With andromonoecious<i><span> Momordica charantia </span></i><span>L.</span><span> </span><span>(bitter gourd) as material, three light qualities</span><s...With andromonoecious<i><span> Momordica charantia </span></i><span>L.</span><span> </span><span>(bitter gourd) as material, three light qualities</span><span> </span><span>(50 μmol·m</span><sup><span style="vertical-align:super;">-2</span></sup><span>·s</span><sup><span style="vertical-align:super;">-1</span></sup><span>) including white LED light</span><span> </span><span>(WL), blue monochromatic light (B,</span><span> </span><span>465 nm), and red monochromatic light (R, 650 nm) were carried out to investigate their effects on seed germination, physiological and biochemical parameters, sex differentiation and photosynthetic characteristics of bitter gourd. The results showed that compared to the WL treatment, the R treatment significantly promoted seed germination, seedling height elongation and soluble sugar content, the B treatment significantly increased seedling stem diameter, reducing sugar content and soluble protein content, the R and B treatments both significantly reduced sucrose content, but their POD activity showed no significant difference. Compared with the R treatment, the B treatment significantly increased the total female flower number and female flower nod ratio in 30 nods of main stems. The study of photosynthetic characteristics found that the R and B treatments could effectively increase the </span><span>stomata</span><span>l conductance (GS) of leaves, significantly improved the net photosynthetic rate</span><span> </span><span>(Pn) compared to the WL treatment, and the effect of the B treatment was better. Compared to the R and WL treatments, the B treatment increased the maximum photosynthetic rate (P</span><sub><span style="vertical-align:sub;">max</span></sub><span>),</span><span> </span><span>apparent quantum efficiency</span><span> </span><span>(AQE) and light saturation point</span><span> </span><span>(LSP), and reduced the dark respiration rate (Rd) and light compensation point</span><span> </span><span>(LCP) of the leaves. Fit light response curves showed that the adaptability and utilization of weak light in bitter gourd were middle or below, but it showed higher adaptability and utilization of strong light. Thus, it suggests that </span><i><span>Momordica charantia</span></i><span> is a typical sun plan with lower Rd. In summary, it is concluded that blue light has a positive effect on the seed germination, seedling growth, sex differentiation and improving the photosynthetic performance, and this will lay the foundation for artificially regulating optimum photosynthesis using specific LEDs wavelength, and help to elucidate the relationship how light quality influences the sex differentiation of plant.</span>展开更多
We have synthesized Ca2Si5N8:Eu^2+ phosphor through a solid-state reaction and investigated its structural and luminescent properties. Our Rietveld refinement of the crystal structure of Ca1.9Eu0.1Si5N8 reveals that...We have synthesized Ca2Si5N8:Eu^2+ phosphor through a solid-state reaction and investigated its structural and luminescent properties. Our Rietveld refinement of the crystal structure of Ca1.9Eu0.1Si5N8 reveals that Eu atoms substituting for Ca atoms occupy two crystallographic positions. Between 10 K and 300 K, Ca2Si5N8:Eu^2+ phosphor shows a broad red emission band centred at -1.97 eV-2.01 eV. The gravity centre of the excitation band is located at 3.0 eV 3.31 eV. The centroid shift of the 5d levels of Eu^2+ is determined to be -1.17 eV, and the red-shift of the lowest absorption band to be - 0.54 eV due to the crystal field splitting. We have analysed the temperature dependence of PL by using a configuration coordinate model. The Huang-Rhys parameter S = 6.0, the phonon energy hv = 52 meV, and the Stokes shift △S = 0.57 eV are obtained. The emission intensity maximum occurring at -200 K can be explained by a trapping effect. Both photoluminescence (PL) emission intensity and decay time decrease with temperature increasing beyond 200 K due to the non-radiative process.展开更多
Blue InGaN light-emitting diodes (LEDs) with a conventional electron blocking layer (EBL), a common n-A1GaN hole blocking layer (HBL), and an n-A1GaN HBL with gradual A1 composition are investigated numerically,...Blue InGaN light-emitting diodes (LEDs) with a conventional electron blocking layer (EBL), a common n-A1GaN hole blocking layer (HBL), and an n-A1GaN HBL with gradual A1 composition are investigated numerically, which involves analyses of the carrier concentration in the active region, energy band diagram, electrostatic field, and internal quantum efficiency (IQE). The results indicate that LEDs with an n-AIGaN HBL with gradual AI composition exhibit better hole injection efficiency, lower electron leakage, and a smaller electrostatic field in the active region than LEDs with a conven tional p-A1GaN EBL or a common n-A1GaN HBL. Meanwhile, the efficiency droop is alleviated when an n-A1GaN HBL with gradual A1 composition is used.展开更多
SiO2Al2O3 double dielectric stack layer was deposited on the surface of the GaN-based light-emitting diode (LED). The double dielectric stack layer enhances both the electrical characteristics and the optical output p...SiO2Al2O3 double dielectric stack layer was deposited on the surface of the GaN-based light-emitting diode (LED). The double dielectric stack layer enhances both the electrical characteristics and the optical output power of the LED because the first Al2O3 layer plays a role of effectively passivating the p-GaN surface and the second lower index SiO2 layer increases the critical angle of the light emitted from the LED surface. In addition, the effect of the Fresnel reflection is also responsible for the enhancement in output power of the double dielectric passivated LED. The leakage current of the LED passivated with Al2O3 layer was -3.46 × 10-11 A at -5 V, at least two and three orders lower in magnitude compared to that passivated with SiO2 layer (-7.14 × 10-9 A) and that of non-passivated LED (-1.9 × 10-8 A), respectively, which indicates that the Al2O3 layer is very effective in passivating the exposed GaN surface after dry etch and hence reduces nonradiative recombination as well as reabsorption of the emitted light near the etched surface.展开更多
Visible light communication(VLC)is an emerging technology employing light-emitting diodes(LEDs)to provide illumination and wireless data transmission simultaneously.Harnessing cost-efficient printable organic LEDs(OLE...Visible light communication(VLC)is an emerging technology employing light-emitting diodes(LEDs)to provide illumination and wireless data transmission simultaneously.Harnessing cost-efficient printable organic LEDs(OLEDs)as environmentally friendly transmitters in VLC systems is extremely attractive for future applications in spectroscopy,the internet of things,sensing,and optical ranging in general.Here,we summarize the latest research progress on emerging semiconductor materials for LED sources in VLC,and highlight that OLEDs based on nontoxic and cost-efficient organic semiconductors have great opportunities for optical communication.We further examine efforts to achieve high-performance white OLEDs for general lighting,and,in particular,focus on the research status and opportunities for OLED-based VLC.Different solution-processable fabrication and printing strategies to develop high-performance OLEDs are also discussed.Finally,an outlook on future challenges and potential prospects of the next-generation organic VLC is provided.展开更多
The novel AlGaN-based ultraviolet light-emitting diodes(UV-LEDs) with double superlattice structure(DSL) are proposed and demonstrated by numerical simulation and experimental verification. The DSL consists of 30-peri...The novel AlGaN-based ultraviolet light-emitting diodes(UV-LEDs) with double superlattice structure(DSL) are proposed and demonstrated by numerical simulation and experimental verification. The DSL consists of 30-period Mg modulation-doped p-AlGaN/u-GaN superlattice(SL) and 4-period p-AlGaN/p-GaN SL electron blocking layer, which are used to replace the p-type GaN layer and electron blocking layer of conventional UV-LEDs, respectively. Due to the special effects and interfacial stress, the AlGaN/GaN short-period superlattice can reduce the acceptor ionization energy of the ptype regions, thereby increasing the hole concentration. Meanwhile, the multi-barrier electron blocking layers are effective in suppressing electron leakage and improving hole injection. Experimental results show that the enhancements of 22.5%and 37.9% in the output power and external quantum efficiency at 120 m A appear in the device with double superlattice structure.展开更多
The transport mechanisms of the reverse leakage current in the UV light-emitting diodes (380nm) are investi- gated by the temperature-dependent current-voltage measurement first. Three possible transport mechanisms,...The transport mechanisms of the reverse leakage current in the UV light-emitting diodes (380nm) are investi- gated by the temperature-dependent current-voltage measurement first. Three possible transport mechanisms, the space-limited-charge conduction, the variable-range hopping and the Poole-Frenkel emission, are proposed to explain the transport process of the reverse leakage current above 295 K, respectively. With the in-depth investigation, the former two transport mechanisms are excluded. It is found that the experimental data agree well with the Poole Frenkel emission model. Furthermore, the activation energies of the traps that cause the reverse leakage current are extracted, which are 0.05eV, 0.09eV, and 0.11 eV, respectively. This indicates that at least three types of trap states are located below the bottom of the conduction band in the depletion region of the UV LEDs.展开更多
The effect of back-diffusion of Mg dopants on optoelectronic characteristics of InGaN-based green light-emitting diodes (LEDs) is investigated. The LEDs with less Mg back-diffusion show blue shifts of longer wavelen...The effect of back-diffusion of Mg dopants on optoelectronic characteristics of InGaN-based green light-emitting diodes (LEDs) is investigated. The LEDs with less Mg back-diffusion show blue shifts of longer wavelengths and larger wavelengths with the increasing current, which results from the Mg-dopant-related polarization screening. The LEDs show enhanced efficiency with the decreasing Mg back-diffusion in the lower current region. Light outputs follow the power law L α I^m, with smaller parameter m in the LEDs with less Mg back-diffusion, indicating a lower density of trap states. The trap-assisted tunneling current is also suppressed by reducing Mg- defect-related nonradiative centers in the active region. Furthermore, the forward current-voltage characteristics are improved.展开更多
A new method for patterned sapphire substrate (PSS) design is developed and proven to be reliable and cost-effective. As progress is made with LEDs' luminous efficiency, the pattern units of PSS become more complic...A new method for patterned sapphire substrate (PSS) design is developed and proven to be reliable and cost-effective. As progress is made with LEDs' luminous efficiency, the pattern units of PSS become more complicated, and the effect of complicated geometrical features is almost impossible to study systematically by experiments only. By employing our new method, the influence of pattern parameters can be systematically studied, and various novel patterns are designed and optimized within a reasonable time span, with great improvement in LEDs' light extraction efficiency (LEE). Clearly, PSS pattern design with such a method deserves particular attention. We foresee that GaN-based LEDs on these newly designed PSSs will achieve more progress in the coming years.展开更多
The characteristics of a blue light-emitting diode (LED) with a p-InA1GaN hole injection layer (HIL) is analyzed numerically. The simulation results indicate that the newly designed structure presents superior opt...The characteristics of a blue light-emitting diode (LED) with a p-InA1GaN hole injection layer (HIL) is analyzed numerically. The simulation results indicate that the newly designed structure presents superior optical and electrical performance such as an increase in light output power, a reduction in current leakage and alleviation of efficiency droop. These improvements can be attributed to the p-InA1GaN serving as hole injection layers, which can alleviate the band bending induced by the polarization field, thereby improving both the hole injection efficiency and the electron blocking efficiency.展开更多
Background:Pterygium is a sun-related ocular surface disease secondary to ultraviolet(UV)radiation exposure.Outdoor occupational UV exposure is known to occur secondary to sun exposure.We present a unique case of pter...Background:Pterygium is a sun-related ocular surface disease secondary to ultraviolet(UV)radiation exposure.Outdoor occupational UV exposure is known to occur secondary to sun exposure.We present a unique case of pterygium associated with indoor occupational light-emitting diode(LED)exposure not previously described in the literature.Case Description:A mobile phone repairer presented with blurred vision and a superotemporal pterygium of his dominant left eye associated with a magnifying glass LED work lamp was diagnosed.This was excised routinely with conjunctival autografting to the defect.Histopathology confirmed benign pterygium and recovery was uncomplicated with resolution of blur.Conclusions:The development of pterygium in our patient may have arisen due to the LED lamp’s wavelengths possibly falling within the UV as well as the upper end of the visible light radiation spectrum.Given the increasing reliance on LED light sources in modern life,ocular conditions arising from exposure to these radiation sources may now need to be listed in the differential diagnoses of patients with pterygium.Appropriate UV protection counselling for these types of lights may also now need to be considered.展开更多
This paper describes the fabrication of a waveguide and the analysis of its polarization characteristics by applying light-emitting diode(LED) pumping lights to its surface.By using double tubed coaxial line(DTCL) mic...This paper describes the fabrication of a waveguide and the analysis of its polarization characteristics by applying light-emitting diode(LED) pumping lights to its surface.By using double tubed coaxial line(DTCL) microwave plasma chemical vapor deposition(MPCVD) equipment,an a-Si:H/SiN multilayer waveguide was fabricated whose thickness could be controlled at nanometer order.The main structural material of the waveguide sample consisted of a combination of layers of amorphous silicon hydrogen and silicon nitrate.Once the sample was ready,another major objective of the experiment was to analyze the polarization characteristics of the fabricated waveguide.The idea of the experiment was to analyze how the waveguide reacts when three types of LED(blue,yellow,and red) are radiated onto its surface.The results showed that the fabrication of the a-Si:H/SiN sample is successful.Most effective transmission results,which accord with the polarization characteristics analysis,were obtained.展开更多
Metal halide perovskite light-emitting diodes(PeLEDs)and large-area perovskite color conversion layers for liquid crystal display exhibit great potential in the field of illumination and display.Blade-coating method s...Metal halide perovskite light-emitting diodes(PeLEDs)and large-area perovskite color conversion layers for liquid crystal display exhibit great potential in the field of illumination and display.Blade-coating method stands out as a highly suitable technique for fabricating large-scale films,albeit with challenges such as uneven nucleation coverage and non-uniformity crystallization process.In this work,we developed an in-situ characterization measurement system to monitor the perovskite nucleation,and crystallization process.By incorporating formamidine acetate(FAAc)into perovskite precursor solutions,the nucleation rate and nuclei density of perovskite were increased,leading to more uniform nucleation.In addition,we inserted a layer of[2-(9H-carbazol-9-yl)ethyl]phosphonic acid above the poly(9-vinylcarbazole)hole transport layer.This layer acts as an anchor for the perovskite nano-crystal nuclei formed in the precursor,enhancing the steric hindrance of the solute and subsequently slowing down the crystal growth rate,thereby improving crystal quality.Based on these improvements,large-area perovskite nano-polycrystalline films with significantly improved uniformity and enhanced photoluminescence quantum yield were obtained.A small-area PeLED(2 mm×2 mm)with a maximum external quantum efficiency of 25.91%was realized,marking the highest record of PeLED prepared by bladecoating method to date.An ultra-large-area PeLED(5 cm×7 cm)was also prepared,which is the largest PeLED prepared by the solution method reported so far.展开更多
A germafluorene-fluorene copolymer was successfully obtained via Suzuki polymerization.The ger-manium containing copolymer has an efficient blue light emission under the ultraviolet irradiation and its single layer EL...A germafluorene-fluorene copolymer was successfully obtained via Suzuki polymerization.The ger-manium containing copolymer has an efficient blue light emission under the ultraviolet irradiation and its single layer EL device showed the highest brightness of 2630 cd/m2 at 7.8 V and the highest effi-ciency of 0.301 lm/W at 6.2 V.The copolymer can also serve as the host material for phosphorescent metal complexes with the maximum brightness of 15600 cd/m2 and the quantum efficiency of 8.5%.The results are quite promising and promise that as its analogs of fluorene and silafluorene,germafluorene is an excellent building block for blue light-emitting polymers and host materials.展开更多
Unlike organic–inorganic hybrid perovskites, all-inorganic cesium lead halide perovskites hold great promise for developing high-performance optoelectronic devices, owing to their improved stability. Herein, we inves...Unlike organic–inorganic hybrid perovskites, all-inorganic cesium lead halide perovskites hold great promise for developing high-performance optoelectronic devices, owing to their improved stability. Herein, we investigate the perovskite-related CsPb_2 Br_5 nanoplatelets(NPLs) with tunable emission wavelengths via changing the reaction temperatures to 100°C, 120°C, and 140°C. Reaction temperature plays a key role in determining the shapes and thicknesses of the resulting CsPb_2 Br_5 NPLs. A higher temperature is in favor of the formation of smaller and thicker NPLs. To develop their potential applications in optoelectronic devices, green light emitting diodes(LEDs) and photodetectors based on CsPb_2 Br_5 NPLs are fabricated. The green LEDs based on CsPb_2 Br_5 NPLs synthesized at 140°C exhibit an excellent pure green emission(full width at half-maximum of <20 nm) and display a luminous efficiency of 34.49 lm∕W under an operation current of 10 m A. Moreover, the photodetector based on CsPb_2 Br_5 NPLs synthesized at 100°C has better performance with a rise time of 0.426 s, a decay time of0.422 s, and a ratio of the current(with and without irradiation) of 364%.展开更多
In this work, enhancement of the light extraction efficiency of a 590 nm AIGaInP light-emitting diodes (LED) with a reflective top electrode (RTE) was investigated. A distributed Bragg reflector (DBR), consistin...In this work, enhancement of the light extraction efficiency of a 590 nm AIGaInP light-emitting diodes (LED) with a reflective top electrode (RTE) was investigated. A distributed Bragg reflector (DBR), consisting of AIAs/AIGaAs pairs, grown on an AlGaInP structure was used as a reflector for a reflective top electrode. It was found that a higher output power was observed from the AIGalnP LED with a RTE than from a conventional one. In addition, it was noted that the improvement in the output power depends strongly on the reflectivity of the reflector and that it exhibits a more effective performance with low injection currents. The increase in the optical output power was attributed to the enhanced extraction efficiency caused by a reduction of light absorbed from the emission region to top electrode through the RTE.展开更多
All-inorganic perovskite(CsPbX3)nanocrystals(NCs)have recently been widely investigated as versatile solution-processable light-emitting materials.Due to its wide-bandgap nature,the all-inorganic perovskite NC Light-E...All-inorganic perovskite(CsPbX3)nanocrystals(NCs)have recently been widely investigated as versatile solution-processable light-emitting materials.Due to its wide-bandgap nature,the all-inorganic perovskite NC Light-Emitting Diode(LED)is limited to the visible region(400-700 nm).A particularly difficult challenge lies in the practical application of perovskite NCs in the infrared-spectrum region.In this work,a 980 nm NIR all-inorganic perovskite NC LED is demonstrated,which is based on an efficient energy transfer from wide-bandgap materials(CsPbCl3 NCs)to ytterbium ions(Yb3+)as an NIR emitter doped in perovskite NCs.The optimized CsPbCl3 NC with 15 mol%Yb3+doping concentration has the strongest 980 nm photoluminescence(PL)peak,with a PL quantum yield of 63%.An inverted perovskite NC LED is fabricated with the structure of ITO/PEDOT:PSS/poly-TPD/CsPbCl3:15 mol%Yb3+NCs/TPBi/LiF/Al.The LED has an External Quantum Efficiency(EQE)of 0.2%,a Full Width at Half Maximum(FWHM)of 47 nm,and a maximum luminescence of 182 cd/m?.The introduction of Yb3+doping in perovskite NCs makes it possible to expand its working wavelength to near-infrared band for next-generation light sources and shows potential applications for optoelectronic integration.展开更多
文摘With andromonoecious<i><span> Momordica charantia </span></i><span>L.</span><span> </span><span>(bitter gourd) as material, three light qualities</span><span> </span><span>(50 μmol·m</span><sup><span style="vertical-align:super;">-2</span></sup><span>·s</span><sup><span style="vertical-align:super;">-1</span></sup><span>) including white LED light</span><span> </span><span>(WL), blue monochromatic light (B,</span><span> </span><span>465 nm), and red monochromatic light (R, 650 nm) were carried out to investigate their effects on seed germination, physiological and biochemical parameters, sex differentiation and photosynthetic characteristics of bitter gourd. The results showed that compared to the WL treatment, the R treatment significantly promoted seed germination, seedling height elongation and soluble sugar content, the B treatment significantly increased seedling stem diameter, reducing sugar content and soluble protein content, the R and B treatments both significantly reduced sucrose content, but their POD activity showed no significant difference. Compared with the R treatment, the B treatment significantly increased the total female flower number and female flower nod ratio in 30 nods of main stems. The study of photosynthetic characteristics found that the R and B treatments could effectively increase the </span><span>stomata</span><span>l conductance (GS) of leaves, significantly improved the net photosynthetic rate</span><span> </span><span>(Pn) compared to the WL treatment, and the effect of the B treatment was better. Compared to the R and WL treatments, the B treatment increased the maximum photosynthetic rate (P</span><sub><span style="vertical-align:sub;">max</span></sub><span>),</span><span> </span><span>apparent quantum efficiency</span><span> </span><span>(AQE) and light saturation point</span><span> </span><span>(LSP), and reduced the dark respiration rate (Rd) and light compensation point</span><span> </span><span>(LCP) of the leaves. Fit light response curves showed that the adaptability and utilization of weak light in bitter gourd were middle or below, but it showed higher adaptability and utilization of strong light. Thus, it suggests that </span><i><span>Momordica charantia</span></i><span> is a typical sun plan with lower Rd. In summary, it is concluded that blue light has a positive effect on the seed germination, seedling growth, sex differentiation and improving the photosynthetic performance, and this will lay the foundation for artificially regulating optimum photosynthesis using specific LEDs wavelength, and help to elucidate the relationship how light quality influences the sex differentiation of plant.</span>
基金supported by the National Natural Science Foundation of China (Grant No 50672007)Program for the New Century Excellent Talents of China (Grant No NCET-06-0082)the National Basic Research Program of China (Grant No2007CB936202)
文摘We have synthesized Ca2Si5N8:Eu^2+ phosphor through a solid-state reaction and investigated its structural and luminescent properties. Our Rietveld refinement of the crystal structure of Ca1.9Eu0.1Si5N8 reveals that Eu atoms substituting for Ca atoms occupy two crystallographic positions. Between 10 K and 300 K, Ca2Si5N8:Eu^2+ phosphor shows a broad red emission band centred at -1.97 eV-2.01 eV. The gravity centre of the excitation band is located at 3.0 eV 3.31 eV. The centroid shift of the 5d levels of Eu^2+ is determined to be -1.17 eV, and the red-shift of the lowest absorption band to be - 0.54 eV due to the crystal field splitting. We have analysed the temperature dependence of PL by using a configuration coordinate model. The Huang-Rhys parameter S = 6.0, the phonon energy hv = 52 meV, and the Stokes shift △S = 0.57 eV are obtained. The emission intensity maximum occurring at -200 K can be explained by a trapping effect. Both photoluminescence (PL) emission intensity and decay time decrease with temperature increasing beyond 200 K due to the non-radiative process.
基金supported by the National Natural Science Foundation of China(Grant No.61176043)the Special Funds for Provincial Strategic and Emerging Industries Projects of Guangdong Province,China(Grant Nos.2010A081002005,2011A081301003,and 2012A080304016)the Youth Foundation of South China Normal University(Grant No.2012KJ018)
文摘Blue InGaN light-emitting diodes (LEDs) with a conventional electron blocking layer (EBL), a common n-A1GaN hole blocking layer (HBL), and an n-A1GaN HBL with gradual A1 composition are investigated numerically, which involves analyses of the carrier concentration in the active region, energy band diagram, electrostatic field, and internal quantum efficiency (IQE). The results indicate that LEDs with an n-AIGaN HBL with gradual AI composition exhibit better hole injection efficiency, lower electron leakage, and a smaller electrostatic field in the active region than LEDs with a conven tional p-A1GaN EBL or a common n-A1GaN HBL. Meanwhile, the efficiency droop is alleviated when an n-A1GaN HBL with gradual A1 composition is used.
文摘SiO2Al2O3 double dielectric stack layer was deposited on the surface of the GaN-based light-emitting diode (LED). The double dielectric stack layer enhances both the electrical characteristics and the optical output power of the LED because the first Al2O3 layer plays a role of effectively passivating the p-GaN surface and the second lower index SiO2 layer increases the critical angle of the light emitted from the LED surface. In addition, the effect of the Fresnel reflection is also responsible for the enhancement in output power of the double dielectric passivated LED. The leakage current of the LED passivated with Al2O3 layer was -3.46 × 10-11 A at -5 V, at least two and three orders lower in magnitude compared to that passivated with SiO2 layer (-7.14 × 10-9 A) and that of non-passivated LED (-1.9 × 10-8 A), respectively, which indicates that the Al2O3 layer is very effective in passivating the exposed GaN surface after dry etch and hence reduces nonradiative recombination as well as reabsorption of the emitted light near the etched surface.
基金funding from the Royal Society through a Newton International Fellowship,the Key Research and Development Program of Shaanxi Province(Grant No.2023-YBGY-198)the Doctoral Scientific Research Start-up Foundation of Shaanxi University of Science and Technology(Grant No.126022255)+3 种基金T.X.was supported by the National Natural Science Foundation of China(Grant No.51802184)X.W.was supported by the Shaanxi Province Innovation Capability Support Plan-Youth Science and Technology Nova Project(Grant No.2023KJXX-141)the National Natural Science Foundation of China(Grant No.62004120)F.Z.was supported by the Education Department of Shaanxi Province Serves the Local Special Plan Project(Grant No.17JF006).
文摘Visible light communication(VLC)is an emerging technology employing light-emitting diodes(LEDs)to provide illumination and wireless data transmission simultaneously.Harnessing cost-efficient printable organic LEDs(OLEDs)as environmentally friendly transmitters in VLC systems is extremely attractive for future applications in spectroscopy,the internet of things,sensing,and optical ranging in general.Here,we summarize the latest research progress on emerging semiconductor materials for LED sources in VLC,and highlight that OLEDs based on nontoxic and cost-efficient organic semiconductors have great opportunities for optical communication.We further examine efforts to achieve high-performance white OLEDs for general lighting,and,in particular,focus on the research status and opportunities for OLED-based VLC.Different solution-processable fabrication and printing strategies to develop high-performance OLEDs are also discussed.Finally,an outlook on future challenges and potential prospects of the next-generation organic VLC is provided.
基金supported by the National Key R&D Program of China(Grant Nos.2016YFB0400800,2016YFB0400801,and 2016YFB0400802)the National Natural Science Foundation of China(Grant No.61634005)the Fundamental Research Funds for the Central Universities,China(Grant No.JBZ171101)
文摘The novel AlGaN-based ultraviolet light-emitting diodes(UV-LEDs) with double superlattice structure(DSL) are proposed and demonstrated by numerical simulation and experimental verification. The DSL consists of 30-period Mg modulation-doped p-AlGaN/u-GaN superlattice(SL) and 4-period p-AlGaN/p-GaN SL electron blocking layer, which are used to replace the p-type GaN layer and electron blocking layer of conventional UV-LEDs, respectively. Due to the special effects and interfacial stress, the AlGaN/GaN short-period superlattice can reduce the acceptor ionization energy of the ptype regions, thereby increasing the hole concentration. Meanwhile, the multi-barrier electron blocking layers are effective in suppressing electron leakage and improving hole injection. Experimental results show that the enhancements of 22.5%and 37.9% in the output power and external quantum efficiency at 120 m A appear in the device with double superlattice structure.
基金Supported by the National Natural Science Foundation of China under Grant Nos 61334002,61474091,61404097,61574110and 61574112the 111 Project of China under Grant No B12026the Scientific Research Foundation for the Returned Overseas Chinese Scholars of State Education Ministry of China under Grant No JY0600132501
文摘The transport mechanisms of the reverse leakage current in the UV light-emitting diodes (380nm) are investi- gated by the temperature-dependent current-voltage measurement first. Three possible transport mechanisms, the space-limited-charge conduction, the variable-range hopping and the Poole-Frenkel emission, are proposed to explain the transport process of the reverse leakage current above 295 K, respectively. With the in-depth investigation, the former two transport mechanisms are excluded. It is found that the experimental data agree well with the Poole Frenkel emission model. Furthermore, the activation energies of the traps that cause the reverse leakage current are extracted, which are 0.05eV, 0.09eV, and 0.11 eV, respectively. This indicates that at least three types of trap states are located below the bottom of the conduction band in the depletion region of the UV LEDs.
基金Supported by the National Natural Science Foundation of China under Grant Nos 61505197 and 61334009the National High-Technology Research and Development Program of China under Grant No 2014AA032604
文摘The effect of back-diffusion of Mg dopants on optoelectronic characteristics of InGaN-based green light-emitting diodes (LEDs) is investigated. The LEDs with less Mg back-diffusion show blue shifts of longer wavelengths and larger wavelengths with the increasing current, which results from the Mg-dopant-related polarization screening. The LEDs show enhanced efficiency with the decreasing Mg back-diffusion in the lower current region. Light outputs follow the power law L α I^m, with smaller parameter m in the LEDs with less Mg back-diffusion, indicating a lower density of trap states. The trap-assisted tunneling current is also suppressed by reducing Mg- defect-related nonradiative centers in the active region. Furthermore, the forward current-voltage characteristics are improved.
基金Project supported by the National Natural Science Fundation for Excellent Young Scholars of China(Grant No.51422203)the National Natural Science Foundation of China(Grant No.51372001)+1 种基金the Outstanding Youth Foundation of Guangdong Scientific Committee(Grant No.S2013050013882)the Strategic Special Funds for LEDs of Guangdong Province,China(Grant Nos.2011A081301010,2011A081301012,2012A080302002,and 2012A080302004)
文摘A new method for patterned sapphire substrate (PSS) design is developed and proven to be reliable and cost-effective. As progress is made with LEDs' luminous efficiency, the pattern units of PSS become more complicated, and the effect of complicated geometrical features is almost impossible to study systematically by experiments only. By employing our new method, the influence of pattern parameters can be systematically studied, and various novel patterns are designed and optimized within a reasonable time span, with great improvement in LEDs' light extraction efficiency (LEE). Clearly, PSS pattern design with such a method deserves particular attention. We foresee that GaN-based LEDs on these newly designed PSSs will achieve more progress in the coming years.
基金Project supported by the National Natural Science Foundation of China (Grant No.61176043)the Special Funds for Strategic and Emerging Industries Projects of Guangdong Province,China (Grant Nos.2010A081002005,2011A081301003,and 2012A080304016)
文摘The characteristics of a blue light-emitting diode (LED) with a p-InA1GaN hole injection layer (HIL) is analyzed numerically. The simulation results indicate that the newly designed structure presents superior optical and electrical performance such as an increase in light output power, a reduction in current leakage and alleviation of efficiency droop. These improvements can be attributed to the p-InA1GaN serving as hole injection layers, which can alleviate the band bending induced by the polarization field, thereby improving both the hole injection efficiency and the electron blocking efficiency.
文摘Background:Pterygium is a sun-related ocular surface disease secondary to ultraviolet(UV)radiation exposure.Outdoor occupational UV exposure is known to occur secondary to sun exposure.We present a unique case of pterygium associated with indoor occupational light-emitting diode(LED)exposure not previously described in the literature.Case Description:A mobile phone repairer presented with blurred vision and a superotemporal pterygium of his dominant left eye associated with a magnifying glass LED work lamp was diagnosed.This was excised routinely with conjunctival autografting to the defect.Histopathology confirmed benign pterygium and recovery was uncomplicated with resolution of blur.Conclusions:The development of pterygium in our patient may have arisen due to the LED lamp’s wavelengths possibly falling within the UV as well as the upper end of the visible light radiation spectrum.Given the increasing reliance on LED light sources in modern life,ocular conditions arising from exposure to these radiation sources may now need to be listed in the differential diagnoses of patients with pterygium.Appropriate UV protection counselling for these types of lights may also now need to be considered.
基金supported by the Waseda University Undergraduate Fund,Japan, and Malaysia Majlis Amanah Rakyat (MARA) through the MARA Scholarship Foundation
文摘This paper describes the fabrication of a waveguide and the analysis of its polarization characteristics by applying light-emitting diode(LED) pumping lights to its surface.By using double tubed coaxial line(DTCL) microwave plasma chemical vapor deposition(MPCVD) equipment,an a-Si:H/SiN multilayer waveguide was fabricated whose thickness could be controlled at nanometer order.The main structural material of the waveguide sample consisted of a combination of layers of amorphous silicon hydrogen and silicon nitrate.Once the sample was ready,another major objective of the experiment was to analyze the polarization characteristics of the fabricated waveguide.The idea of the experiment was to analyze how the waveguide reacts when three types of LED(blue,yellow,and red) are radiated onto its surface.The results showed that the fabrication of the a-Si:H/SiN sample is successful.Most effective transmission results,which accord with the polarization characteristics analysis,were obtained.
基金the support of the National Natural Science Foundation of China(12134010,62074117,and 12174290)the support of the Key R&D Program from Hubei Province(2023BAB102)+3 种基金the support of Guangdong Basic and Applied Basic Research Foundation(2023A1515110636)the Wuhan University mainland-Hongkong Joint Scientific Research Platform Seed Fund Program(202232)Hong Kong Research Grants Council(General Research Fund 15310024)Hong Kong Innovation and Technology Commission(MHKJFS MHP/020/23)。
文摘Metal halide perovskite light-emitting diodes(PeLEDs)and large-area perovskite color conversion layers for liquid crystal display exhibit great potential in the field of illumination and display.Blade-coating method stands out as a highly suitable technique for fabricating large-scale films,albeit with challenges such as uneven nucleation coverage and non-uniformity crystallization process.In this work,we developed an in-situ characterization measurement system to monitor the perovskite nucleation,and crystallization process.By incorporating formamidine acetate(FAAc)into perovskite precursor solutions,the nucleation rate and nuclei density of perovskite were increased,leading to more uniform nucleation.In addition,we inserted a layer of[2-(9H-carbazol-9-yl)ethyl]phosphonic acid above the poly(9-vinylcarbazole)hole transport layer.This layer acts as an anchor for the perovskite nano-crystal nuclei formed in the precursor,enhancing the steric hindrance of the solute and subsequently slowing down the crystal growth rate,thereby improving crystal quality.Based on these improvements,large-area perovskite nano-polycrystalline films with significantly improved uniformity and enhanced photoluminescence quantum yield were obtained.A small-area PeLED(2 mm×2 mm)with a maximum external quantum efficiency of 25.91%was realized,marking the highest record of PeLED prepared by bladecoating method to date.An ultra-large-area PeLED(5 cm×7 cm)was also prepared,which is the largest PeLED prepared by the solution method reported so far.
基金Supported by the National Natural Science Foundation of China (Grant Nos.60325412, 90406021,and 50428303)the Scientific Research Foundation of Nanjing University of Posts and Telecommunications (NUPT) (Grant No. NY206073)
文摘A germafluorene-fluorene copolymer was successfully obtained via Suzuki polymerization.The ger-manium containing copolymer has an efficient blue light emission under the ultraviolet irradiation and its single layer EL device showed the highest brightness of 2630 cd/m2 at 7.8 V and the highest effi-ciency of 0.301 lm/W at 6.2 V.The copolymer can also serve as the host material for phosphorescent metal complexes with the maximum brightness of 15600 cd/m2 and the quantum efficiency of 8.5%.The results are quite promising and promise that as its analogs of fluorene and silafluorene,germafluorene is an excellent building block for blue light-emitting polymers and host materials.
基金National Natural Science Foundation of China(NSFC)(61404017)Natural Science Foundation of Chongqing(cstc2017jcyj B0273)Chongqing Postdoctoral Science Research Special Funded Project(Xm2016017)
文摘Unlike organic–inorganic hybrid perovskites, all-inorganic cesium lead halide perovskites hold great promise for developing high-performance optoelectronic devices, owing to their improved stability. Herein, we investigate the perovskite-related CsPb_2 Br_5 nanoplatelets(NPLs) with tunable emission wavelengths via changing the reaction temperatures to 100°C, 120°C, and 140°C. Reaction temperature plays a key role in determining the shapes and thicknesses of the resulting CsPb_2 Br_5 NPLs. A higher temperature is in favor of the formation of smaller and thicker NPLs. To develop their potential applications in optoelectronic devices, green light emitting diodes(LEDs) and photodetectors based on CsPb_2 Br_5 NPLs are fabricated. The green LEDs based on CsPb_2 Br_5 NPLs synthesized at 140°C exhibit an excellent pure green emission(full width at half-maximum of <20 nm) and display a luminous efficiency of 34.49 lm∕W under an operation current of 10 m A. Moreover, the photodetector based on CsPb_2 Br_5 NPLs synthesized at 100°C has better performance with a rise time of 0.426 s, a decay time of0.422 s, and a ratio of the current(with and without irradiation) of 364%.
文摘In this work, enhancement of the light extraction efficiency of a 590 nm AIGaInP light-emitting diodes (LED) with a reflective top electrode (RTE) was investigated. A distributed Bragg reflector (DBR), consisting of AIAs/AIGaAs pairs, grown on an AlGaInP structure was used as a reflector for a reflective top electrode. It was found that a higher output power was observed from the AIGalnP LED with a RTE than from a conventional one. In addition, it was noted that the improvement in the output power depends strongly on the reflectivity of the reflector and that it exhibits a more effective performance with low injection currents. The increase in the optical output power was attributed to the enhanced extraction efficiency caused by a reduction of light absorbed from the emission region to top electrode through the RTE.
基金This work was supported by the National Key Research and Development Program of China(No.2018YFB2200103)the National Natural Science Foundation of China(Nos.61875186 and 62250010).
文摘All-inorganic perovskite(CsPbX3)nanocrystals(NCs)have recently been widely investigated as versatile solution-processable light-emitting materials.Due to its wide-bandgap nature,the all-inorganic perovskite NC Light-Emitting Diode(LED)is limited to the visible region(400-700 nm).A particularly difficult challenge lies in the practical application of perovskite NCs in the infrared-spectrum region.In this work,a 980 nm NIR all-inorganic perovskite NC LED is demonstrated,which is based on an efficient energy transfer from wide-bandgap materials(CsPbCl3 NCs)to ytterbium ions(Yb3+)as an NIR emitter doped in perovskite NCs.The optimized CsPbCl3 NC with 15 mol%Yb3+doping concentration has the strongest 980 nm photoluminescence(PL)peak,with a PL quantum yield of 63%.An inverted perovskite NC LED is fabricated with the structure of ITO/PEDOT:PSS/poly-TPD/CsPbCl3:15 mol%Yb3+NCs/TPBi/LiF/Al.The LED has an External Quantum Efficiency(EQE)of 0.2%,a Full Width at Half Maximum(FWHM)of 47 nm,and a maximum luminescence of 182 cd/m?.The introduction of Yb3+doping in perovskite NCs makes it possible to expand its working wavelength to near-infrared band for next-generation light sources and shows potential applications for optoelectronic integration.