Various chemical irrigants and drugs have been employed for intra-canal disinfection in root canal therapy(RCT).However,due to the complexity of root canal anatomy,many drugs still exhibit poor penetrability and antib...Various chemical irrigants and drugs have been employed for intra-canal disinfection in root canal therapy(RCT).However,due to the complexity of root canal anatomy,many drugs still exhibit poor penetrability and antibiotic resistance,leading to suboptimal treatment outcomes.Thus,it is challenging to remove the organic biofilms from root canals.In recent years,light-responsive therapy,with deeper tissue penetration than traditional treatments,has emerged as an effective RCT modality.Herein,this review summarizes the recent development of light-responsive nanomaterials for biofilm removal in RCT.The light-responsive nanomaterials and the corresponding therapeutic methods in RCT,including photodynamic therapy(PDT),photothermal therapy(PTT),and laser-activated therapy,are highlighted.Finally,the challenges that light-responsive nanomaterials and treatment modalities will encounter to conquer the biofilm in future RCT are discussed.This review is believed to significantly accelerate the future development of light-responsive nanomaterials for RCT from bench to bedside.展开更多
L-glutamic acid(LA)is a bio-based,non-toxic,environmentally friendly material derived from biomass.The present study reports the application of Passerini three-component polymerization(P-3CP)for the straightforward pr...L-glutamic acid(LA)is a bio-based,non-toxic,environmentally friendly material derived from biomass.The present study reports the application of Passerini three-component polymerization(P-3CP)for the straightforward preparation of LA-based light-responsive polyesters(PLTDs)under mild conditions.PLTDs with molar masses up to 8500 g/mol and high yields exceeding 90%are obtained.The chemical structures and light-responsive self-immolative behavior of PLTDs are comprehensively characterized by employing ultraviolet-visible(UV-Vis)spectroscopy,size exclusion chromatography(SEC),nuclear magnetic resonance(NMR)spectroscopy,and liquid chromatography mass spectrometry(LC-MS).Meanwhile,monodisperse PLTD-based doxorubicin-loaded nanoparticles(PLTD-DOX-NP)(size=193 nm,PDI=0.018)are formulated by nanoprecipitation method.Upon light-induced depolymerization,the PLTD-DOX-NP undergoes rapid decomposition,resulting in a burst release of 80%cargo within 13 s.Furthermore,according to biological toxicity tests,the PLTD-NP possesses adequate biosafety,both before and after irradiation.Overall,the incorporation of P-3CP with biorenewable LA-based monomer adheres to the principles of green chemistry,significantly simplifying the synthetic pathway of light-responsive polymers.展开更多
Photocatalysis based on semiconductors has recently been receiving considerable research interest because of its extensive applications in environmental remediation and renewable energy generation.Various semiconducto...Photocatalysis based on semiconductors has recently been receiving considerable research interest because of its extensive applications in environmental remediation and renewable energy generation.Various semiconductor-based materials that are vital to solar energy utilization have been extensively investigated,among which titanium oxide(TiO_(2))has attracted considerable attention because of its exceptional physicochemical characteristics.However,the sluggish responsiveness to visible light in the solar spectrum and the inefficient separation of photoinduced electron-hole pairs hamper the practical application of TiO_(2) materials.To overcome the aforementioned serious drawbacks of TiO_(2),numerous strategies,such as doping with foreign atoms,particularly nitrogen(N),have been improved in the past few decades.This review aims to provide a comprehensive update and description of the recent developments of N-doped TiO_(2) materials for visible lightresponsive photocatalysis,such as(1)the preparation of N-doped/co-doped TiO_(2) photocatalysts and(2)mechanistic studies on the reasons for visible light response.Furthermore,the most recent and significant advances in the field of solar energy applications of modified N-doped TiO_(2) are summarized.The analysis indicated the critical need for further development of these types of materials for the solar-to-energy conversion,particularly for water splitting purposes.展开更多
Due to its unique advantages,which include minimal invasiveness and relative clinical safety,photother-apy is considered to be a promising approach for cancer treatment.However,the treatment efficacy of phototherapy i...Due to its unique advantages,which include minimal invasiveness and relative clinical safety,photother-apy is considered to be a promising approach for cancer treatment.However,the treatment efficacy of phototherapy is often restricted by the limited depth of light penetration and the low targeting effect of phototherapeutic agents.The emergence of light-responsive nanomaterials offers a possible approach to achieve enhanced phototherapy potency.This review summarizes the progress in biomedical applica-tions of light-responsive nanomaterials for cancer therapy,which include photothermal therapy(PTT),photodynamic therapy(PDT),light-responsive molecule delivery,and light-controlled combination ther-apy.Future prospects are also discussed.This review aims to demonstrate the significance of light-responsive nanomaterials in cancer therapy and to provide strategies to expand the applications of phototherapy.展开更多
Based on the reversible host-vip inclusion/exclusion of cyclodextrin-functionalized graphene oxide(GO-CD) and azobenzene-terminated polyhedral oligomeric silsesquioxane(Azo-POSS), a novel kind of light-responsive na...Based on the reversible host-vip inclusion/exclusion of cyclodextrin-functionalized graphene oxide(GO-CD) and azobenzene-terminated polyhedral oligomeric silsesquioxane(Azo-POSS), a novel kind of light-responsive nanocomposites GO-POSS was developed under mild condition. ~1H NMR, ET-IR,TG, TEM and UV-vis spectroscopy were conducted to characterize the chemical composition and photoresponsive performance of obtained GO-POSS nanocomposites. The results demonstrated that nanocagestructured POSS and nanosheet GO components in GO-POSS exhibited pronounced supra molecular assembly/disassembly behavior upon UV/vis irradiation. Moreover, GO-POSS nanocomposites showed good water dispersity and had remarkable impact on oxygen permeability of conventional PVA-coated films under varied light irradiation conditions, which would be valuable for developing smart gas barrier materials in packaging.展开更多
The skin wound is susceptible to bacterial invasion,which hinders the healing of the wound,especially when infected with multi-drug resistant strains.This demands novel bioactive materials to combat bacterial infectio...The skin wound is susceptible to bacterial invasion,which hinders the healing of the wound,especially when infected with multi-drug resistant strains.This demands novel bioactive materials to combat bacterial infections.In this study,gallium oxide nanoparticles(Ga_(2)O_(3) NPs)were successfully synthesized through high-temperature thermal decomposition,exhibiting excellent biocompatibility and photocatalytic antimicrobial activity.The Ga_(2)O_(3) NPs were crosslinked into chitosan hydrogel to create a light-responsive multilayered 3D porous hydrogel(Ga_(2)O_(3) NPs hydrogel)for use in photocatalytic antimicrobial therapy(PCAT).The prepared Ga_(2)O_(3) NPs hydrogel exhibits broad-spectrum photocatalytic activity and remarkable antibacterial efficacy against E.coli and S.aureus.It effectively eradicates biofilms,promotes reactive oxygen species production,disrupts bacterial cell membranes,and induces nucleic acid leakage,ultimately resulting in bacterial death.Additionally,it exhibits excellent biosafety.Both in vitro pigskin and in vivo mouse wound infection models have confirmed the remarkable efficacy of Ga_(2)O_(3) NPs hydrogel in PCAT.Notably,Ga_(2)O_(3) NPs hydrogel created a moist environment for the wound in an MDR S.aureus-infected mouse wound model,demonstrating significant potential to facilitate wound healing and minimize scar formation.This study introduces a novel hydrogel dressing without antibiotic components for resistant bacterial-infected wounds.展开更多
MicroRNAs(miRNAs)play key roles in the post-transcriptional regulation of gene expression in plants.Many miRNAs are responsive to environmental signals.Light is the first environmental signal perceived by plants after...MicroRNAs(miRNAs)play key roles in the post-transcriptional regulation of gene expression in plants.Many miRNAs are responsive to environmental signals.Light is the first environmental signal perceived by plants after emergence from the soil.However,less is known about the roles and regulatory mechanism of miRNAs in response to light signal.Here,using small RNA sequencing,we determined that miR163 is significantly rapidly induced by light signaling in Arabidopsis thaliana seedlings.The light-inducible response of miR163 functions genetically downstream of LONG HYPOCOTYL 5(HY5),a central positive regulator of photomorphogenesis.HY5 directly binds to the two G/C-hybrid elements in the miR163 promoter with unequal affinity;one of these elements,which is located next to the transcription start site,plays a major role in light-induced expression of miR163.Overexpression of miR163 rescued the defective primary root elongation of hy5 seedlings without affecting lateral root growth,whereas overexpressing of miR163 target PXMT1 inhibited primary root elongation.These findings provide insight into understanding the post-transcriptional regulation of root photomorphogenesis mediated by the HY5-miR163-PXMT1 network.展开更多
Controllably and efficaciously localized CRISPR/Cas9 plasmids transfection plays an essential role in genetic editing associated with various key human diseases.We employed near-infrared(NIR)light-responsive CRISPR/Ca...Controllably and efficaciously localized CRISPR/Cas9 plasmids transfection plays an essential role in genetic editing associated with various key human diseases.We employed near-infrared(NIR)light-responsive CRISPR/Cas9 plasmids delivery via a charge-reversal nanovector to achieve highly efficient and site-specific gene editing.The nanovector with abundant positive charges was fabricated on the basis of an ultraviolet-sensitive conjugated polyelectrolyte coated on an upconversion nanomaterial(UCNP-UVP-P),which can convert into negative charges upon 980 nm light irradiation.Using the as-prepared nanovector,we demonstrated the plasmids could be efficiency transfected into tumor cells(~63%±4%)in a time-contolled manner,and that functional CRISPR/Cas9 proteins could be successfully expressed in a selected NIR-irradiated region.Particularly,this strategy was successfully applied to the delivery of CRISPR/Cas9 gene to tumor cells in vivo,inducing high efficiency editing of the target gene PLK-1 under photolrradiation.Therefore,this precisely controlled gene regulation strategy has the potential to serve as a new paradigm for gene engineering in complex biological systems.展开更多
Immunotherapy emerged as a paradigm shift in cancer treatments, which can effectively inhibit cancer progression by activating the immune system. Remarkable clinical outcomes have been achieved through recent advances...Immunotherapy emerged as a paradigm shift in cancer treatments, which can effectively inhibit cancer progression by activating the immune system. Remarkable clinical outcomes have been achieved through recent advances in cancer immunotherapy, including checkpoint blockades, adoptive cellular therapy, cancer vaccine, and tumor microenvironment modulation. However, extending the application of immunotherapy in cancer patients has been limited by the low response rate and side effects such as autoimmune toxicities. With great progress being made in nanotechnology, nanomedicine has been exploited to overcome biological barriers for drug delivery. Given the spatiotemporal control,light-responsive nanomedicine is of great interest in designing precise modality for cancer immunotherapy. Herein, we summarized current research utilizing light-responsive nanoplatforms to enhance checkpoint blockade immunotherapy, facilitate targeted delivery of cancer vaccines, activate immune cell functions, and modulate tumor microenvironment. The clinical translation potential of those designs is highlighted and challenges for the next breakthrough in cancer immunotherapy are discussed.展开更多
One type of new light-responsive hierarchical metal organic framework(MOF) has been successfully prepared using Co(NO_(3))_(3)·6H_(2)O as the metal salt and 4,4’-azobenzenedicarboxylic acid as the ligand by micr...One type of new light-responsive hierarchical metal organic framework(MOF) has been successfully prepared using Co(NO_(3))_(3)·6H_(2)O as the metal salt and 4,4’-azobenzenedicarboxylic acid as the ligand by microwave method for the first time. It is found that MOF [Co(Az DC)] exhibits a light-responsive characteristic to SO_(2)adsorption due to the presence of azo group from the ligand. The light-responsive hierarchical MOFs are incorporated into Matrimid■ 5218(PI) matrix to prepare mixed matrix membranes(MMMs) for gas separation application. The morphology, crystallinity, chain mobility and thermal stability of MMMs are explored. Results show that Co(Az DC) may elevate both the CO_(2)(SO_(2)) permeability and CO_(2)(SO_(2))/N_(2)selectivity of the MMMs. In particular,the Co(Az DC) doped MMMs exhibit the significantly improved CO_(2)(SO_(2))/N_(2)selectivity from 33(123) for PI control membrane to 78(420) for MMMs, overcoming the 2008 Robeson upper bound for CO_(2)/N_(2)system. Sizesieving effect of Co(Az DC) with pore size 0.35 nm enhances the selectivity, while the –N=N– group from Co(Az DC) shows affinity to CO_(2)molecular rather than N_(2), also elevating selectivity of MMMs. In brief, enhanced selectivity of high-performance membrane is attributed to incorporation of Co(Az DC) particles, which displays synergistic effects both in size-sieving and CO_(2)-philic interaction for CO_(2)/N_(2)separation. Smart highly selective interface is constructed in MMMs by switching the configuration of MOFs from cis to trans. The SO_(2)permeability and SO_(2)/N_(2)selectivity of MMMs are investigated under both visible light and ultraviolet light states, and the SO_(2)/N_(2)separation performance under visible light is notably improved in comparison with that under ultraviolet light state.展开更多
Smart materials that reversibly change color upon light illumination are widely explored for diverse appealing applications.However,light-responsive color switching materials are mainly limited to organic molecules.Th...Smart materials that reversibly change color upon light illumination are widely explored for diverse appealing applications.However,light-responsive color switching materials are mainly limited to organic molecules.The synthesis of inorganic counterparts has remained a significant challenge because of their slow light response and poor reversibility.Here,we report a seeded growth strategy for the synthesis of TiO_(2-x)/WO_(3)·0.33H_(2)Ohetero-nanoparticles(HNPs)with networked wire-like structure of〜10 nm in diameters that enable the highly reversible light-responsive color switching properties.For the TiO_(2-x)/WO_(3)·0.33H_(2)OHNPs,T P species self-doped in TiO_(2-x)nanoparticles(NPs)act as efficient sacrificial electron donors(SEDs)and Ti-O-W linkages formed between TiO2-x and WO30.33H2O NPs ensure the nanoscale interfacial contact,endowing the HNPs enhanced photoreductive activity and efficient interfacial charge transfer upon ultraviolet(UV)illumination to achieve highly efficient color switching.The TiO_(2-x)/WO_(3)·0.33H_(2)OHNPs exhibits rapid light response(<15 s)and long reversible color switching cycles(>180 times).We further demonstrate the applications of TiO_(2-x)/WO_(3)·0.33H_(2)O HNPs in ink-free,light-printable rewritable paper that can be written on freehand or printed on through a photomask using UV light.This work opens an avenue for designing inorganic light-responsive color switching nanomaterials and their smart applications.展开更多
As significant biocatalysts,natural enzymes have exhibited a vast range of applications in biocatalytic reactions.However,the“always-on”natural enzyme activity is not beneficial for the regulation of catalytic proce...As significant biocatalysts,natural enzymes have exhibited a vast range of applications in biocatalytic reactions.However,the“always-on”natural enzyme activity is not beneficial for the regulation of catalytic processes,which limits their bio-applications.Recently,it has been extensively reported that various organic artificial enzymes exhibit prominent absorption and controlled activity under illumination,which not only creates a series of light-responsive catalytic platforms but also plays a key role in biosensing and biomedical research.To provide novel ideas for the design of artificial enzymes,we conduct this review to highlight the recent progress of light-responsive organic artificial enzymes(LOA-Enz).The specific photoresponse mechanism and various bio-applications of LOA-Enz are also presented in detail.Furthermore,the remaining challenges and future perspectives in this field are discussed.展开更多
The non-rectangular hyperbola(NRH)equation is the most popular method that plots the photosynthetic light-response(PLR)curve and helps to identify plant photosynthetic capability.However,the PLR curve can't be plo...The non-rectangular hyperbola(NRH)equation is the most popular method that plots the photosynthetic light-response(PLR)curve and helps to identify plant photosynthetic capability.However,the PLR curve can't be plotted well by the NRH equation at different plant growth phases due to the variations of plant development.Recently,plant physiological parameters have been considered into the NRH equation to establish the modified NRH equation,but plant height(H),an important parameter in plant growth phases,is not taken into account.In this study,H was incorporated into the NRH equation to establish the modified NRH equation,which could be used to estimate photosynthetic capability of herbage at different growth phases.To explore photosynthetic capability of herbage,we selected the dominant herbage species Potentilla anserina L.and Elymus nutans Griseb.in the Heihe River Basin,Northwest China as the research materials.Totally,twenty-four PLR curves and H at different growth phases were measured during the growing season in 2016.Results showed that the maximum net photosynthetic rate and the initial slope of PLR curve linearly increased with H.The modified NRH equation,which is established by introducing H and an H-based adjustment factor into the NRH equation,described better the PLR curves of P.anserina and E.nutans than the original ones.The results may provide an effective method to estimate the net primary productivity of grasslands in the study area.展开更多
A novel light responsive nanosphere was constructed,and it was used as a drug carrier to investigate the loading and release properties of the Quercetin(QU).In this paper,mesoporous silica nanoparticles(MSN)were used ...A novel light responsive nanosphere was constructed,and it was used as a drug carrier to investigate the loading and release properties of the Quercetin(QU).In this paper,mesoporous silica nanoparticles(MSN)were used as a substrate,and 3-aminopropyl triethyoxysilane was used as a surface modification agent to introduce—NH_(2),and the azobenzene-4,4’-dicarboxylic acid(AZO)was used as light responsive agent to introduce the group of—N=N—,and thenβ-cyclodextrin(β-CD)was combined with AZO through host-vip interaction to construct light responsive nanoparticles(MSN@β-CD).The structure and properties of the carrier were analyzed by FTIR,BET,XPS,TGA,XRD,SEM and TEM.In vitro drug release studies showed the release rate of QU@MSN@β-CD(dark)was 12.19%within 72 h,but the release rate of QU@MSN@β-CD(light 10 min)was 26.09%,exhibiting a light-responsive property.The CCK8 tests demonstrated that MSN@β-CD could significantly decrease the toxicity of QU.Therefore,the controllable light-responsive drug delivery system has great application prospects.展开更多
The dense extracellular matrix and high interstitial pressure within tumors hinder nanoparticle penetration,reducing therapeutic efficacy.To address this,we engineered a dual-driven nanomotor based on a diselenide met...The dense extracellular matrix and high interstitial pressure within tumors hinder nanoparticle penetration,reducing therapeutic efficacy.To address this,we engineered a dual-driven nanomotor based on a diselenide metal-organic framework(MOF)using a layer-by-layer assembly process for multimodal synergistic tumor therapy.Diselenide-containing imidazole derivatives coordinated with Zn2+form the MOF,sequentially encapsulating near-infrared-Ⅱ(NIR-Ⅱ)photothermal-responsive gold nanorods(AuRods),Mn_(2)CO_(10)(MnCO),and glucose oxidase(GOD).The nanoparticle surface was functionalized with 4T1 cancer cell membranes(DSACGM NPs),guiding it to drive toward the tumor site.The photothermal effect of AuRods and CO release drives nanomotor propulsion,enhancing tumor tissue penetration.GOD catalyzes glucose(Glu)oxidation,inducing tumor starvation,while the resulting H_(2)O_(2)triggers CO release,suppressing heat shock protein(HSP)expression and enhancing mild photothermal therapy(PTT).The release of CO and the Mn^(2+)-triggered Fenton-like reaction from MnCO increased intracellular ROS levels,while diselenide depletion of glutathione(GSH)amplified chemodynamic therapy(CDT).In vitro and in vivo experiments show that DSACGM NPs induce cancer cell apoptosis under NIR-Ⅱirradiation and efficiently ablate tumors in mice at sub-hyperthermic temperatures(<45℃)with excellent biocompatibility.This study provides valuable insights into nanomedicine design and its potential in advanced tumor therapies.展开更多
Bone defects caused by trauma,infection,tumors,or osteoporosis pose significant clinical challenges,especially with rising fracture incidence in aging populations.The regulation of immune microenvironment in bone defe...Bone defects caused by trauma,infection,tumors,or osteoporosis pose significant clinical challenges,especially with rising fracture incidence in aging populations.The regulation of immune microenvironment in bone defect lesions by drug-loaded hydrogel has been shown to accelerate bone healing.In this study,we developed a photothermal-responsive hydrogel(GMHD/TFe@Aca)loaded with acacetin,a natural flavonoid with anti-inflammatory and immunomodulatory properties.The hydrogel loaded with TFe@Aca nanoparticles exhibited excellent mechanical properties,biocompatibility,and low cytotoxicity.In a mouse model of bone defect,this photothermal-responsive hydrogel facilitated sustained drug release at the bone defect site,with the drug release rate controlled through light stimulation.Acacetin was found to inhibit stimulator of interferon genes(STING)activation,suppress M1 macrophage polarization,and promote M2 polarization.Near-infrared(NIR)-triggered acacetin release further accelerated bone repair by reducing inflammatory cytokines,promoting collagen synthesis,and enhancing angiogenesis.These findings highlight GMHD/TFe@Aca as a multifunctional material capable of modulating inflammation and promoting bone regeneration,offering a promising strategy for bone defect treatment and advancing biomaterial development in regenerative medicine.展开更多
As future soft robotic devices necessitate a level of complexity surpassing current standards,a new design approach is needed that integrates multiple systems necessary to synchronize the motions of soft actuators and...As future soft robotic devices necessitate a level of complexity surpassing current standards,a new design approach is needed that integrates multiple systems necessary to synchronize the motions of soft actuators and the response of signals,thereby enhancing the intelligence of flexible devices.Herein,we propose a liquid crystal elastomer unit cell-based platform that organizes the cells in a group to create expandable functions.One unit cell behaves like a flexible module that can expand biaxially into a specific,stable,and controllable pattern.Collaborating the unit cells in different manners results in an adaptable soft grasper,a half-adder for information processing,and a tunable phononic bandgap.This implies a high level of reconfigurability and scalability in both structures and functions by elegantly reassembling the unit cells.This design strategy has the potential to integrate multiple functions that traditional soft actuators cannot accommodate,providing a platform for developing intelligent soft robotics.展开更多
Silver nanoparticles(AgNPs)are widely used in antimicrobial applications.However,its easy aggregation and rapid loss hinder the effective antifouling.To address this issue,a novel stimuli-responsive antibacterial nano...Silver nanoparticles(AgNPs)are widely used in antimicrobial applications.However,its easy aggregation and rapid loss hinder the effective antifouling.To address this issue,a novel stimuli-responsive antibacterial nanocomposite(Ag@SP-MSN)was developed based on spiropyran covalently conjugated mesoporous silica nanoparticles(284.6 nm)and AgNPs(27.1 nm)via strong electrostatic attraction.Both transmission electron microscopy(TEM)and atomic force microscopy(AFM)images proved the successful modification of AgNPs onto SP-MSN.The light-induced maximum loading amount towards AgNPs was calculated to be 95.0 wt.%after ultraviolet irradiation,while the amount of AgNPs released from Ag@SP-MSN was 94.4 wt.%under visible light in the aid of ammonia(0.1%,v/v).Upon cycled light irradiation,Ag@SP-MSN could recover 84.5 wt.%of AgNPs even after four cycles.The proposed Ag@SP-MSN exhibited better antibacterial activity against both E.coli and S.aureus than Ag@MSN under visible light illumination,indicating the efficient photo-responsive isomerization of spiropyran.Furthermore,the Ag@SP-MSN embedded gel demonstrated outstanding antifouling ability even after 21 days when compared to AgNPs gel.The long-term photo-controllable antifouling property proved the excellent reversible absorption and release of Ag@SP-MSN towards AgNPs.This work provides new insights into the safe utilization of nanomaterials,offering promising advancements to meet clinical antibacterial requirements.展开更多
Liquid foams with tunable and photoresponsive stabilities and mechanical properties are highly desired in many domains,including the chemical and environmental protection industries.Here,we constructed photoresponsive...Liquid foams with tunable and photoresponsive stabilities and mechanical properties are highly desired in many domains,including the chemical and environmental protection industries.Here,we constructed photoresponsive liquid foams by structuring the interfacial adsorption layers and nanoparticle-embedded Plateau borders of the foam with biodegradable components.These foams exhibited ultrahigh foam stability but were easily destroyed by light,leading to a clean recovery of the liquid phase.In the absence of light,the hydroxypropyl cellulose(HPC)coils in the foam formed mechanically strong liquid films or“cohesive states.”Under irradiation,the ultrathin black phosphorus nanosheets induced changes in the packing parameters of the HPC assemblies within the Plateau borders and led to coil-to-globule transitions of the HPC and formed unstable liquid films with a“mobile state.”The two interfacial states were reversibly and repeatedly switched by turning the light on and off,which caused rapid bubble coalescence and foam collapse,and we also proved that this destabilizing mechanism was inhibited by cellulose nanocrystals.This work provides an environmentally friendly approach to controlling foam stability,and the proposed strategy can be expanded to the production of multiresponsive fully liquid objects in theory.展开更多
Light-triggered release of active ingredients from polymeric nanosized capsules can be employed in a wide range of applications, such as biomedicine, active packaging, and cosmetics. However, the preparation of core-s...Light-triggered release of active ingredients from polymeric nanosized capsules can be employed in a wide range of applications, such as biomedicine, active packaging, and cosmetics. However, the preparation of core-shell polymeric nanocarriers typically involves the use of toxic organic solvents. To improve the sustainability and safety of nanocapsule applications, we demonstrate that natural essential oils can be used both as solvent and active material in light-responsive nanocapsules synthesized via miniemulsion polycondensation. The documented antimicrobial, anti-inflammatory, and antioxidant activity of essential oils enables the design of multipurpose light-responsive delivery platforms. The photo-responsive behavior of the capsules, achieved by means of photochromic azobenzene segments embedded in the capsule shell, is triggered by UV light irradiation (λmax= 360 nm). Light-induced release kinetics of the essential oils and a fluorescent probe molecule, coumarin-6, is evaluated via UV-vis spectroscopy and spectrofluorimetry, respectively, demonstrating the efficiency and reliability of the release mechanism. Biological tests prove that the capsules are non-cytotoxic and readily internalized by cells, indicating the suitability of these smart nanocarriers for biological applications.展开更多
基金supported by the Natural Science Foundation of Jiangsu Province(No.BK20200092)。
文摘Various chemical irrigants and drugs have been employed for intra-canal disinfection in root canal therapy(RCT).However,due to the complexity of root canal anatomy,many drugs still exhibit poor penetrability and antibiotic resistance,leading to suboptimal treatment outcomes.Thus,it is challenging to remove the organic biofilms from root canals.In recent years,light-responsive therapy,with deeper tissue penetration than traditional treatments,has emerged as an effective RCT modality.Herein,this review summarizes the recent development of light-responsive nanomaterials for biofilm removal in RCT.The light-responsive nanomaterials and the corresponding therapeutic methods in RCT,including photodynamic therapy(PDT),photothermal therapy(PTT),and laser-activated therapy,are highlighted.Finally,the challenges that light-responsive nanomaterials and treatment modalities will encounter to conquer the biofilm in future RCT are discussed.This review is believed to significantly accelerate the future development of light-responsive nanomaterials for RCT from bench to bedside.
基金This work was financially supported by the International Science and Technology Assistance Program of the Ministry of Science and Technology(No.KY202001016)Shandong Provincial Natural Science Foundation Magnitude Fundamental Research,China(No.ZR2022ZD11)Qingdao New Energy Shandong Laboratory Open Project(No.QNESL OP202312).
文摘L-glutamic acid(LA)is a bio-based,non-toxic,environmentally friendly material derived from biomass.The present study reports the application of Passerini three-component polymerization(P-3CP)for the straightforward preparation of LA-based light-responsive polyesters(PLTDs)under mild conditions.PLTDs with molar masses up to 8500 g/mol and high yields exceeding 90%are obtained.The chemical structures and light-responsive self-immolative behavior of PLTDs are comprehensively characterized by employing ultraviolet-visible(UV-Vis)spectroscopy,size exclusion chromatography(SEC),nuclear magnetic resonance(NMR)spectroscopy,and liquid chromatography mass spectrometry(LC-MS).Meanwhile,monodisperse PLTD-based doxorubicin-loaded nanoparticles(PLTD-DOX-NP)(size=193 nm,PDI=0.018)are formulated by nanoprecipitation method.Upon light-induced depolymerization,the PLTD-DOX-NP undergoes rapid decomposition,resulting in a burst release of 80%cargo within 13 s.Furthermore,according to biological toxicity tests,the PLTD-NP possesses adequate biosafety,both before and after irradiation.Overall,the incorporation of P-3CP with biorenewable LA-based monomer adheres to the principles of green chemistry,significantly simplifying the synthetic pathway of light-responsive polymers.
基金supported by the National Natural Science Foundation of China(Nos.21633009,21925206,21901240)the National Key Research and Development Program of China(No.2020YFA0406102)。
文摘Photocatalysis based on semiconductors has recently been receiving considerable research interest because of its extensive applications in environmental remediation and renewable energy generation.Various semiconductor-based materials that are vital to solar energy utilization have been extensively investigated,among which titanium oxide(TiO_(2))has attracted considerable attention because of its exceptional physicochemical characteristics.However,the sluggish responsiveness to visible light in the solar spectrum and the inefficient separation of photoinduced electron-hole pairs hamper the practical application of TiO_(2) materials.To overcome the aforementioned serious drawbacks of TiO_(2),numerous strategies,such as doping with foreign atoms,particularly nitrogen(N),have been improved in the past few decades.This review aims to provide a comprehensive update and description of the recent developments of N-doped TiO_(2) materials for visible lightresponsive photocatalysis,such as(1)the preparation of N-doped/co-doped TiO_(2) photocatalysts and(2)mechanistic studies on the reasons for visible light response.Furthermore,the most recent and significant advances in the field of solar energy applications of modified N-doped TiO_(2) are summarized.The analysis indicated the critical need for further development of these types of materials for the solar-to-energy conversion,particularly for water splitting purposes.
基金supported by the National Natural Science Foundation of China (32000991 and 51873150)the Young Elite Scientists Sponsorship Program by Tianjin (TJSQNTJ-2020-02)+1 种基金the Key Project of Tianjin Foundational Research (Jing–Jin–Ji) Program(19JCZDJC64100)the Tianjin Research Innovation Project for Postgraduate Students (2020YJSB130)
文摘Due to its unique advantages,which include minimal invasiveness and relative clinical safety,photother-apy is considered to be a promising approach for cancer treatment.However,the treatment efficacy of phototherapy is often restricted by the limited depth of light penetration and the low targeting effect of phototherapeutic agents.The emergence of light-responsive nanomaterials offers a possible approach to achieve enhanced phototherapy potency.This review summarizes the progress in biomedical applica-tions of light-responsive nanomaterials for cancer therapy,which include photothermal therapy(PTT),photodynamic therapy(PDT),light-responsive molecule delivery,and light-controlled combination ther-apy.Future prospects are also discussed.This review aims to demonstrate the significance of light-responsive nanomaterials in cancer therapy and to provide strategies to expand the applications of phototherapy.
基金the Natural Science Foundation of China (No.51503181)for financial support
文摘Based on the reversible host-vip inclusion/exclusion of cyclodextrin-functionalized graphene oxide(GO-CD) and azobenzene-terminated polyhedral oligomeric silsesquioxane(Azo-POSS), a novel kind of light-responsive nanocomposites GO-POSS was developed under mild condition. ~1H NMR, ET-IR,TG, TEM and UV-vis spectroscopy were conducted to characterize the chemical composition and photoresponsive performance of obtained GO-POSS nanocomposites. The results demonstrated that nanocagestructured POSS and nanosheet GO components in GO-POSS exhibited pronounced supra molecular assembly/disassembly behavior upon UV/vis irradiation. Moreover, GO-POSS nanocomposites showed good water dispersity and had remarkable impact on oxygen permeability of conventional PVA-coated films under varied light irradiation conditions, which would be valuable for developing smart gas barrier materials in packaging.
基金financially supported by the Advanced Fiber Materials Engineering Research Center of Anhui Province(No.2023AFMC20)the Scientific Research Foundation for Advanced Talents of Anhui Polytechnic University(No.2022YQQ072)+5 种基金the Anhui Province Key Research and Development Program(No.2022i01020002)the Key Project Foundation of Anhui Higher Education Institutes of China(No.2023AH050941)the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(No.22KJB180020)the Transversal Project(No.KH10004443),the Anhui Provincial Natural Science Foundation(No.2308085Y45)the Program for Excellent Sci-tech Innovation Teams of Universities in Anhui Province(No.2023AH010073)Wuhu Science and Technology Department project(No.2023jc22).
文摘The skin wound is susceptible to bacterial invasion,which hinders the healing of the wound,especially when infected with multi-drug resistant strains.This demands novel bioactive materials to combat bacterial infections.In this study,gallium oxide nanoparticles(Ga_(2)O_(3) NPs)were successfully synthesized through high-temperature thermal decomposition,exhibiting excellent biocompatibility and photocatalytic antimicrobial activity.The Ga_(2)O_(3) NPs were crosslinked into chitosan hydrogel to create a light-responsive multilayered 3D porous hydrogel(Ga_(2)O_(3) NPs hydrogel)for use in photocatalytic antimicrobial therapy(PCAT).The prepared Ga_(2)O_(3) NPs hydrogel exhibits broad-spectrum photocatalytic activity and remarkable antibacterial efficacy against E.coli and S.aureus.It effectively eradicates biofilms,promotes reactive oxygen species production,disrupts bacterial cell membranes,and induces nucleic acid leakage,ultimately resulting in bacterial death.Additionally,it exhibits excellent biosafety.Both in vitro pigskin and in vivo mouse wound infection models have confirmed the remarkable efficacy of Ga_(2)O_(3) NPs hydrogel in PCAT.Notably,Ga_(2)O_(3) NPs hydrogel created a moist environment for the wound in an MDR S.aureus-infected mouse wound model,demonstrating significant potential to facilitate wound healing and minimize scar formation.This study introduces a novel hydrogel dressing without antibiotic components for resistant bacterial-infected wounds.
基金This work was supported by the Scientific and Technological Research Project of Henan Province of China(Grant No.192102110019 to T.L.)the Innovation Special Program of Henan Agricultural University for Science and Technology(Grant No.30500685 to T.L.)the National Natural Science Foundation of China(Grant No.31670288 to H.Z.).
文摘MicroRNAs(miRNAs)play key roles in the post-transcriptional regulation of gene expression in plants.Many miRNAs are responsive to environmental signals.Light is the first environmental signal perceived by plants after emergence from the soil.However,less is known about the roles and regulatory mechanism of miRNAs in response to light signal.Here,using small RNA sequencing,we determined that miR163 is significantly rapidly induced by light signaling in Arabidopsis thaliana seedlings.The light-inducible response of miR163 functions genetically downstream of LONG HYPOCOTYL 5(HY5),a central positive regulator of photomorphogenesis.HY5 directly binds to the two G/C-hybrid elements in the miR163 promoter with unequal affinity;one of these elements,which is located next to the transcription start site,plays a major role in light-induced expression of miR163.Overexpression of miR163 rescued the defective primary root elongation of hy5 seedlings without affecting lateral root growth,whereas overexpressing of miR163 target PXMT1 inhibited primary root elongation.These findings provide insight into understanding the post-transcriptional regulation of root photomorphogenesis mediated by the HY5-miR163-PXMT1 network.
基金This research was supported by the National Natural Science Foundation of China(Nos.21771065 and 81630046)the Guangdong Special Support Program(No.2017TQ04R138)+2 种基金the Natural Science Foundation of Guangdong(No.2019A1515012021)the Science and Technology Planning Project of Guangdong(No.2017A 020215088)Pearl River Nova Program of Guangzhou(No.201806010189).
文摘Controllably and efficaciously localized CRISPR/Cas9 plasmids transfection plays an essential role in genetic editing associated with various key human diseases.We employed near-infrared(NIR)light-responsive CRISPR/Cas9 plasmids delivery via a charge-reversal nanovector to achieve highly efficient and site-specific gene editing.The nanovector with abundant positive charges was fabricated on the basis of an ultraviolet-sensitive conjugated polyelectrolyte coated on an upconversion nanomaterial(UCNP-UVP-P),which can convert into negative charges upon 980 nm light irradiation.Using the as-prepared nanovector,we demonstrated the plasmids could be efficiency transfected into tumor cells(~63%±4%)in a time-contolled manner,and that functional CRISPR/Cas9 proteins could be successfully expressed in a selected NIR-irradiated region.Particularly,this strategy was successfully applied to the delivery of CRISPR/Cas9 gene to tumor cells in vivo,inducing high efficiency editing of the target gene PLK-1 under photolrradiation.Therefore,this precisely controlled gene regulation strategy has the potential to serve as a new paradigm for gene engineering in complex biological systems.
基金supported by Hong Kong Research Grants Council, University Grants Committee (No. 2711522, Hong Kong, China)Ming Wai Lau Centre for Reparative Medicine (Associate Member Programme, Hong Kong, China)。
文摘Immunotherapy emerged as a paradigm shift in cancer treatments, which can effectively inhibit cancer progression by activating the immune system. Remarkable clinical outcomes have been achieved through recent advances in cancer immunotherapy, including checkpoint blockades, adoptive cellular therapy, cancer vaccine, and tumor microenvironment modulation. However, extending the application of immunotherapy in cancer patients has been limited by the low response rate and side effects such as autoimmune toxicities. With great progress being made in nanotechnology, nanomedicine has been exploited to overcome biological barriers for drug delivery. Given the spatiotemporal control,light-responsive nanomedicine is of great interest in designing precise modality for cancer immunotherapy. Herein, we summarized current research utilizing light-responsive nanoplatforms to enhance checkpoint blockade immunotherapy, facilitate targeted delivery of cancer vaccines, activate immune cell functions, and modulate tumor microenvironment. The clinical translation potential of those designs is highlighted and challenges for the next breakthrough in cancer immunotherapy are discussed.
基金financially supported by the National Natural Science Foundation of China(Nos.21706189,21978217,21676201)Science and Technology Plans of Tianjin(18JCQNJC06800,18PTSYJC00190,17PTSYJC00050)+2 种基金Tianjin Natural Science Foundation(No.18JCYBJC89400)Tianjin Municipal Education Commission Scientific Research Project(2017KJ074)University Students?innovation and entrepreneurship training program(202010058050,202110058127)。
文摘One type of new light-responsive hierarchical metal organic framework(MOF) has been successfully prepared using Co(NO_(3))_(3)·6H_(2)O as the metal salt and 4,4’-azobenzenedicarboxylic acid as the ligand by microwave method for the first time. It is found that MOF [Co(Az DC)] exhibits a light-responsive characteristic to SO_(2)adsorption due to the presence of azo group from the ligand. The light-responsive hierarchical MOFs are incorporated into Matrimid■ 5218(PI) matrix to prepare mixed matrix membranes(MMMs) for gas separation application. The morphology, crystallinity, chain mobility and thermal stability of MMMs are explored. Results show that Co(Az DC) may elevate both the CO_(2)(SO_(2)) permeability and CO_(2)(SO_(2))/N_(2)selectivity of the MMMs. In particular,the Co(Az DC) doped MMMs exhibit the significantly improved CO_(2)(SO_(2))/N_(2)selectivity from 33(123) for PI control membrane to 78(420) for MMMs, overcoming the 2008 Robeson upper bound for CO_(2)/N_(2)system. Sizesieving effect of Co(Az DC) with pore size 0.35 nm enhances the selectivity, while the –N=N– group from Co(Az DC) shows affinity to CO_(2)molecular rather than N_(2), also elevating selectivity of MMMs. In brief, enhanced selectivity of high-performance membrane is attributed to incorporation of Co(Az DC) particles, which displays synergistic effects both in size-sieving and CO_(2)-philic interaction for CO_(2)/N_(2)separation. Smart highly selective interface is constructed in MMMs by switching the configuration of MOFs from cis to trans. The SO_(2)permeability and SO_(2)/N_(2)selectivity of MMMs are investigated under both visible light and ultraviolet light states, and the SO_(2)/N_(2)separation performance under visible light is notably improved in comparison with that under ultraviolet light state.
基金the Natural Science Foundation of Shandong Province(No.ZR2019JQ15)the National Natural Science Foundation of China(Nos.21671120,51972199).We would like to thank the Analytical Center for Structural Constituent and Physical Property of Core Facilities Sharing Platform,Shandong University for ESR and Raman characterizations.
文摘Smart materials that reversibly change color upon light illumination are widely explored for diverse appealing applications.However,light-responsive color switching materials are mainly limited to organic molecules.The synthesis of inorganic counterparts has remained a significant challenge because of their slow light response and poor reversibility.Here,we report a seeded growth strategy for the synthesis of TiO_(2-x)/WO_(3)·0.33H_(2)Ohetero-nanoparticles(HNPs)with networked wire-like structure of〜10 nm in diameters that enable the highly reversible light-responsive color switching properties.For the TiO_(2-x)/WO_(3)·0.33H_(2)OHNPs,T P species self-doped in TiO_(2-x)nanoparticles(NPs)act as efficient sacrificial electron donors(SEDs)and Ti-O-W linkages formed between TiO2-x and WO30.33H2O NPs ensure the nanoscale interfacial contact,endowing the HNPs enhanced photoreductive activity and efficient interfacial charge transfer upon ultraviolet(UV)illumination to achieve highly efficient color switching.The TiO_(2-x)/WO_(3)·0.33H_(2)OHNPs exhibits rapid light response(<15 s)and long reversible color switching cycles(>180 times).We further demonstrate the applications of TiO_(2-x)/WO_(3)·0.33H_(2)O HNPs in ink-free,light-printable rewritable paper that can be written on freehand or printed on through a photomask using UV light.This work opens an avenue for designing inorganic light-responsive color switching nanomaterials and their smart applications.
基金supported by the National Key Research and Development(R&D)Program of China(No.2020YFA0709900)the National Natural Science Foundation of China(Nos.62120106002 and 22175089)+3 种基金the Natural Science Foundation of Jiangsu Province(No.BK20200092)the Natural Science Foundation of Ningbo(No.202003N40448)Research Innovation Plan for Graduate Students in Jiangsu Province(No.SJCX21_0473)“Taishan scholars”construction special fund of Shandong Province.
文摘As significant biocatalysts,natural enzymes have exhibited a vast range of applications in biocatalytic reactions.However,the“always-on”natural enzyme activity is not beneficial for the regulation of catalytic processes,which limits their bio-applications.Recently,it has been extensively reported that various organic artificial enzymes exhibit prominent absorption and controlled activity under illumination,which not only creates a series of light-responsive catalytic platforms but also plays a key role in biosensing and biomedical research.To provide novel ideas for the design of artificial enzymes,we conduct this review to highlight the recent progress of light-responsive organic artificial enzymes(LOA-Enz).The specific photoresponse mechanism and various bio-applications of LOA-Enz are also presented in detail.Furthermore,the remaining challenges and future perspectives in this field are discussed.
基金funded by the National Natural Science Foundation of China(91025015,51178209)the Project of Arid Meteorological Science Research Foundation of China Meteorological Administration(IAM201608)
文摘The non-rectangular hyperbola(NRH)equation is the most popular method that plots the photosynthetic light-response(PLR)curve and helps to identify plant photosynthetic capability.However,the PLR curve can't be plotted well by the NRH equation at different plant growth phases due to the variations of plant development.Recently,plant physiological parameters have been considered into the NRH equation to establish the modified NRH equation,but plant height(H),an important parameter in plant growth phases,is not taken into account.In this study,H was incorporated into the NRH equation to establish the modified NRH equation,which could be used to estimate photosynthetic capability of herbage at different growth phases.To explore photosynthetic capability of herbage,we selected the dominant herbage species Potentilla anserina L.and Elymus nutans Griseb.in the Heihe River Basin,Northwest China as the research materials.Totally,twenty-four PLR curves and H at different growth phases were measured during the growing season in 2016.Results showed that the maximum net photosynthetic rate and the initial slope of PLR curve linearly increased with H.The modified NRH equation,which is established by introducing H and an H-based adjustment factor into the NRH equation,described better the PLR curves of P.anserina and E.nutans than the original ones.The results may provide an effective method to estimate the net primary productivity of grasslands in the study area.
文摘A novel light responsive nanosphere was constructed,and it was used as a drug carrier to investigate the loading and release properties of the Quercetin(QU).In this paper,mesoporous silica nanoparticles(MSN)were used as a substrate,and 3-aminopropyl triethyoxysilane was used as a surface modification agent to introduce—NH_(2),and the azobenzene-4,4’-dicarboxylic acid(AZO)was used as light responsive agent to introduce the group of—N=N—,and thenβ-cyclodextrin(β-CD)was combined with AZO through host-vip interaction to construct light responsive nanoparticles(MSN@β-CD).The structure and properties of the carrier were analyzed by FTIR,BET,XPS,TGA,XRD,SEM and TEM.In vitro drug release studies showed the release rate of QU@MSN@β-CD(dark)was 12.19%within 72 h,but the release rate of QU@MSN@β-CD(light 10 min)was 26.09%,exhibiting a light-responsive property.The CCK8 tests demonstrated that MSN@β-CD could significantly decrease the toxicity of QU.Therefore,the controllable light-responsive drug delivery system has great application prospects.
基金supported by the National Key R&D Program of China(2020YFA0908500)the National Natural Science Foundation of China(22161142015,22201058,and 22275046)+1 种基金the Interdisciplinary Research Project of Hangzhou Normal University(2024JCXK01)the Hangzhou Leading Innovation and Entrepreneurship Team Project of Hangzhou Science and Technology Bureau(TD2022001)。
文摘The dense extracellular matrix and high interstitial pressure within tumors hinder nanoparticle penetration,reducing therapeutic efficacy.To address this,we engineered a dual-driven nanomotor based on a diselenide metal-organic framework(MOF)using a layer-by-layer assembly process for multimodal synergistic tumor therapy.Diselenide-containing imidazole derivatives coordinated with Zn2+form the MOF,sequentially encapsulating near-infrared-Ⅱ(NIR-Ⅱ)photothermal-responsive gold nanorods(AuRods),Mn_(2)CO_(10)(MnCO),and glucose oxidase(GOD).The nanoparticle surface was functionalized with 4T1 cancer cell membranes(DSACGM NPs),guiding it to drive toward the tumor site.The photothermal effect of AuRods and CO release drives nanomotor propulsion,enhancing tumor tissue penetration.GOD catalyzes glucose(Glu)oxidation,inducing tumor starvation,while the resulting H_(2)O_(2)triggers CO release,suppressing heat shock protein(HSP)expression and enhancing mild photothermal therapy(PTT).The release of CO and the Mn^(2+)-triggered Fenton-like reaction from MnCO increased intracellular ROS levels,while diselenide depletion of glutathione(GSH)amplified chemodynamic therapy(CDT).In vitro and in vivo experiments show that DSACGM NPs induce cancer cell apoptosis under NIR-Ⅱirradiation and efficiently ablate tumors in mice at sub-hyperthermic temperatures(<45℃)with excellent biocompatibility.This study provides valuable insights into nanomedicine design and its potential in advanced tumor therapies.
基金supported by grants from the National Natural Science Foundation of China(No.81981340417 to L.S.)Zhejiang Provincial Natural Science Foundation of China(No.LY21H070003 to M.Y.Z.)+1 种基金Basic Research Project of Wenzhou City(No.Y20220923 to M.Y.Z.)Natural Science Foundation of Jiangsu Province Outstanding Youth Fund(No.BK20240134 to Y.Q.G.).
文摘Bone defects caused by trauma,infection,tumors,or osteoporosis pose significant clinical challenges,especially with rising fracture incidence in aging populations.The regulation of immune microenvironment in bone defect lesions by drug-loaded hydrogel has been shown to accelerate bone healing.In this study,we developed a photothermal-responsive hydrogel(GMHD/TFe@Aca)loaded with acacetin,a natural flavonoid with anti-inflammatory and immunomodulatory properties.The hydrogel loaded with TFe@Aca nanoparticles exhibited excellent mechanical properties,biocompatibility,and low cytotoxicity.In a mouse model of bone defect,this photothermal-responsive hydrogel facilitated sustained drug release at the bone defect site,with the drug release rate controlled through light stimulation.Acacetin was found to inhibit stimulator of interferon genes(STING)activation,suppress M1 macrophage polarization,and promote M2 polarization.Near-infrared(NIR)-triggered acacetin release further accelerated bone repair by reducing inflammatory cytokines,promoting collagen synthesis,and enhancing angiogenesis.These findings highlight GMHD/TFe@Aca as a multifunctional material capable of modulating inflammation and promoting bone regeneration,offering a promising strategy for bone defect treatment and advancing biomaterial development in regenerative medicine.
基金financially supported by Jiangsu Innovation Team ProgramFundamental Research Funds for the Central Universities+1 种基金National Natural Science Foundation of China (52373173and 52003050)the“Zhishan”Scholars Programs of Southeast University。
文摘As future soft robotic devices necessitate a level of complexity surpassing current standards,a new design approach is needed that integrates multiple systems necessary to synchronize the motions of soft actuators and the response of signals,thereby enhancing the intelligence of flexible devices.Herein,we propose a liquid crystal elastomer unit cell-based platform that organizes the cells in a group to create expandable functions.One unit cell behaves like a flexible module that can expand biaxially into a specific,stable,and controllable pattern.Collaborating the unit cells in different manners results in an adaptable soft grasper,a half-adder for information processing,and a tunable phononic bandgap.This implies a high level of reconfigurability and scalability in both structures and functions by elegantly reassembling the unit cells.This design strategy has the potential to integrate multiple functions that traditional soft actuators cannot accommodate,providing a platform for developing intelligent soft robotics.
基金supported by the National Natural Science Foundation of China(No.21804043)the Funding Project of the State Key Laboratory of Bioreactor Engineering.
文摘Silver nanoparticles(AgNPs)are widely used in antimicrobial applications.However,its easy aggregation and rapid loss hinder the effective antifouling.To address this issue,a novel stimuli-responsive antibacterial nanocomposite(Ag@SP-MSN)was developed based on spiropyran covalently conjugated mesoporous silica nanoparticles(284.6 nm)and AgNPs(27.1 nm)via strong electrostatic attraction.Both transmission electron microscopy(TEM)and atomic force microscopy(AFM)images proved the successful modification of AgNPs onto SP-MSN.The light-induced maximum loading amount towards AgNPs was calculated to be 95.0 wt.%after ultraviolet irradiation,while the amount of AgNPs released from Ag@SP-MSN was 94.4 wt.%under visible light in the aid of ammonia(0.1%,v/v).Upon cycled light irradiation,Ag@SP-MSN could recover 84.5 wt.%of AgNPs even after four cycles.The proposed Ag@SP-MSN exhibited better antibacterial activity against both E.coli and S.aureus than Ag@MSN under visible light illumination,indicating the efficient photo-responsive isomerization of spiropyran.Furthermore,the Ag@SP-MSN embedded gel demonstrated outstanding antifouling ability even after 21 days when compared to AgNPs gel.The long-term photo-controllable antifouling property proved the excellent reversible absorption and release of Ag@SP-MSN towards AgNPs.This work provides new insights into the safe utilization of nanomaterials,offering promising advancements to meet clinical antibacterial requirements.
基金Anhui provincial major science and technology project,Grant/Award Number:202103c08020005National funded postdoctoral researcher program of China,Grant/Award Number:GZB20230714China postdoctoral science foundation funded project,Grant/Award Number:2023M743387。
文摘Liquid foams with tunable and photoresponsive stabilities and mechanical properties are highly desired in many domains,including the chemical and environmental protection industries.Here,we constructed photoresponsive liquid foams by structuring the interfacial adsorption layers and nanoparticle-embedded Plateau borders of the foam with biodegradable components.These foams exhibited ultrahigh foam stability but were easily destroyed by light,leading to a clean recovery of the liquid phase.In the absence of light,the hydroxypropyl cellulose(HPC)coils in the foam formed mechanically strong liquid films or“cohesive states.”Under irradiation,the ultrathin black phosphorus nanosheets induced changes in the packing parameters of the HPC assemblies within the Plateau borders and led to coil-to-globule transitions of the HPC and formed unstable liquid films with a“mobile state.”The two interfacial states were reversibly and repeatedly switched by turning the light on and off,which caused rapid bubble coalescence and foam collapse,and we also proved that this destabilizing mechanism was inhibited by cellulose nanocrystals.This work provides an environmentally friendly approach to controlling foam stability,and the proposed strategy can be expanded to the production of multiresponsive fully liquid objects in theory.
文摘Light-triggered release of active ingredients from polymeric nanosized capsules can be employed in a wide range of applications, such as biomedicine, active packaging, and cosmetics. However, the preparation of core-shell polymeric nanocarriers typically involves the use of toxic organic solvents. To improve the sustainability and safety of nanocapsule applications, we demonstrate that natural essential oils can be used both as solvent and active material in light-responsive nanocapsules synthesized via miniemulsion polycondensation. The documented antimicrobial, anti-inflammatory, and antioxidant activity of essential oils enables the design of multipurpose light-responsive delivery platforms. The photo-responsive behavior of the capsules, achieved by means of photochromic azobenzene segments embedded in the capsule shell, is triggered by UV light irradiation (λmax= 360 nm). Light-induced release kinetics of the essential oils and a fluorescent probe molecule, coumarin-6, is evaluated via UV-vis spectroscopy and spectrofluorimetry, respectively, demonstrating the efficiency and reliability of the release mechanism. Biological tests prove that the capsules are non-cytotoxic and readily internalized by cells, indicating the suitability of these smart nanocarriers for biological applications.