In this study,we comprehensively characterized and optimized a cryogenic pure CsI(pCsI)detector.We utilized a 2 cm×2 cm×2 cm cube crystal coupled with a HAMAMATSU R11065 photomultiplier tube,achieving a rema...In this study,we comprehensively characterized and optimized a cryogenic pure CsI(pCsI)detector.We utilized a 2 cm×2 cm×2 cm cube crystal coupled with a HAMAMATSU R11065 photomultiplier tube,achieving a remarkable light yield of 35.2 PE/ke V_(ee)and an unprecedented energy resolution of 6.9%at 59.54 ke V.Additionally,we measured the scintillation decay time of pCsI,which was significantly shorter than that of CsI(Na)at room temperature.Furthermore,we investigated the impact of temperature,surface treatment and crystal shape on light yield.Notably,the light yield peaked at approximately 20 K and remained stable within the range of 70–100 K.The light yield of the polished crystals was approximately 1.5 times greater than that of the ground crystals,whereas the crystal shape exhibited minimal influence on the light yield.These results are crucial for the design of the 10 kg pCsI detector for the future CLOVERS(coherent elastic neutrino(V)-nucleus scattering at China Spallation Neutron Source(CSNS))experiment.展开更多
We demonstrate light focusing through scattering media by introducing particle swarm optimization for modulat- ing the phase wavefront. Light refocusing is simulated numerically based on the angular spectrum method an...We demonstrate light focusing through scattering media by introducing particle swarm optimization for modulat- ing the phase wavefront. Light refocusing is simulated numerically based on the angular spectrum method and the circular Gaussian distribution model of the scattering media. Experimentally, a spatial light modulator is used to control the phase of incident light, so as to make the scattered light converge to a focus. The influence of divided segments of input light and the effect of the number of iterations on light intensity enhancement are investigated. Simulation results are found to be in good agreement with the theoretical analysis for light refocusing.展开更多
We demonstrate a modified particle swarm optimization(PSO) algorithm to effectively shape the incident light with strong robustness and short optimization time. The performance of the modified PSO algorithm and geneti...We demonstrate a modified particle swarm optimization(PSO) algorithm to effectively shape the incident light with strong robustness and short optimization time. The performance of the modified PSO algorithm and genetic algorithm(GA) is numerically simulated. Then, using a high speed digital micromirror device, we carry out light focusing experiments with the modified PSO algorithm and GA. The experimental results show that the modified PSO algorithm has greater robustness and faster convergence speed than GA. This modified PSO algorithm has great application prospects in optical focusing and imaging inside in vivo biological tissue, which possesses a complicated background.展开更多
Based on Fermat's principle and the automatic optimization mechanism in the propagation process of light, an optimal searching algorithm named light ray optimization is presented, where the laws of refraction and ref...Based on Fermat's principle and the automatic optimization mechanism in the propagation process of light, an optimal searching algorithm named light ray optimization is presented, where the laws of refraction and reflection of light rays are integrated into searching process of optimization. In this algorithm, coordinate space is assumed to be the space that is full of media with different refractivities, then the space is divided by grids, and finally the searching path is assumed to be the propagation path of light rays. With the law of refraction, the search direction is deflected to the direction that makes the value of objective function decrease. With the law of reflection, the search direction is changed, which makes the search continue when it cannot keep going with refraction. Only the function values of objective problems are used and there is no artificial rule in light ray optimization, so it is simple and easy to realize. Theoretical analysis and the results of numerical experiments show that the algorithm is feasible and effective.展开更多
In a commercialized, fully artificial plant factory, artificial luminaire is arranged in a unified way using a general illumination theory, an actual measurement, or an empirical methodology. However, with these metho...In a commercialized, fully artificial plant factory, artificial luminaire is arranged in a unified way using a general illumination theory, an actual measurement, or an empirical methodology. However, with these methods, lightings are implemented without considering specific optical characteristics of lighting or material characteristics of each component that constructs a cultivation system, resulting in an amount of light that becomes irregular. The amount of lighting is closely related with the growth and quality of crops, and the deviation between points where cultivated crops are located causes quality difference in the produced crops, thus impairing the economic feasibility of a plant factory. In this regard, a simulation to figure out an optimum lighting layout was performed. Arrangements based on the spectrum distribution of light source and reflector materials were implemented to ascertain the distance between lighting and height of lighting and gather information in the pre-treatment process to improve the uniformity of light in the plant cultivation system. Improvement of around 15% in light uniformity is achieved compared with the existing system after the simulation is carried out. This result would reduce the deviation in crop growth to make uniform quality crop production possible.展开更多
The visible-light-driven hydrogen evolution is extremely important,but the poor charge transfer capa-bility,a sluggish evolution rate of hydrogen,and severe photo-corrosion make photocatalytic hydrogen evolution impra...The visible-light-driven hydrogen evolution is extremely important,but the poor charge transfer capa-bility,a sluggish evolution rate of hydrogen,and severe photo-corrosion make photocatalytic hydrogen evolution impractical.In this study,we present 1D/2D ReS_(2)-CdS hybrid nanorods for photocatalytic hy-drogen evolution,comprised of a ReS_(2)nanosheet layer grown on CdS nanorods.We found that precise control of the contents of the ReS_(2)nanosheet layer allows for manipulating the electronic structure of Re in the ReS_(2)-CdS hybrid nanorods.The ReS_(2)-CdS hybrid nanorods with optimal ReS_(2)nanosheet layer content dramatically improve photocatalytic hydrogen evolution activity.Notably,photocatalytic hydro-gen evolution activity(64.93 mmol g^(−1)h^(−1))of ReS_(2)-CdS hybrid nanorods with ReS_(2)nanosheet layers(Re/Cd atomic ratio of 0.051)is approximately 136 times higher than that of pure CdS nanorods under visible light irradiation.Furthermore,intimated coupling of the ReS_(2)nanosheet layer with CdS nanorods reduced the surface trap-site of the CdS nanorods,resulting in enhanced photocatalytic stability.The de-tailed optical and electrical investigations demonstrate that the optimal ReS_(2)nanosheet layer contents in the ReS_(2)-CdS hybrid nanorods can provide improved charge transfer capability,catalytic activity,and light absorption efficiency.This study sheds light on the development of photocatalysts for highly efficient photocatalytic hydrogen evolution.展开更多
The integration of photovoltaic power generation is a new development into the traction power supply system(TPSS). However, traditional research on the TPSS operation strategy has not fully considered the risk of unce...The integration of photovoltaic power generation is a new development into the traction power supply system(TPSS). However, traditional research on the TPSS operation strategy has not fully considered the risk of uncertainty in photovoltaic power output. To this end, we propose an operation strategy for the rail transit green energy system that considers the uncertainty risk of photovoltaic power output. First, we establish a regenerative braking energy utilization model that considers the impact of time-of-use(TOU) electricity price on the utilization efficiency and economic profit of regenerative braking energy and compensates for non-traction load. Then, we propose an operation strategy based on the balance of power supply and demand that uses an improved light robust(ILR) model to minimize the total cost of the rail transit green energy system, considering the risk of uncertainty in photovoltaic power output. The model incorporates the two-step load check on the second-level time scale to correct the operational results, solve the issue of different time resolutions between photovoltaic power and traction load, and achieve the coordinated optimization of risk cost and operation cost after photovoltaic integration. Case studies demonstrate that the proposed model can effectively consider the impact of the uncertainty in photovoltaic power output on the operation strategy, significantly improving the efficiency and economy of the system operation.展开更多
An electron collection layer(ECL)between a photoactive overlay and an electrode plays a crucial role in optimizing the light field and charge extraction in bulk-heterojunction(BHJ)polymer solar cells(PSCs).However,the...An electron collection layer(ECL)between a photoactive overlay and an electrode plays a crucial role in optimizing the light field and charge extraction in bulk-heterojunction(BHJ)polymer solar cells(PSCs).However,the typical thickness of the photoactive layer is thinner than its optical path lengths,limiting further improvement of light absorption and device performance.展开更多
基金supported by the National Key R&D Program of China(No.2022YFA1602204)the National Natural Science Foundation of China(Nos.12175241,12221005)+2 种基金the Fundamental Research Funds for the Central Universitiesthe International Partnership Program of the Chinese Academy of Sciences(No.211134KYSB20200057)the Double First-Class University Project Foundation of USTC。
文摘In this study,we comprehensively characterized and optimized a cryogenic pure CsI(pCsI)detector.We utilized a 2 cm×2 cm×2 cm cube crystal coupled with a HAMAMATSU R11065 photomultiplier tube,achieving a remarkable light yield of 35.2 PE/ke V_(ee)and an unprecedented energy resolution of 6.9%at 59.54 ke V.Additionally,we measured the scintillation decay time of pCsI,which was significantly shorter than that of CsI(Na)at room temperature.Furthermore,we investigated the impact of temperature,surface treatment and crystal shape on light yield.Notably,the light yield peaked at approximately 20 K and remained stable within the range of 70–100 K.The light yield of the polished crystals was approximately 1.5 times greater than that of the ground crystals,whereas the crystal shape exhibited minimal influence on the light yield.These results are crucial for the design of the 10 kg pCsI detector for the future CLOVERS(coherent elastic neutrino(V)-nucleus scattering at China Spallation Neutron Source(CSNS))experiment.
基金Supported by the National Natural Science Foundation of China under Grant Nos 61178015,11304104 and 61575070
文摘We demonstrate light focusing through scattering media by introducing particle swarm optimization for modulat- ing the phase wavefront. Light refocusing is simulated numerically based on the angular spectrum method and the circular Gaussian distribution model of the scattering media. Experimentally, a spatial light modulator is used to control the phase of incident light, so as to make the scattered light converge to a focus. The influence of divided segments of input light and the effect of the number of iterations on light intensity enhancement are investigated. Simulation results are found to be in good agreement with the theoretical analysis for light refocusing.
基金Supported by the National Key Research and Development Program of China under Grant No 2017YFB1104500the Natural Science Foundation of Beijing under Grant No 7182091,the National Natural Science Foundation of China under Grant No 21627813the Fundamental Research Funds for the Central Universities under Grant No PYBZ1801
文摘We demonstrate a modified particle swarm optimization(PSO) algorithm to effectively shape the incident light with strong robustness and short optimization time. The performance of the modified PSO algorithm and genetic algorithm(GA) is numerically simulated. Then, using a high speed digital micromirror device, we carry out light focusing experiments with the modified PSO algorithm and GA. The experimental results show that the modified PSO algorithm has greater robustness and faster convergence speed than GA. This modified PSO algorithm has great application prospects in optical focusing and imaging inside in vivo biological tissue, which possesses a complicated background.
基金Supported by Natural Science Foundation of Heilongjiang Province of China (Grant No. F200931)
文摘Based on Fermat's principle and the automatic optimization mechanism in the propagation process of light, an optimal searching algorithm named light ray optimization is presented, where the laws of refraction and reflection of light rays are integrated into searching process of optimization. In this algorithm, coordinate space is assumed to be the space that is full of media with different refractivities, then the space is divided by grids, and finally the searching path is assumed to be the propagation path of light rays. With the law of refraction, the search direction is deflected to the direction that makes the value of objective function decrease. With the law of reflection, the search direction is changed, which makes the search continue when it cannot keep going with refraction. Only the function values of objective problems are used and there is no artificial rule in light ray optimization, so it is simple and easy to realize. Theoretical analysis and the results of numerical experiments show that the algorithm is feasible and effective.
基金financially supported by the Ministry of Education, Science, and Technology (MEST)the National Research Foundation of Korea (NRF) through the Human Resource Training Project for Regional Innovationsupported by the Human Resources Development of the Korea Institute of Energy Technology Evaluation and Planning (No.20114010203040) grant funded by the Korean government’s Ministry of Knowledge Economy
文摘In a commercialized, fully artificial plant factory, artificial luminaire is arranged in a unified way using a general illumination theory, an actual measurement, or an empirical methodology. However, with these methods, lightings are implemented without considering specific optical characteristics of lighting or material characteristics of each component that constructs a cultivation system, resulting in an amount of light that becomes irregular. The amount of lighting is closely related with the growth and quality of crops, and the deviation between points where cultivated crops are located causes quality difference in the produced crops, thus impairing the economic feasibility of a plant factory. In this regard, a simulation to figure out an optimum lighting layout was performed. Arrangements based on the spectrum distribution of light source and reflector materials were implemented to ascertain the distance between lighting and height of lighting and gather information in the pre-treatment process to improve the uniformity of light in the plant cultivation system. Improvement of around 15% in light uniformity is achieved compared with the existing system after the simulation is carried out. This result would reduce the deviation in crop growth to make uniform quality crop production possible.
基金supported by the National Re-search Foundation of Korea(Nos.NRF-2020R1C1C1008514,2019R1A6A1A11053838,and NRF-2023R1A2C1004015)the“Regional Innovation Strategy(RIS)”through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(MOE)(No.2021RIS-003).
文摘The visible-light-driven hydrogen evolution is extremely important,but the poor charge transfer capa-bility,a sluggish evolution rate of hydrogen,and severe photo-corrosion make photocatalytic hydrogen evolution impractical.In this study,we present 1D/2D ReS_(2)-CdS hybrid nanorods for photocatalytic hy-drogen evolution,comprised of a ReS_(2)nanosheet layer grown on CdS nanorods.We found that precise control of the contents of the ReS_(2)nanosheet layer allows for manipulating the electronic structure of Re in the ReS_(2)-CdS hybrid nanorods.The ReS_(2)-CdS hybrid nanorods with optimal ReS_(2)nanosheet layer content dramatically improve photocatalytic hydrogen evolution activity.Notably,photocatalytic hydro-gen evolution activity(64.93 mmol g^(−1)h^(−1))of ReS_(2)-CdS hybrid nanorods with ReS_(2)nanosheet layers(Re/Cd atomic ratio of 0.051)is approximately 136 times higher than that of pure CdS nanorods under visible light irradiation.Furthermore,intimated coupling of the ReS_(2)nanosheet layer with CdS nanorods reduced the surface trap-site of the CdS nanorods,resulting in enhanced photocatalytic stability.The de-tailed optical and electrical investigations demonstrate that the optimal ReS_(2)nanosheet layer contents in the ReS_(2)-CdS hybrid nanorods can provide improved charge transfer capability,catalytic activity,and light absorption efficiency.This study sheds light on the development of photocatalysts for highly efficient photocatalytic hydrogen evolution.
基金This work was supported in part by the National Key Research and Development Program of China(No.2021YFB2601502)in part by the Beijing Natural Science Foundation Program(No.L221002).
文摘The integration of photovoltaic power generation is a new development into the traction power supply system(TPSS). However, traditional research on the TPSS operation strategy has not fully considered the risk of uncertainty in photovoltaic power output. To this end, we propose an operation strategy for the rail transit green energy system that considers the uncertainty risk of photovoltaic power output. First, we establish a regenerative braking energy utilization model that considers the impact of time-of-use(TOU) electricity price on the utilization efficiency and economic profit of regenerative braking energy and compensates for non-traction load. Then, we propose an operation strategy based on the balance of power supply and demand that uses an improved light robust(ILR) model to minimize the total cost of the rail transit green energy system, considering the risk of uncertainty in photovoltaic power output. The model incorporates the two-step load check on the second-level time scale to correct the operational results, solve the issue of different time resolutions between photovoltaic power and traction load, and achieve the coordinated optimization of risk cost and operation cost after photovoltaic integration. Case studies demonstrate that the proposed model can effectively consider the impact of the uncertainty in photovoltaic power output on the operation strategy, significantly improving the efficiency and economy of the system operation.
基金supported by the National Natural Science Foundation of China(grant nos.51873007,51961165102,and 21835006)the Fundamental Research Funds for the Central Universities in China(grant nos.2019MS025,2018MS032,and 2019QN057).
文摘An electron collection layer(ECL)between a photoactive overlay and an electrode plays a crucial role in optimizing the light field and charge extraction in bulk-heterojunction(BHJ)polymer solar cells(PSCs).However,the typical thickness of the photoactive layer is thinner than its optical path lengths,limiting further improvement of light absorption and device performance.