Cellulose frameworks have emerged as promising materials for light management due to their exceptional light-scattering capabilities and sustainable nature.Conventional biomass-derived cellulose frameworks face a fund...Cellulose frameworks have emerged as promising materials for light management due to their exceptional light-scattering capabilities and sustainable nature.Conventional biomass-derived cellulose frameworks face a fundamental trade-off between haze and transparency,coupled with impractical thicknesses(≥1 mm).Inspired by squid’s skin-peeling mechanism,this work develops a peroxyformic acid(HCOOOH)-enabled precision peeling strategy to isolate intact 10-μm-thick bamboo green(BG)frameworks—100×thinner than wood-based counterparts while achieving an unprecedented optical performance(88%haze with 80%transparency).This performance surpasses delignified biomass(transparency<40%at 1 mm)and matches engineered cellulose composites,yet requires no energy-intensive nanofibrillation.The preserved native cellulose I crystalline structure(64.76%crystallinity)and wax-coated uniaxial fibril alignment(Hermans factor:0.23)contribute to high mechanical strength(903 MPa modulus)and broadband light scattering.As a light-management layer in polycrystalline silicon solar cells,the BG framework boosts photoelectric conversion efficiency by 0.41%absolute(18.74%→19.15%),outperforming synthetic anti-reflective coatings.The work establishes a scalable,waste-to-wealth route for optical-grade cellulose materials in next-generation optoelectronics.展开更多
Progressive photoreceptor cell death is one of the main pathological features of age-related macular degeneration and eventually leads to vision loss.Ferroptosis has been demonstrated to be associated with retinal deg...Progressive photoreceptor cell death is one of the main pathological features of age-related macular degeneration and eventually leads to vision loss.Ferroptosis has been demonstrated to be associated with retinal degenerative diseases.However,the molecular mechanisms underlying ferroptosis and photoreceptor cell death in age-related macular degeneration remain largely unexplored.Bioinformatics and biochemical analyses in this study revealed xC^(–),solute carrier family 7 member 11-regulated ferroptosis as the predominant pathological process of photoreceptor cell degeneration in a light-induced dry age-related macular degeneration mouse model.This process involves the nuclear factor-erythroid factor 2-related factor 2-solute carrier family 7 member 11-glutathione peroxidase 4 signaling pathway,through which cystine depletion,iron ion accumulation,and enhanced lipid peroxidation ultimately lead to photoreceptor cell death and subsequent visual function impairment.We demonstrated that solute carrier family 7 member 11 overexpression blocked this process by inhibiting oxidative stress in vitro and in vivo.Conversely,solute carrier family 7 member 11 knockdown or the solute carrier family 7 member 11 inhibitor sulfasalazine and ferroptosis-inducing agent erastin aggravated H_(2)O_(2)-induced ferroptosis of 661W cells.These findings indicate solute carrier family 7 member 11 may be a potential therapeutic target for patients with retinal degenerative diseases including age-related macular degeneration.展开更多
The unmanned aerial vehicle(UAV)images captured under low-light conditions are often suffering from noise and uneven illumination.To address these issues,we propose a low-light image enhancement algorithm for UAV imag...The unmanned aerial vehicle(UAV)images captured under low-light conditions are often suffering from noise and uneven illumination.To address these issues,we propose a low-light image enhancement algorithm for UAV images,which is inspired by the Retinex theory and guided by a light weighted map.Firstly,we propose a new network for reflectance component processing to suppress the noise in images.Secondly,we construct an illumination enhancement module that uses a light weighted map to guide the enhancement process.Finally,the processed reflectance and illumination components are recombined to obtain the enhancement results.Experimental results show that our method can suppress the noise in images while enhancing image brightness,and prevent over enhancement in bright regions.Code and data are available at https://gitee.com/baixiaotong2/uav-images.git.展开更多
The removal of ammonia nitrogen(NH_(4)^(+)-N)and bacteria from aquaculture wastewater holds paramount ecological and production significance.In this study,Pt/RuO_(2)/g-C_(3)N_(4)photocatalysts were prepared by deposit...The removal of ammonia nitrogen(NH_(4)^(+)-N)and bacteria from aquaculture wastewater holds paramount ecological and production significance.In this study,Pt/RuO_(2)/g-C_(3)N_(4)photocatalysts were prepared by depositing Pt and RuO_(2)particles onto g-C_(3)N_(4).The physicochemical properties of photocatalysts were explored by X-ray photoelectron spectroscopy(XPS),scanning electron microscopy(SEM),X-ray diffraction(XRD),and UV–vis diffuse reflectance spectrometer(UV–vis DRS).The photocatalysts were then applied to the removal of both NH_(4)^(+)-N and bacteria from simulated mariculture wastewater.The results clarified that the removals of both NH_(4)^(+)-N and bacteria were in the sequence of g-C_(3)N_(4)<RuO_(2)/g-C_(3)N_(4)<Pt/g-C_(3)N_(4)<Pt/RuO_(2)/g-C_(3)N_(4).This magnificent photocatalytic ability of Pt/RuO_(2)/g-C_(3)N_(4)can be interpreted by the transfer of holes from g-C_(3)N_(4)to RuO_(2)to facilitate the in situ generation of HClO from Cl^(−)in wastewater,while Pt extracts photogenerated electrons for H_(2)formation to enhance the reaction.The removal of NH_(4)^(+)-N and disinfection effect were more pronounced in simulated seawater than in purewater.The removal efficiency ofNH_(4)^(+)-N increases with an increase in pH of wastewater,while the bactericidal effect was more significant under a lower pH in a pH range of 6–9.In actual seawater aquaculture wastewater,Pt/RuO_(2)/g-C_(3)N_(4)still exhibits effective removal efficiency of NH_(4)^(+)-N and bactericidal performance under sunlight.This study provides an alternative avenue for removement of NH_(4)^(+)-N and bacteria from saline waters under sunlight.展开更多
In low-light environments,captured images often exhibit issues such as insufficient clarity and detail loss,which significantly degrade the accuracy of subsequent target recognition tasks.To tackle these challenges,th...In low-light environments,captured images often exhibit issues such as insufficient clarity and detail loss,which significantly degrade the accuracy of subsequent target recognition tasks.To tackle these challenges,this study presents a novel low-light image enhancement algorithm that leverages virtual hazy image generation through dehazing models based on statistical analysis.The proposed algorithm initiates the enhancement process by transforming the low-light image into a virtual hazy image,followed by image segmentation using a quadtree method.To improve the accuracy and robustness of atmospheric light estimation,the algorithm incorporates a genetic algorithm to optimize the quadtree-based estimation of atmospheric light regions.Additionally,this method employs an adaptive window adjustment mechanism to derive the dark channel prior image,which is subsequently refined using morphological operations and guided filtering.The final enhanced image is reconstructed through the hazy image degradation model.Extensive experimental evaluations across multiple datasets verify the superiority of the designed framework,achieving a peak signal-to-noise ratio(PSNR)of 17.09 and a structural similarity index(SSIM)of 0.74.These results indicate that the proposed algorithm not only effectively enhances image contrast and brightness but also outperforms traditional methods in terms of subjective and objective evaluation metrics.展开更多
Using natural minerals to eliminate harmful Cr(Ⅵ)under sustainable sunshine has significant potential.Herein,Palygorskite nanorods were utilized as carriers for the in-situ synthesis of CaIn_(2)S_(4) photocatalysts t...Using natural minerals to eliminate harmful Cr(Ⅵ)under sustainable sunshine has significant potential.Herein,Palygorskite nanorods were utilized as carriers for the in-situ synthesis of CaIn_(2)S_(4) photocatalysts through a simple one-pot thermal process,enabling the efficient reduction of Cr(Ⅵ).With a Palygorskite to CaIn_(2)S_(4) mass ratio of 5%,the conversion rate of Cr(Ⅵ)reached 98%after 60min of visible-light exposure,with a remarkable reaction rate of 0.0633 min^(-1).The effective integration of CaIn_(2)S_(4) with Palygorskite led to a more uniform dispersion of CaIn_(2)S_(4),exposing more reactive sites.Moreover,the establishment of a heterojunction between CaIn_(2)S_(4) and Palygorskite facilitated the transport of photogenerated electrons from CaIn_(2)S_(4),enhancing the efficiency of charge separation.These factors contribute to the improved photocatalytic performance.Additionally,the developed composite photocatalysts demonstrated excellent stability under light exposure and could be reused efficiently.Trapping tests on active substances revealed that e-played key roles in the Cr(Ⅵ)reduction.This research suggests the potential of using natural minerals to fabricate composite photocatalysts capable of effectively removing pollutants from the environment using solar energy.展开更多
The visual noise of each light intensity area is different when the image is drawn by Monte Carlo method.However,the existing denoising algorithms have limited denoising performance under complex lighting conditions a...The visual noise of each light intensity area is different when the image is drawn by Monte Carlo method.However,the existing denoising algorithms have limited denoising performance under complex lighting conditions and are easy to lose detailed information.So we propose a rendered image denoising method with filtering guided by lighting information.First,we design an image segmentation algorithm based on lighting information to segment the image into different illumination areas.Then,we establish the parameter prediction model guided by lighting information for filtering(PGLF)to predict the filtering parameters of different illumination areas.For different illumination areas,we use these filtering parameters to construct area filters,and the filters are guided by the lighting information to perform sub-area filtering.Finally,the filtering results are fused with auxiliary features to output denoised images for improving the overall denoising effect of the image.Under the physically based rendering tool(PBRT)scene and Tungsten dataset,the experimental results show that compared with other guided filtering denoising methods,our method improves the peak signal-to-noise ratio(PSNR)metrics by 4.2164 dB on average and the structural similarity index(SSIM)metrics by 7.8%on average.This shows that our method can better reduce the noise in complex lighting scenesand improvethe imagequality.展开更多
基金supported by National Natural Science Foundation of China(32494793).
文摘Cellulose frameworks have emerged as promising materials for light management due to their exceptional light-scattering capabilities and sustainable nature.Conventional biomass-derived cellulose frameworks face a fundamental trade-off between haze and transparency,coupled with impractical thicknesses(≥1 mm).Inspired by squid’s skin-peeling mechanism,this work develops a peroxyformic acid(HCOOOH)-enabled precision peeling strategy to isolate intact 10-μm-thick bamboo green(BG)frameworks—100×thinner than wood-based counterparts while achieving an unprecedented optical performance(88%haze with 80%transparency).This performance surpasses delignified biomass(transparency<40%at 1 mm)and matches engineered cellulose composites,yet requires no energy-intensive nanofibrillation.The preserved native cellulose I crystalline structure(64.76%crystallinity)and wax-coated uniaxial fibril alignment(Hermans factor:0.23)contribute to high mechanical strength(903 MPa modulus)and broadband light scattering.As a light-management layer in polycrystalline silicon solar cells,the BG framework boosts photoelectric conversion efficiency by 0.41%absolute(18.74%→19.15%),outperforming synthetic anti-reflective coatings.The work establishes a scalable,waste-to-wealth route for optical-grade cellulose materials in next-generation optoelectronics.
基金supported by the National Natural Science Foundation of China,Nos.82171076(to XS)and U22A20311(to XS),82101168(to TL)Shanghai Science and technology Innovation Action Plan,No.23Y11901300(to JS)+1 种基金Science and Technology Commission of Shanghai Municipality,No.21ZR1451500(to TL)Shanghai Pujiang Program,No.22PJ1412200(to BY)。
文摘Progressive photoreceptor cell death is one of the main pathological features of age-related macular degeneration and eventually leads to vision loss.Ferroptosis has been demonstrated to be associated with retinal degenerative diseases.However,the molecular mechanisms underlying ferroptosis and photoreceptor cell death in age-related macular degeneration remain largely unexplored.Bioinformatics and biochemical analyses in this study revealed xC^(–),solute carrier family 7 member 11-regulated ferroptosis as the predominant pathological process of photoreceptor cell degeneration in a light-induced dry age-related macular degeneration mouse model.This process involves the nuclear factor-erythroid factor 2-related factor 2-solute carrier family 7 member 11-glutathione peroxidase 4 signaling pathway,through which cystine depletion,iron ion accumulation,and enhanced lipid peroxidation ultimately lead to photoreceptor cell death and subsequent visual function impairment.We demonstrated that solute carrier family 7 member 11 overexpression blocked this process by inhibiting oxidative stress in vitro and in vivo.Conversely,solute carrier family 7 member 11 knockdown or the solute carrier family 7 member 11 inhibitor sulfasalazine and ferroptosis-inducing agent erastin aggravated H_(2)O_(2)-induced ferroptosis of 661W cells.These findings indicate solute carrier family 7 member 11 may be a potential therapeutic target for patients with retinal degenerative diseases including age-related macular degeneration.
基金supported by the National Natural Science Foundation of China(Nos.62201454 and 62306235)the Xi’an Science and Technology Program of Xi’an Science and Technology Bureau(No.23SFSF0004)。
文摘The unmanned aerial vehicle(UAV)images captured under low-light conditions are often suffering from noise and uneven illumination.To address these issues,we propose a low-light image enhancement algorithm for UAV images,which is inspired by the Retinex theory and guided by a light weighted map.Firstly,we propose a new network for reflectance component processing to suppress the noise in images.Secondly,we construct an illumination enhancement module that uses a light weighted map to guide the enhancement process.Finally,the processed reflectance and illumination components are recombined to obtain the enhancement results.Experimental results show that our method can suppress the noise in images while enhancing image brightness,and prevent over enhancement in bright regions.Code and data are available at https://gitee.com/baixiaotong2/uav-images.git.
基金supported by the Science and Technology Planning Project of Fujian Province(No.2023Y4015)the Marine and Fishery Development Special Fund of Xiamen(No.23YYST064QCB36)the Natural Science Foundation of Fujian Province(No.2021J011210).
文摘The removal of ammonia nitrogen(NH_(4)^(+)-N)and bacteria from aquaculture wastewater holds paramount ecological and production significance.In this study,Pt/RuO_(2)/g-C_(3)N_(4)photocatalysts were prepared by depositing Pt and RuO_(2)particles onto g-C_(3)N_(4).The physicochemical properties of photocatalysts were explored by X-ray photoelectron spectroscopy(XPS),scanning electron microscopy(SEM),X-ray diffraction(XRD),and UV–vis diffuse reflectance spectrometer(UV–vis DRS).The photocatalysts were then applied to the removal of both NH_(4)^(+)-N and bacteria from simulated mariculture wastewater.The results clarified that the removals of both NH_(4)^(+)-N and bacteria were in the sequence of g-C_(3)N_(4)<RuO_(2)/g-C_(3)N_(4)<Pt/g-C_(3)N_(4)<Pt/RuO_(2)/g-C_(3)N_(4).This magnificent photocatalytic ability of Pt/RuO_(2)/g-C_(3)N_(4)can be interpreted by the transfer of holes from g-C_(3)N_(4)to RuO_(2)to facilitate the in situ generation of HClO from Cl^(−)in wastewater,while Pt extracts photogenerated electrons for H_(2)formation to enhance the reaction.The removal of NH_(4)^(+)-N and disinfection effect were more pronounced in simulated seawater than in purewater.The removal efficiency ofNH_(4)^(+)-N increases with an increase in pH of wastewater,while the bactericidal effect was more significant under a lower pH in a pH range of 6–9.In actual seawater aquaculture wastewater,Pt/RuO_(2)/g-C_(3)N_(4)still exhibits effective removal efficiency of NH_(4)^(+)-N and bactericidal performance under sunlight.This study provides an alternative avenue for removement of NH_(4)^(+)-N and bacteria from saline waters under sunlight.
基金supported by the Natural Science Foundation of Shandong Province(nos.ZR2023MF047,ZR2024MA055 and ZR2023QF139)the Enterprise Commissioned Project(nos.2024HX104 and 2024HX140)+1 种基金the China University Industry-University-Research Innovation Foundation(nos.2021ZYA11003 and 2021ITA05032)the Science and Technology Plan for Youth Innovation of Shandong's Universities(no.2019KJN012).
文摘In low-light environments,captured images often exhibit issues such as insufficient clarity and detail loss,which significantly degrade the accuracy of subsequent target recognition tasks.To tackle these challenges,this study presents a novel low-light image enhancement algorithm that leverages virtual hazy image generation through dehazing models based on statistical analysis.The proposed algorithm initiates the enhancement process by transforming the low-light image into a virtual hazy image,followed by image segmentation using a quadtree method.To improve the accuracy and robustness of atmospheric light estimation,the algorithm incorporates a genetic algorithm to optimize the quadtree-based estimation of atmospheric light regions.Additionally,this method employs an adaptive window adjustment mechanism to derive the dark channel prior image,which is subsequently refined using morphological operations and guided filtering.The final enhanced image is reconstructed through the hazy image degradation model.Extensive experimental evaluations across multiple datasets verify the superiority of the designed framework,achieving a peak signal-to-noise ratio(PSNR)of 17.09 and a structural similarity index(SSIM)of 0.74.These results indicate that the proposed algorithm not only effectively enhances image contrast and brightness but also outperforms traditional methods in terms of subjective and objective evaluation metrics.
基金supported by the National Natural Science Foundation of China(Nos.22206065 and 22109059)the Jinling Institute of Technology's Doctor Start-up Fund(No.jitb-202024)the Natural Science Foundation of Jiangsu Province(No.BK20221167).
文摘Using natural minerals to eliminate harmful Cr(Ⅵ)under sustainable sunshine has significant potential.Herein,Palygorskite nanorods were utilized as carriers for the in-situ synthesis of CaIn_(2)S_(4) photocatalysts through a simple one-pot thermal process,enabling the efficient reduction of Cr(Ⅵ).With a Palygorskite to CaIn_(2)S_(4) mass ratio of 5%,the conversion rate of Cr(Ⅵ)reached 98%after 60min of visible-light exposure,with a remarkable reaction rate of 0.0633 min^(-1).The effective integration of CaIn_(2)S_(4) with Palygorskite led to a more uniform dispersion of CaIn_(2)S_(4),exposing more reactive sites.Moreover,the establishment of a heterojunction between CaIn_(2)S_(4) and Palygorskite facilitated the transport of photogenerated electrons from CaIn_(2)S_(4),enhancing the efficiency of charge separation.These factors contribute to the improved photocatalytic performance.Additionally,the developed composite photocatalysts demonstrated excellent stability under light exposure and could be reused efficiently.Trapping tests on active substances revealed that e-played key roles in the Cr(Ⅵ)reduction.This research suggests the potential of using natural minerals to fabricate composite photocatalysts capable of effectively removing pollutants from the environment using solar energy.
基金supported by the National Natural Science(No.U19A2063)the Jilin Provincial Development Program of Science and Technology (No.20230201080GX)the Jilin Province Education Department Scientific Research Project (No.JJKH20230851KJ)。
文摘The visual noise of each light intensity area is different when the image is drawn by Monte Carlo method.However,the existing denoising algorithms have limited denoising performance under complex lighting conditions and are easy to lose detailed information.So we propose a rendered image denoising method with filtering guided by lighting information.First,we design an image segmentation algorithm based on lighting information to segment the image into different illumination areas.Then,we establish the parameter prediction model guided by lighting information for filtering(PGLF)to predict the filtering parameters of different illumination areas.For different illumination areas,we use these filtering parameters to construct area filters,and the filters are guided by the lighting information to perform sub-area filtering.Finally,the filtering results are fused with auxiliary features to output denoised images for improving the overall denoising effect of the image.Under the physically based rendering tool(PBRT)scene and Tungsten dataset,the experimental results show that compared with other guided filtering denoising methods,our method improves the peak signal-to-noise ratio(PSNR)metrics by 4.2164 dB on average and the structural similarity index(SSIM)metrics by 7.8%on average.This shows that our method can better reduce the noise in complex lighting scenesand improvethe imagequality.