based on the holographic Time Dilation Cosmology, TDC, model, which is an eternal continuum evolving forward in the forward direction of time, at the speed of light, c, at an invariant 1 s/s rate of time. This is the Fundamental Direction of Evolution, FDE. There is also an evolution down time dilation gradients, the Gravitational Direction of Evolution, GDE. These evolutions are gravity, which is the evolutionary force in time. Gravitational velocities are compensation for the difference in the rate of time, dRt, in a dilation field, and the dRtis equal to the compensatory velocity’s percentage of c, and is a measure of the force in time inducing the velocity. In applied force induced velocities, the dRt is a measure of the resistance in time to the induced velocity, which might be called “anti-gravity” or “negative gravity”. The two effects keep the continuum uniformly evolving forward at c. It is demonstrated that gravity is already a part of the electromagnetic field equations in way of the dRt element contained in the TDC velocity formula. Einstein’s energy formula is defined as a velocity formula and a modified version is used for charged elementary particle solutions. A time dilation-based derivation of the Lorentz force ties gravity directly to the electromagnetic field proving the unified field of gravity and the EMF. It is noted how we could possibly create gravity drives. This is followed by a discussion of black holes, proving supermassive objects, like massive black hole singularities, are impossible, and that black holes are massless Magnetospheric Eternally Collapsing Objects (MECOs) that are vortices in spacetime. .
文摘<p align="justify"> <span style="font-family:Verdana;"></span><span style="font-family:Verdana;"></span>It is well known that Einstein published in June 1905 his theory of Special Relativity (SR) without entirely based on space-time Lorentz Transformation (LT) with invariance of Light Velocity. It is much less known that Poincaré published, practically at the same time, a SR also based entirely on LT with also an invariant velocity. However, according to Poincaré, the invariant is not only that of light wave but also that of Gravific Wave in Ether. Poincaré’s Gravific ether exerts also a Gravific pressure, in the same paper, on <i>charged </i>(e) Electron (a “Hole in Ether” according to Poincaré). There are thus two SR: That of Einstein (ESR), without ether and without gravitation, and that of Poincaré (PSR), with Electro-Gravific-Ether. The crucial question arises then: Does “SPECIAL” Poincaré’s (e)-G field fall in the framework of Einstein’s GENERAL Relativity? Our answer is positive. On the basis of Einstein’s equation of gravitation (1917) with Minkowskian Metric (MM) and Zero Constant Cosmological (CC) we rediscover usual Static Vacuum (without <i>charge e </i>of electron). On the other hand with MM and <i>Non-Zero </i>CC, we discover the gravific field of a Cosmological Black Hole (CBH) with density of dark energy compatible with expanding vacuum. Hawking’s Stellar Black Hole (SBH) emits outgoing Black Radiation, whilst Poincaré’s CBH emits (at time zero) incoming Black Radiation. We show that Poincaré’s G-electron involves a (quantum) GRAVITON (on the model of Einstein’s quantum photon) underlying a de Broglie’s G-Wave. There is therefore a Gackground Cosmological model in Poincaré’s basic paper which predicts a density and a temperature of CBR very close to the observed (COBE) values. </p>
文摘We consider an associated Riemannian metric induced by a rigging defined on a neighborhood of the null hypersurface in a Lorentzian manifold,and we connect this null geometry with the associated Riemannian geometry.Using a rigging defined on some open set containing the lightlike hypersurface,we introduce a global geometric invariant Rad^(ζ)(M)related to injectivity radius to a closed complete noncompact null hypersurface in a Lorentzian manifold.Using some comparison theorems from non-degenerated geometry,we give the relationship between geometry and topology of a closed complete noncompact null hypersurface with associated Riemannian metric and the asymptotic properties of injectivity radiuses at infinity.