This study identified castor oil and phosphate ester as effective retarders through setting time,tensile,and flexural tests,and determined their optimal dosages.The mechanism by which phosphate ester affects the setti...This study identified castor oil and phosphate ester as effective retarders through setting time,tensile,and flexural tests,and determined their optimal dosages.The mechanism by which phosphate ester affects the setting time of polyurethane was further investigated using molecular dynamics simulations.Fourier transform infrared spectroscopy was also employed to systematically study the physical and chemical interactions between phosphate esters and polyurethane materials.The results demonstrate that a 1%concentration of phosphate ester provides the most effective retarding effect with minimal impact on the strength of polyurethane.When phosphate ester is added to the B component of the two-component polyurethane system,its interaction energy with component A decreases,as do the diffusion coefficient and aggregation degree of component B on the surface of component A.This reduction in interaction slows the setting time.Additionally,the addition of phosphate ester to polyurethane leads to the disappearance or weakening of functional groups,indicating competitive interactions within the phosphate ester components that inhibit the reaction rate.展开更多
Shotcrete is one of the common solutions for shallow sliding.It works by forming a protective layer with high strength and cementing the loose soil particles on the slope surface to prevent shallow sliding.However,the...Shotcrete is one of the common solutions for shallow sliding.It works by forming a protective layer with high strength and cementing the loose soil particles on the slope surface to prevent shallow sliding.However,the solidification time of conventional cement paste is long when shotcrete is used to treat cohesionless soil landslide.The idea of reinforcing slope with polyurethane solidified soil(i.e.,mixture of polyurethane and sand)was proposed.Model tests and finite element analysis were carried out to study the effectiveness of the proposed new method on the emergency treatment of cohesionless soil landslide.Surcharge loading on the crest of the slope was applied step by step until landslide was triggered so as to test and compare the stability and bearing capacity of slope models with different conditions.The simulated slope displacements were relatively close to the measured results,and the simulated slope deformation characteristics were in good agreement with the observed phenomena,which verifies the accuracy of the numerical method.Under the condition of surcharge loading on the crest of the slope,the unreinforced slope slid when the surcharge loading exceeded 30 k Pa,which presented a failure mode of local instability and collapse at the shallow layer of slope top.The reinforced slope remained stable even when the surcharge loading reached 48 k Pa.The displacement of the reinforced slope was reduced by more than 95%.Overall,this study verifies the effectiveness of polyurethane in the emergency treatment of cohesionless soil landslide and should have broad application prospects in the field of geological disasters concerning the safety of people's live.展开更多
Doping perylene diimide(PDI)into a polymer matrix is a simple strategy to prepare near-infrared(NIR)reflective materials,but the mechanical properties and NIR reflectance properties are significantly compromised due t...Doping perylene diimide(PDI)into a polymer matrix is a simple strategy to prepare near-infrared(NIR)reflective materials,but the mechanical properties and NIR reflectance properties are significantly compromised due to macro-phase separation.In this study,a novel polymer(denoted as PU-PDI)with intrinsic NIR reflective proper⁃ties was synthesized by covalent incorporation of PDI units into polyurethane chains.Its photophysical characteris⁃tics,mechanical property and NIR reflectance property are investigated in detail.The results show that covalent in⁃corporation reduces the severe aggregation of PDI units,thereby endows PU-PDI with excellent mechanical property.The elongation at break of PU-PDI can reach more than 700%,and the breaking strength is 34.11 MPa.Moreover,compared to the blending system,PU-PDI possesses enhanced NIR reflection ability due to the better dispersion of PDI units.展开更多
Dear Editor,Environmental pollution from microplastics(MPs)has recently gained attention as a potential environmental hazard(Chia et al.,2021).Agricultural soils could contain more MPs than the ocean by 2050 because m...Dear Editor,Environmental pollution from microplastics(MPs)has recently gained attention as a potential environmental hazard(Chia et al.,2021).Agricultural soils could contain more MPs than the ocean by 2050 because more MPs enter the soil than the ocean(Nizzetto et al.,2016).The carbon(C)-C backbone of degradation-resistant MPs provides considerable stability in the soil,where they can remain for several decades(Iqbal et al.,2023).展开更多
Boron adsorbents with high adsorption capacities have long been a focus of research for a long time.This study used small molecular polyols with different hydroxyl groups as functional monomers and as end-capping agen...Boron adsorbents with high adsorption capacities have long been a focus of research for a long time.This study used small molecular polyols with different hydroxyl groups as functional monomers and as end-capping agents,functional dendritic polyurethanes with nano structure were successfully prepared by one-pot method.The single molecule size and surface morphology were characterized by dynamic light scattering,transmission electron microscopy and scanning electron microscopy,and the molecular size in the dry state was 11 to 18 nm.The prepared materials were used as the boron adsorbents,and the effects of pH,time,boron solution concentration and temperature on the adsorption were studied.The results showed that the capacity of adsorbed boron could reach 110-130 mg·g^(-1).Adsorption was a homogeneous monolayer adsorption controlled by chemisorption,and adsorption thermodynamics showed that was a spontaneous endothermic process.Adsorption behavior was best described by the pseudo-second-order kinetic model and the Langmuir isotherm.This study also showed that it was difficult for ortho/meta-hydroxyl groups to chelate with H_(3)BO_(3) and other polyborates,and the chelates mainly had good chelating properties with B(OH)_(4)^(-),and the chelates formed had large steric hindrance.At the same time,increasing the number of hydroxyl groups of functional monomers was beneficial to increase the adsorption capacity of materials.In addition,the cyclic adsorption/desorption experiments showed that DPUs have good cyclic stability.At the same time,the adsorption results of the original salt lake brine showed that other metal ions in the brine had little effect on the adsorption of boron,and the adsorption capacity was as high as52.93 mg·g^(-1),and the maximum adsorption capacity was obtained by Adams-Bohart model to58.80 mg·g^(-1).The outstanding selectivity and adsorption capacity of these materials have broad potential application,and are expected to be used for the efficient adsorption and removal in boroncontaining water bodies.展开更多
Bio-polyol is considered as a core material to synthesize eco-friendly polyurethane products.However,one of the popular bio-polyols,polytrimethylene ether glycol(PO3G),is reluctant to crystallize and therefore exhibit...Bio-polyol is considered as a core material to synthesize eco-friendly polyurethane products.However,one of the popular bio-polyols,polytrimethylene ether glycol(PO3G),is reluctant to crystallize and therefore exhibits a cold crystallization behavior.This abnormal behavior causes unstable mechanical properties at low-temperature and limits its applications in shape memory devices where crystallization is an essential mechanism.To analyze the unusual phenomenon,we compared different ether polyols focusing on symmetry characteristics and the evenodd effect of carbon backbones.It is found that PO3G has a slow crystallization rate because its ether linkages require specific chain arrangement for attractive interactions.Consequently,a thermal learning mechanism is developed to restore the normal crystallization behavior of elastomers synthesized from the bio-polyol.Repetitive heating and cooling cycles with high-temperature annealing induce urethane exchange reaction and reconstruct the chain orientations for fast crystallization.Results suggest the degree of crystallizations in polyurethane elastomer can be precisely controlled by introducing repetitive thermal treatments to enhance the potential applications of bio-polyols in polymer industries.展开更多
The ongoing operation of subway systems makes existing tunnels vulnerable to deformations and structural damage caused by adjacent foundation pit construction.Such deformations-manifesting as horizontal displacement,h...The ongoing operation of subway systems makes existing tunnels vulnerable to deformations and structural damage caused by adjacent foundation pit construction.Such deformations-manifesting as horizontal displacement,heightened lateral convergence,and internal force redistribution-may significantly compromise subway operational safety.Grouting remediation has become a widely adopted solution for tunnel deformation control and structural reinforcement.Developing optimized grouting materials is crucial for improving remediation effectiveness,ensuring structural integrity,and maintaining uninterrupted subway operations.This investigation explores the substitution of fine mortar aggregates with 0.1 mm discarded rubber particles at varying concentrations(0%,3%,6%,9%,12%,and 15%).Experimental parameters included three water-cement ratios(0.65,0.70,and 0.75)with constant 4%WPU content.Mechanical properties including compressive strength,flexural strength,and compression-to-bending ratio were evaluated across specified curing periods.Material characterization employed Fourier Transform Infrared Spectroscopy(FTIR)spectroscopy for molecular analysis and Scanning Electron Microscopy(SEM)for microstructural examination.Results indicate optimal toughness at 0.70 water-cement ratio with 6%rubber content,meeting mechanical pumping specifications while maintaining structural performance.展开更多
Due to the limited regeneration capacity of myocardial tissue after infarction,designing tissue engineering scaffolds are in demand.In the present study,electrospun nanofibrous scaffolds were made out of polyurethane,...Due to the limited regeneration capacity of myocardial tissue after infarction,designing tissue engineering scaffolds are in demand.In the present study,electrospun nanofibrous scaffolds were made out of polyurethane,collagen and gold nanoparticles with random and aligned nanofiber morphologies.The nanoparticles were green-synthesized using saffron extract.Nanoparticle characterizations with UV-Vis.spectroscopy and DLS illustrated theoretical and hydrodynamic diameters of around 7 and 13 nm,respectively,having zeta potential of−37 mV.SEM and TEM micrographs showed the morphology and diameters of obtained nanofibers.Also,further characterization were done by ATR-FTIR,XRD and TGA investigations and degradation studies.Contact angle measurements showed hydrophilic nature of the scaffolds(59±0.6°for aligned PU/Col/Au50 nanofibers compared to 120±2.6°for random PU nanofibers).Mechanical testing demonstrated appropriate tensile properties of the scaffolds for cardiac tissue engineering(Young’s modulus:1.53±0.07 MPa for aligned PU/Col/Au50 nanofibers compared to 0.4±0.05 MPa for random PU nanofibers).Finally,alamar blue assay revealed proper survival of the cells of HUVEC cell line on the prepared scaffolds,where the highest percentages were observed for random and aligned PU/Col/Au50 nanofibers.According to the findings,the fabricated PU/Col/AuNPs nanofibrous scaffolds could be considered as potential cardiac patches.展开更多
Incorporation of acetal groups in the backbone is a potent strategy to create polymers that are cleavable or degradable under acidic conditions.We report here an in-depth study on the ring-closing-opening copolymeriza...Incorporation of acetal groups in the backbone is a potent strategy to create polymers that are cleavable or degradable under acidic conditions.We report here an in-depth study on the ring-closing-opening copolymerization of o-phthalaldehyde(OPA)and epoxide using Lewis pair type two-component organocatalysts for producing acetal-functionalized polyether and polyurethane.Notably,triethylborane as the Lewis acid,in comparison with tri(n-butyl)borane,more effectively enhances the polymerization activity by mitigating borane-induced reduction of the aldehyde group into extra initiating(borinic ester)species.Density functional theory(DFT)calculations present comparable energy barriers of OPA-epoxide cross-propagation and epoxide self-propagation,which is consistent with the experimental finding that an alternating-rich copolymer comprising mostly OPA-epoxide units but also epoxide-epoxide linkages is produced.In particular,when epoxide is added in a large excess,the product becomes a polyether containing acetal functionalities in the central part of the backbone and thus being convertible into polyurethane with refined acid degradability.展开更多
An environmentally friendly waterborne polyurethane(CWPU)emulsion was developed via a dual modification strategy by combining both the silane coupling agent KH-602 with renewable castor oil(CO)as a sustainable substit...An environmentally friendly waterborne polyurethane(CWPU)emulsion was developed via a dual modification strategy by combining both the silane coupling agent KH-602 with renewable castor oil(CO)as a sustainable substitute for petroleum-based polyols.The resulting materials were thoroughly characterized using Fourier-transform infrared spectroscopy(FTIR),thermogravimetric analysis(TGA),and differential scanning calorimetry(DSC).Furthermore,the influence of KH-602 content on the material properties was systematically investigated.The experimental results reveal that the incorporation of KH-602 significantly improves the thermal stability of the composite coating.As the KH-602 content increases,the tensile strength exhibits a gradual enhancement,while the elongation at break displays an initial increase followed by a subsequent decline.At an optimal KH-602 content of 3%,the coating demonstrates a balanced performance,achieving a tensile strength of 14.19 MPa and an elongation at break of 731.12%.These results suggest that the dual modification approach enhances mechanical and thermal properties while maintaining water resistance,making it suitable for sustainable coating applications.展开更多
Purpose–This study aims to carry out optimization and improvement work on the artificial climate aging and ultraviolet aging tests of elastic expansion joints in railway concrete bridges.Design/methodology/approach–...Purpose–This study aims to carry out optimization and improvement work on the artificial climate aging and ultraviolet aging tests of elastic expansion joints in railway concrete bridges.Design/methodology/approach–Three polyurethane elastomer specimens with different chemical compositions were adopted.According to relevant standard regulations,the aging test process was analyzed and evaluated in detail,and reasonable improvement suggestions were put forward.The effectiveness was verified through actual tests.Findings–The final test results indicate that the combination of artificial climate aging tests and ultraviolet aging tests is technically feasible and has significant advantages in practical applications.Originality/value–This study optimizes the conditions of artificial climate aging and ultraviolet aging tests,compares the advantages and disadvantages of different aging test methods,and proposes a combined test scheme of artificial climate aging and ultraviolet aging and verifies its effectiveness.The results provide valuable reference for simulating the actual aging behavior of polyurethane elastomers,material performance evaluation,and application in railway bridge engineering.It is conducive to promoting the reasonable application of this material in engineering,improving engineering quality,reducing costs,and has economic and social benefits.展开更多
The synthesis of polyurethanes(PUs)from the reaction of low molecular weight poly(ethylene carbonate)diol(PECD)is rarely investigated.This work reports a novel PU with excellent mechanical properties from the solution...The synthesis of polyurethanes(PUs)from the reaction of low molecular weight poly(ethylene carbonate)diol(PECD)is rarely investigated.This work reports a novel PU with excellent mechanical properties from the solution polymerization of 4,4-diphenylmethane diisocyanate(MDI)with PECD that was derived from the copolymerization of carbon dioxide(CO_(2))and ethylene oxide(EO).The tensile strength,the elongation at break and 300%constant tensile strength of the PECD-PU were up to 66±2 MPa,880%±50%and 13 MPa,respectively,higher than the control PUs from the reaction of MDI with commercial polyethers or polyesters.The PECD-PU with high CO_(2) carbonate content exhibited good solvent resistance and chemical stability.Of importance,the mechanical properties and chemical resistance of PECD-PU were significantly enhanced with the increasing content of CO_(2),i.e.,the carbonate unit in PECD.This work provides comprehensive properties of PECD-derived PUs,indicating that PECD is a competitive precursor for the preparation of PU and has broad application prospects.展开更多
PU,or polyurethane,features a repeating urethane group(-NH-COO-)in its molecular structure.Traditionally,PUs are synthesized from isocyanate and polyol compounds derived from fossil resources through polymerization re...PU,or polyurethane,features a repeating urethane group(-NH-COO-)in its molecular structure.Traditionally,PUs are synthesized from isocyanate and polyol compounds derived from fossil resources through polymerization reactions.The depletion of fossil fuels and the increasing climate problems call for the expansion of more renewable sources of chemicals,such as modern biomass.However,the conversion of biomass into chemicals is challenging due to the inherent molecular complexity of its composition.In recent years,advances in green chemistry have led researchers to focus on developing bio-based polyurethanes by sourcing polyols,isocyanates,and chain extender precursors from biological materials.This paper focuses on the preparation of polyols,non-isocyanates and bio-based chain extenders from bio-based materials such as vegetable oils,lignin,sugars,and rosin.The synthetic routes and properties of several bio-based polyurethane materials are analyzed.Additionally,it discusses the current status,future challenges,and potential applications of bio-based polyurethane materials across various fields.展开更多
The fatigue resistance of casting polyurethane(CPU)is crucial in various sectors,such as construction,healthcare,and the automotive industry.Despite its importance,no studies have reported on the fatigue threshold of ...The fatigue resistance of casting polyurethane(CPU)is crucial in various sectors,such as construction,healthcare,and the automotive industry.Despite its importance,no studies have reported on the fatigue threshold of CPU.This study employed an advanced Intrinsic Strength Analyzer(ISA)to evaluate the fatigue threshold of CPUs,systematically exploring the effects of three types of isocyanates(PPDI,NDI,TDI)that contribute to hard segment structures based on the cutting method.Employing multiple advanced characterization techniques(XRD,TEM,DSC,AFM),the results indicate that PPDI-based polyurethane exhibits the highest fatigue threshold(182.89 J/m^(2))due to a highest phase separation and a densely packed spherulitic structure,although the hydrogen bonding degree is the lowest(48.3%).Conversely,NDI-based polyurethane,despite having the high hydrogen bonding degree(53.6%),exhibits moderate fatigue performance(122.52 J/m^(2)),likely due to a more scattered microstructure.TDI-based polyurethane,with the highest hydrogen bonding degree(59.1%)but absence of spherulitic structure,shows the lowest fatigue threshold(46.43 J/m^(2)).Compared to common rubbers(NR,NBR,EPDM,BR),the superior fatigue performance of CPU is attributed to its well-organized microstructure,polyurethane possesses a higher fatigue threshold due to its high phase separation degree and orderly and dense spherulitic structure which enhances energy dissipation and reduces crack propagation.展开更多
Polyurethane foam,when used as a compressible layer in deep soft rock tunnels,offers a feasible solution to reduce the support pressure on the secondary lining.The foam spraying method using sprayed polyurethane mater...Polyurethane foam,when used as a compressible layer in deep soft rock tunnels,offers a feasible solution to reduce the support pressure on the secondary lining.The foam spraying method using sprayed polyurethane material is convenient for engineering applications;however,the compressive behaviour and feasibility of sprayed polyurethane material as a compressible layer remain unclear.To address this gap,this study conducts uniaxial compression tests and scanning electron microscope(SEM)tests to investigate the compressive behaviour of the rigid foams fabricated from a self-developed polyurethane spray material.A peridynamics model for the composite lining with a polyurethane compressible layer is then established.After validating the proposed method by comparison with two tests,a parametric study is carried out to investigate the damage evolution of the composite lining with a polyurethane compressible layer under various combinations of large deformations and compressible layer parameters.The results indicate that the polyurethane compressible layer effectively reduces the radial deformation and damage index of the secondary lining while increasing the damage susceptibility of the primary lining.The thickness of the polyurethane compressible layer significantly influences the prevention effect of large deformation-induced damage to the secondary lining within the density range of 50e100 kg/m^(3).In accordance with the experimental and simulation results,a simple,yet reasonable and convenient approach for determining the key parameters of the polyurethane compressible layer is proposed,along with a classification scheme for the parameters of the polyurethane compressible layer.展开更多
The continuous improvement in patient care and recovery is driving the development of innovative materials for medical applications.Medical sutures,essential for securing implants and closing deep wounds,have evolved ...The continuous improvement in patient care and recovery is driving the development of innovative materials for medical applications.Medical sutures,essential for securing implants and closing deep wounds,have evolved to incorporate smart materials capable of responding to various stimuli.This study explores the potential of thermoresponsive sutures,made from shape memory materials,that contract upon heating to bring loose stitches closer together,promoting optimal wound closure.We developed nanocomposites based on a blend of poly(lactic acid)(PLA)and thermoplastic polyurethane(TPU)—biopolymers that inherently exhibit shape memory—enhanced with carbon nanotubes(CNT)and graphene nanoplatelets(GN)to improve mechanical performance.PLA/TPU(50/50)nanocomposites were prepared with 1 and 2 wt%GN,as well as hybrid formulations combining 1 wt%CNT with 1 or 2 wt%GN,using a twin-screw extrusion process to form filaments.These filaments were characterized through differential scanning calorimetry(DSC),field emission gun scanning electron microscopy(FEG-SEM),tensile testing,and shape memory assessments.While the PLA/TPU blend is immiscible,TPU enhances the crystallinity(X_(c))of the PLA phase,further increased by the addition of CNT and GN.FEG-SEM images indicate CNTs primarily in the PLA phase and GN in the TPU phase.PLA/TPU with 1 or 2 wt%GN showed the highest potential for suture applications,with a high elastic modulus(~1000 MPa),significant strain at break(~10%),and effective shape recovery(~20%at 55℃ for 30 min).These findings suggest that these nanocomposites can enhance suture performance with controlled shape recovery that is suitable for medical use.展开更多
Porous materials are widely used in the field of protection because of their excellent energy absorption characteristics.In this work,a series of polyurethane microscopic models are established and the effect of poros...Porous materials are widely used in the field of protection because of their excellent energy absorption characteristics.In this work,a series of polyurethane microscopic models are established and the effect of porosity on the shock waves is studied with classical molecular dynamics simulations.Firstly,shock Hugoniot relations for different porosities are obtained,which compare well with the experimental data.The pores collapse and form local stress wave,which results in the complex multi-wave structure of the shock wave.The microstructure analysis shows that the local stress increases and the local velocity decreases gradually during the process of pore collapse to complete compaction.Finally,it leads to stress relaxation and velocity homogenization.The shock stress peaks can be fitted with two exponential functions,and the amplitude of attenuation coefficient decreases with the increase of density.Besides,the pore collapse under shock or non-shock are discussed by the entropy increase rate of the system.The energy is dissipated mainly through the multiple interactions of the waves under shock.The energy is dissipated mainly by the friction between atoms under non-shock.展开更多
Bedding slope is a typical heterogeneous slope consisting of different soil/rock layers and is likely to slide along the weakest interface.Conventional slope protection methods for bedding slopes,such as retaining wal...Bedding slope is a typical heterogeneous slope consisting of different soil/rock layers and is likely to slide along the weakest interface.Conventional slope protection methods for bedding slopes,such as retaining walls,stabilizing piles,and anchors,are time-consuming and labor-and energy-intensive.This study proposes an innovative polymer grout method to improve the bearing capacity and reduce the displacement of bedding slopes.A series of large-scale model tests were carried out to verify the effectiveness of polymer grout in protecting bedding slopes.Specifically,load-displacement relationships and failure patterns were analyzed for different testing slopes with various dosages of polymer.Results show the great potential of polymer grout in improving bearing capacity,reducing settlement,and protecting slopes from being crushed under shearing.The polymer-treated slopes remained structurally intact,while the untreated slope exhibited considerable damage when subjected to loads surpassing the bearing capacity.It is also found that polymer-cemented soils concentrate around the injection pipe,forming a fan-shaped sheet-like structure.This study proves the improvement of polymer grouting for bedding slope treatment and will contribute to the development of a fast method to protect bedding slopes from landslides.展开更多
In recent years,explosion shock wave has been considered as a signature injury of the current military conflicts.Although strong shock wave is lethal to the human body,weak shock wave can cause many more lasting conse...In recent years,explosion shock wave has been considered as a signature injury of the current military conflicts.Although strong shock wave is lethal to the human body,weak shock wave can cause many more lasting consequences.To investigate the protection ability and characteristics of flexible materials and structures under weak shock wave loading,the blast wave produced by TNT explosive is loaded on the polyurethane foam with the density of 200.0 kg/m3(F-200)and 400.0 kg/m3(F-400),polyurea with the density of 1100.0 kg/m^(3)(P-1100)and structures composed of the two materials,which are intended for individual protection.Experimental results indicate that the shock wave is attenuated to weak pressure disturbance after interacting with the flexible materials which are not damaged.The shock wave protective capability of single-layer materials is dependent on their thickness,density and microscopic characteristics.The overpressure,maximum pressure rise rate and impulse of transmitted wave decrease exponentially with increase in sample thickness.For the same thickness,F-400 provides better protective capability than F-200 while P-1100 shows the best protective capability among the three materials.In this study,as the materials are not destroyed,F-200 with a thickness more than10.0 mm,F-400 with a thickness more than 4.0 mm,and P-1100 with a thickness more than 1.0 mm can attenuate the overpressure amplitude more than 90.0%.Further,multi-layer flexible composites are designed.Different layer layouts of designed structures and layer thickness of the single-layer materials can affect the protective performance.Within the research range,the structure in which polyurea is placed on the impact side shows the optimal shock wave protective performance,and the thicknesses of polyurea and polyurethane foam are 1.0 mm and 4.0 mm respectively.The overpressure attenuation rate reached maximum value of 93.3%and impulse attenuation capacity of this structure are better than those of single-layer polyurea and polyurethane foam with higher areal density.展开更多
3D printing techniques offer an effective method in fabricating complex radially multi-material structures.However,it is challenging for complex and delicate radially multi-material model geometries without supporting...3D printing techniques offer an effective method in fabricating complex radially multi-material structures.However,it is challenging for complex and delicate radially multi-material model geometries without supporting structures,such as tissue vessels and tubular graft,among others.In this work,we tackle these challenges by developing a polar digital light processing technique which uses a rod as the printing platform.The 3D model fabrication is accomplished through line projection.The rotation and translation of the rod are synchronized to project and illuminate the photosensitive material volume.By controlling the distance between the rod and the printing window,we achieved the printing of tubular structures with a minimum wall thickness as thin as 50 micrometers.By controlling the width of fine slits at the printing window,we achieved the printing of structures with a minimum feature size of 10 micrometers.Our process accomplished the fabrication of thin-walled tubular graft structure with a thickness of only 100 micrometers and lengths of several centimeters within a timeframe of just 100 s.Additionally,it enables the printing of axial multi-material structures,thereby achieving adjustable mechanical strength.This method is conducive to rapid customization of tubular grafts and the manufacturing of tubular components in fields such as dentistry,aerospace,and more.展开更多
基金Funded by the National Natural Science Foundation of China(No.52370128)the Fundamental Research Funds for the Central Universities(No.2572022AW54)。
文摘This study identified castor oil and phosphate ester as effective retarders through setting time,tensile,and flexural tests,and determined their optimal dosages.The mechanism by which phosphate ester affects the setting time of polyurethane was further investigated using molecular dynamics simulations.Fourier transform infrared spectroscopy was also employed to systematically study the physical and chemical interactions between phosphate esters and polyurethane materials.The results demonstrate that a 1%concentration of phosphate ester provides the most effective retarding effect with minimal impact on the strength of polyurethane.When phosphate ester is added to the B component of the two-component polyurethane system,its interaction energy with component A decreases,as do the diffusion coefficient and aggregation degree of component B on the surface of component A.This reduction in interaction slows the setting time.Additionally,the addition of phosphate ester to polyurethane leads to the disappearance or weakening of functional groups,indicating competitive interactions within the phosphate ester components that inhibit the reaction rate.
基金the financial support from the Fujian Science Foundation for Outstanding Youth(2023J06039)the National Natural Science Foundation of China(Grant No.41977259,U2005205,41972268)the Independent Research Project of Technology Innovation Center for Monitoring and Restoration Engineering of Ecological Fragile Zone in Southeast China(KY-090000-04-2022-019)。
文摘Shotcrete is one of the common solutions for shallow sliding.It works by forming a protective layer with high strength and cementing the loose soil particles on the slope surface to prevent shallow sliding.However,the solidification time of conventional cement paste is long when shotcrete is used to treat cohesionless soil landslide.The idea of reinforcing slope with polyurethane solidified soil(i.e.,mixture of polyurethane and sand)was proposed.Model tests and finite element analysis were carried out to study the effectiveness of the proposed new method on the emergency treatment of cohesionless soil landslide.Surcharge loading on the crest of the slope was applied step by step until landslide was triggered so as to test and compare the stability and bearing capacity of slope models with different conditions.The simulated slope displacements were relatively close to the measured results,and the simulated slope deformation characteristics were in good agreement with the observed phenomena,which verifies the accuracy of the numerical method.Under the condition of surcharge loading on the crest of the slope,the unreinforced slope slid when the surcharge loading exceeded 30 k Pa,which presented a failure mode of local instability and collapse at the shallow layer of slope top.The reinforced slope remained stable even when the surcharge loading reached 48 k Pa.The displacement of the reinforced slope was reduced by more than 95%.Overall,this study verifies the effectiveness of polyurethane in the emergency treatment of cohesionless soil landslide and should have broad application prospects in the field of geological disasters concerning the safety of people's live.
文摘Doping perylene diimide(PDI)into a polymer matrix is a simple strategy to prepare near-infrared(NIR)reflective materials,but the mechanical properties and NIR reflectance properties are significantly compromised due to macro-phase separation.In this study,a novel polymer(denoted as PU-PDI)with intrinsic NIR reflective proper⁃ties was synthesized by covalent incorporation of PDI units into polyurethane chains.Its photophysical characteris⁃tics,mechanical property and NIR reflectance property are investigated in detail.The results show that covalent in⁃corporation reduces the severe aggregation of PDI units,thereby endows PU-PDI with excellent mechanical property.The elongation at break of PU-PDI can reach more than 700%,and the breaking strength is 34.11 MPa.Moreover,compared to the blending system,PU-PDI possesses enhanced NIR reflection ability due to the better dispersion of PDI units.
基金supported by the National Natural Science Foundation of China(Nos.42207353 and 42277408)the Key Research and Development Program of Jiangsu Province of China(BE2021378)+1 种基金Jiangsu Agricultural Science and Technology Independent Innovation Fund of China(CX(21)-1009)the Earmarked Fund of China Agriculture Research System(CARS-10-Sweetpotato)。
文摘Dear Editor,Environmental pollution from microplastics(MPs)has recently gained attention as a potential environmental hazard(Chia et al.,2021).Agricultural soils could contain more MPs than the ocean by 2050 because more MPs enter the soil than the ocean(Nizzetto et al.,2016).The carbon(C)-C backbone of degradation-resistant MPs provides considerable stability in the soil,where they can remain for several decades(Iqbal et al.,2023).
基金financially supported by Applied Basic Research Project of Qinghai province(2023-ZJ-774)。
文摘Boron adsorbents with high adsorption capacities have long been a focus of research for a long time.This study used small molecular polyols with different hydroxyl groups as functional monomers and as end-capping agents,functional dendritic polyurethanes with nano structure were successfully prepared by one-pot method.The single molecule size and surface morphology were characterized by dynamic light scattering,transmission electron microscopy and scanning electron microscopy,and the molecular size in the dry state was 11 to 18 nm.The prepared materials were used as the boron adsorbents,and the effects of pH,time,boron solution concentration and temperature on the adsorption were studied.The results showed that the capacity of adsorbed boron could reach 110-130 mg·g^(-1).Adsorption was a homogeneous monolayer adsorption controlled by chemisorption,and adsorption thermodynamics showed that was a spontaneous endothermic process.Adsorption behavior was best described by the pseudo-second-order kinetic model and the Langmuir isotherm.This study also showed that it was difficult for ortho/meta-hydroxyl groups to chelate with H_(3)BO_(3) and other polyborates,and the chelates mainly had good chelating properties with B(OH)_(4)^(-),and the chelates formed had large steric hindrance.At the same time,increasing the number of hydroxyl groups of functional monomers was beneficial to increase the adsorption capacity of materials.In addition,the cyclic adsorption/desorption experiments showed that DPUs have good cyclic stability.At the same time,the adsorption results of the original salt lake brine showed that other metal ions in the brine had little effect on the adsorption of boron,and the adsorption capacity was as high as52.93 mg·g^(-1),and the maximum adsorption capacity was obtained by Adams-Bohart model to58.80 mg·g^(-1).The outstanding selectivity and adsorption capacity of these materials have broad potential application,and are expected to be used for the efficient adsorption and removal in boroncontaining water bodies.
基金supported by the Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Science and ICT(RS-2024-00451587)supported by Post-plastic Specialized Graduate Program through the Korea Environmental Industry&Technology Institute(KEITI)funded by the Ministry of Environment(MOE).
文摘Bio-polyol is considered as a core material to synthesize eco-friendly polyurethane products.However,one of the popular bio-polyols,polytrimethylene ether glycol(PO3G),is reluctant to crystallize and therefore exhibits a cold crystallization behavior.This abnormal behavior causes unstable mechanical properties at low-temperature and limits its applications in shape memory devices where crystallization is an essential mechanism.To analyze the unusual phenomenon,we compared different ether polyols focusing on symmetry characteristics and the evenodd effect of carbon backbones.It is found that PO3G has a slow crystallization rate because its ether linkages require specific chain arrangement for attractive interactions.Consequently,a thermal learning mechanism is developed to restore the normal crystallization behavior of elastomers synthesized from the bio-polyol.Repetitive heating and cooling cycles with high-temperature annealing induce urethane exchange reaction and reconstruct the chain orientations for fast crystallization.Results suggest the degree of crystallizations in polyurethane elastomer can be precisely controlled by introducing repetitive thermal treatments to enhance the potential applications of bio-polyols in polymer industries.
基金supported by the National Natural Science Foundation of China,Grant Nos.42477185,41602308the Zhejiang Provincial Natural Science Foundation of China,Grant No.LY20E080005+2 种基金the Zhejiang Province University Students Science and Technology Innovation Program,Grant No.0201310P28the PostGraduate Course Construction Project of Zhejiang University of Science and Technology,Grant No.2021yjskj05the Zhejiang University of Science and Technology Graduate Research and Innovation Fund,Grant No.2023yjskc10.
文摘The ongoing operation of subway systems makes existing tunnels vulnerable to deformations and structural damage caused by adjacent foundation pit construction.Such deformations-manifesting as horizontal displacement,heightened lateral convergence,and internal force redistribution-may significantly compromise subway operational safety.Grouting remediation has become a widely adopted solution for tunnel deformation control and structural reinforcement.Developing optimized grouting materials is crucial for improving remediation effectiveness,ensuring structural integrity,and maintaining uninterrupted subway operations.This investigation explores the substitution of fine mortar aggregates with 0.1 mm discarded rubber particles at varying concentrations(0%,3%,6%,9%,12%,and 15%).Experimental parameters included three water-cement ratios(0.65,0.70,and 0.75)with constant 4%WPU content.Mechanical properties including compressive strength,flexural strength,and compression-to-bending ratio were evaluated across specified curing periods.Material characterization employed Fourier Transform Infrared Spectroscopy(FTIR)spectroscopy for molecular analysis and Scanning Electron Microscopy(SEM)for microstructural examination.Results indicate optimal toughness at 0.70 water-cement ratio with 6%rubber content,meeting mechanical pumping specifications while maintaining structural performance.
基金supported by Shiraz University of Medical Sciences,Shiraz,Iran(grant No.:17780).
文摘Due to the limited regeneration capacity of myocardial tissue after infarction,designing tissue engineering scaffolds are in demand.In the present study,electrospun nanofibrous scaffolds were made out of polyurethane,collagen and gold nanoparticles with random and aligned nanofiber morphologies.The nanoparticles were green-synthesized using saffron extract.Nanoparticle characterizations with UV-Vis.spectroscopy and DLS illustrated theoretical and hydrodynamic diameters of around 7 and 13 nm,respectively,having zeta potential of−37 mV.SEM and TEM micrographs showed the morphology and diameters of obtained nanofibers.Also,further characterization were done by ATR-FTIR,XRD and TGA investigations and degradation studies.Contact angle measurements showed hydrophilic nature of the scaffolds(59±0.6°for aligned PU/Col/Au50 nanofibers compared to 120±2.6°for random PU nanofibers).Mechanical testing demonstrated appropriate tensile properties of the scaffolds for cardiac tissue engineering(Young’s modulus:1.53±0.07 MPa for aligned PU/Col/Au50 nanofibers compared to 0.4±0.05 MPa for random PU nanofibers).Finally,alamar blue assay revealed proper survival of the cells of HUVEC cell line on the prepared scaffolds,where the highest percentages were observed for random and aligned PU/Col/Au50 nanofibers.According to the findings,the fabricated PU/Col/AuNPs nanofibrous scaffolds could be considered as potential cardiac patches.
基金financially supported by the National Key R&D Program of China(No.2022YFC2805103)the National Natural Science Foundation of China(Nos.52022031 and 52263001)the Foundation from Qinghai Science and Technology Department(No.2022-ZJ-944Q)。
文摘Incorporation of acetal groups in the backbone is a potent strategy to create polymers that are cleavable or degradable under acidic conditions.We report here an in-depth study on the ring-closing-opening copolymerization of o-phthalaldehyde(OPA)and epoxide using Lewis pair type two-component organocatalysts for producing acetal-functionalized polyether and polyurethane.Notably,triethylborane as the Lewis acid,in comparison with tri(n-butyl)borane,more effectively enhances the polymerization activity by mitigating borane-induced reduction of the aldehyde group into extra initiating(borinic ester)species.Density functional theory(DFT)calculations present comparable energy barriers of OPA-epoxide cross-propagation and epoxide self-propagation,which is consistent with the experimental finding that an alternating-rich copolymer comprising mostly OPA-epoxide units but also epoxide-epoxide linkages is produced.In particular,when epoxide is added in a large excess,the product becomes a polyether containing acetal functionalities in the central part of the backbone and thus being convertible into polyurethane with refined acid degradability.
基金Funded by the Basic Scientific Research of Liaoning Provincial Department of Education(No.LJ212410153030)。
文摘An environmentally friendly waterborne polyurethane(CWPU)emulsion was developed via a dual modification strategy by combining both the silane coupling agent KH-602 with renewable castor oil(CO)as a sustainable substitute for petroleum-based polyols.The resulting materials were thoroughly characterized using Fourier-transform infrared spectroscopy(FTIR),thermogravimetric analysis(TGA),and differential scanning calorimetry(DSC).Furthermore,the influence of KH-602 content on the material properties was systematically investigated.The experimental results reveal that the incorporation of KH-602 significantly improves the thermal stability of the composite coating.As the KH-602 content increases,the tensile strength exhibits a gradual enhancement,while the elongation at break displays an initial increase followed by a subsequent decline.At an optimal KH-602 content of 3%,the coating demonstrates a balanced performance,achieving a tensile strength of 14.19 MPa and an elongation at break of 731.12%.These results suggest that the dual modification approach enhances mechanical and thermal properties while maintaining water resistance,making it suitable for sustainable coating applications.
文摘Purpose–This study aims to carry out optimization and improvement work on the artificial climate aging and ultraviolet aging tests of elastic expansion joints in railway concrete bridges.Design/methodology/approach–Three polyurethane elastomer specimens with different chemical compositions were adopted.According to relevant standard regulations,the aging test process was analyzed and evaluated in detail,and reasonable improvement suggestions were put forward.The effectiveness was verified through actual tests.Findings–The final test results indicate that the combination of artificial climate aging tests and ultraviolet aging tests is technically feasible and has significant advantages in practical applications.Originality/value–This study optimizes the conditions of artificial climate aging and ultraviolet aging tests,compares the advantages and disadvantages of different aging test methods,and proposes a combined test scheme of artificial climate aging and ultraviolet aging and verifies its effectiveness.The results provide valuable reference for simulating the actual aging behavior of polyurethane elastomers,material performance evaluation,and application in railway bridge engineering.It is conducive to promoting the reasonable application of this material in engineering,improving engineering quality,reducing costs,and has economic and social benefits.
基金financially supported by the Maoming Science and Technology Bureau(No.2022DZXHT007)。
文摘The synthesis of polyurethanes(PUs)from the reaction of low molecular weight poly(ethylene carbonate)diol(PECD)is rarely investigated.This work reports a novel PU with excellent mechanical properties from the solution polymerization of 4,4-diphenylmethane diisocyanate(MDI)with PECD that was derived from the copolymerization of carbon dioxide(CO_(2))and ethylene oxide(EO).The tensile strength,the elongation at break and 300%constant tensile strength of the PECD-PU were up to 66±2 MPa,880%±50%and 13 MPa,respectively,higher than the control PUs from the reaction of MDI with commercial polyethers or polyesters.The PECD-PU with high CO_(2) carbonate content exhibited good solvent resistance and chemical stability.Of importance,the mechanical properties and chemical resistance of PECD-PU were significantly enhanced with the increasing content of CO_(2),i.e.,the carbonate unit in PECD.This work provides comprehensive properties of PECD-derived PUs,indicating that PECD is a competitive precursor for the preparation of PU and has broad application prospects.
基金supported by the China Postdoctoral Science Foundation(No.200902090)Tianjin Enterprise Science and Technology Commissioner Project(No.21YDTPJC00570).
文摘PU,or polyurethane,features a repeating urethane group(-NH-COO-)in its molecular structure.Traditionally,PUs are synthesized from isocyanate and polyol compounds derived from fossil resources through polymerization reactions.The depletion of fossil fuels and the increasing climate problems call for the expansion of more renewable sources of chemicals,such as modern biomass.However,the conversion of biomass into chemicals is challenging due to the inherent molecular complexity of its composition.In recent years,advances in green chemistry have led researchers to focus on developing bio-based polyurethanes by sourcing polyols,isocyanates,and chain extender precursors from biological materials.This paper focuses on the preparation of polyols,non-isocyanates and bio-based chain extenders from bio-based materials such as vegetable oils,lignin,sugars,and rosin.The synthetic routes and properties of several bio-based polyurethane materials are analyzed.Additionally,it discusses the current status,future challenges,and potential applications of bio-based polyurethane materials across various fields.
基金financially supported by the National Natural Science Foundation of China(No.52473228).
文摘The fatigue resistance of casting polyurethane(CPU)is crucial in various sectors,such as construction,healthcare,and the automotive industry.Despite its importance,no studies have reported on the fatigue threshold of CPU.This study employed an advanced Intrinsic Strength Analyzer(ISA)to evaluate the fatigue threshold of CPUs,systematically exploring the effects of three types of isocyanates(PPDI,NDI,TDI)that contribute to hard segment structures based on the cutting method.Employing multiple advanced characterization techniques(XRD,TEM,DSC,AFM),the results indicate that PPDI-based polyurethane exhibits the highest fatigue threshold(182.89 J/m^(2))due to a highest phase separation and a densely packed spherulitic structure,although the hydrogen bonding degree is the lowest(48.3%).Conversely,NDI-based polyurethane,despite having the high hydrogen bonding degree(53.6%),exhibits moderate fatigue performance(122.52 J/m^(2)),likely due to a more scattered microstructure.TDI-based polyurethane,with the highest hydrogen bonding degree(59.1%)but absence of spherulitic structure,shows the lowest fatigue threshold(46.43 J/m^(2)).Compared to common rubbers(NR,NBR,EPDM,BR),the superior fatigue performance of CPU is attributed to its well-organized microstructure,polyurethane possesses a higher fatigue threshold due to its high phase separation degree and orderly and dense spherulitic structure which enhances energy dissipation and reduces crack propagation.
基金financially supported by the National Key Research and Development Program of China(Grant Nos.2023YFB2604005)the National Key Research and Development 451 Program of China(Grant No.2021YFC3100803)the Yangtze River Water Science Research Joint Fund Key Project of National Natural Science Foundation of China(Grant No.U2340231).
文摘Polyurethane foam,when used as a compressible layer in deep soft rock tunnels,offers a feasible solution to reduce the support pressure on the secondary lining.The foam spraying method using sprayed polyurethane material is convenient for engineering applications;however,the compressive behaviour and feasibility of sprayed polyurethane material as a compressible layer remain unclear.To address this gap,this study conducts uniaxial compression tests and scanning electron microscope(SEM)tests to investigate the compressive behaviour of the rigid foams fabricated from a self-developed polyurethane spray material.A peridynamics model for the composite lining with a polyurethane compressible layer is then established.After validating the proposed method by comparison with two tests,a parametric study is carried out to investigate the damage evolution of the composite lining with a polyurethane compressible layer under various combinations of large deformations and compressible layer parameters.The results indicate that the polyurethane compressible layer effectively reduces the radial deformation and damage index of the secondary lining while increasing the damage susceptibility of the primary lining.The thickness of the polyurethane compressible layer significantly influences the prevention effect of large deformation-induced damage to the secondary lining within the density range of 50e100 kg/m^(3).In accordance with the experimental and simulation results,a simple,yet reasonable and convenient approach for determining the key parameters of the polyurethane compressible layer is proposed,along with a classification scheme for the parameters of the polyurethane compressible layer.
基金This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoalde Nível Superior-Brasil(CAPES)-Finance Code 001.
文摘The continuous improvement in patient care and recovery is driving the development of innovative materials for medical applications.Medical sutures,essential for securing implants and closing deep wounds,have evolved to incorporate smart materials capable of responding to various stimuli.This study explores the potential of thermoresponsive sutures,made from shape memory materials,that contract upon heating to bring loose stitches closer together,promoting optimal wound closure.We developed nanocomposites based on a blend of poly(lactic acid)(PLA)and thermoplastic polyurethane(TPU)—biopolymers that inherently exhibit shape memory—enhanced with carbon nanotubes(CNT)and graphene nanoplatelets(GN)to improve mechanical performance.PLA/TPU(50/50)nanocomposites were prepared with 1 and 2 wt%GN,as well as hybrid formulations combining 1 wt%CNT with 1 or 2 wt%GN,using a twin-screw extrusion process to form filaments.These filaments were characterized through differential scanning calorimetry(DSC),field emission gun scanning electron microscopy(FEG-SEM),tensile testing,and shape memory assessments.While the PLA/TPU blend is immiscible,TPU enhances the crystallinity(X_(c))of the PLA phase,further increased by the addition of CNT and GN.FEG-SEM images indicate CNTs primarily in the PLA phase and GN in the TPU phase.PLA/TPU with 1 or 2 wt%GN showed the highest potential for suture applications,with a high elastic modulus(~1000 MPa),significant strain at break(~10%),and effective shape recovery(~20%at 55℃ for 30 min).These findings suggest that these nanocomposites can enhance suture performance with controlled shape recovery that is suitable for medical use.
基金financial support from National Natural Science Foundation of China(Grant No.12172325)。
文摘Porous materials are widely used in the field of protection because of their excellent energy absorption characteristics.In this work,a series of polyurethane microscopic models are established and the effect of porosity on the shock waves is studied with classical molecular dynamics simulations.Firstly,shock Hugoniot relations for different porosities are obtained,which compare well with the experimental data.The pores collapse and form local stress wave,which results in the complex multi-wave structure of the shock wave.The microstructure analysis shows that the local stress increases and the local velocity decreases gradually during the process of pore collapse to complete compaction.Finally,it leads to stress relaxation and velocity homogenization.The shock stress peaks can be fitted with two exponential functions,and the amplitude of attenuation coefficient decreases with the increase of density.Besides,the pore collapse under shock or non-shock are discussed by the entropy increase rate of the system.The energy is dissipated mainly through the multiple interactions of the waves under shock.The energy is dissipated mainly by the friction between atoms under non-shock.
基金supported by the Fujian Science Foundation for Outstanding Youth(Grant No.2023J06039)the National Natural Science Foundation of China(Grant No.41977259 and No.U2005205)Fujian Province natural resources science and technology innovation project(Grant No.KY-090000-04-2022-019)。
文摘Bedding slope is a typical heterogeneous slope consisting of different soil/rock layers and is likely to slide along the weakest interface.Conventional slope protection methods for bedding slopes,such as retaining walls,stabilizing piles,and anchors,are time-consuming and labor-and energy-intensive.This study proposes an innovative polymer grout method to improve the bearing capacity and reduce the displacement of bedding slopes.A series of large-scale model tests were carried out to verify the effectiveness of polymer grout in protecting bedding slopes.Specifically,load-displacement relationships and failure patterns were analyzed for different testing slopes with various dosages of polymer.Results show the great potential of polymer grout in improving bearing capacity,reducing settlement,and protecting slopes from being crushed under shearing.The polymer-treated slopes remained structurally intact,while the untreated slope exhibited considerable damage when subjected to loads surpassing the bearing capacity.It is also found that polymer-cemented soils concentrate around the injection pipe,forming a fan-shaped sheet-like structure.This study proves the improvement of polymer grouting for bedding slope treatment and will contribute to the development of a fast method to protect bedding slopes from landslides.
基金supported by the National Natural Science Foundation of China(Grant Nos.12221002,12102233)。
文摘In recent years,explosion shock wave has been considered as a signature injury of the current military conflicts.Although strong shock wave is lethal to the human body,weak shock wave can cause many more lasting consequences.To investigate the protection ability and characteristics of flexible materials and structures under weak shock wave loading,the blast wave produced by TNT explosive is loaded on the polyurethane foam with the density of 200.0 kg/m3(F-200)and 400.0 kg/m3(F-400),polyurea with the density of 1100.0 kg/m^(3)(P-1100)and structures composed of the two materials,which are intended for individual protection.Experimental results indicate that the shock wave is attenuated to weak pressure disturbance after interacting with the flexible materials which are not damaged.The shock wave protective capability of single-layer materials is dependent on their thickness,density and microscopic characteristics.The overpressure,maximum pressure rise rate and impulse of transmitted wave decrease exponentially with increase in sample thickness.For the same thickness,F-400 provides better protective capability than F-200 while P-1100 shows the best protective capability among the three materials.In this study,as the materials are not destroyed,F-200 with a thickness more than10.0 mm,F-400 with a thickness more than 4.0 mm,and P-1100 with a thickness more than 1.0 mm can attenuate the overpressure amplitude more than 90.0%.Further,multi-layer flexible composites are designed.Different layer layouts of designed structures and layer thickness of the single-layer materials can affect the protective performance.Within the research range,the structure in which polyurea is placed on the impact side shows the optimal shock wave protective performance,and the thicknesses of polyurea and polyurethane foam are 1.0 mm and 4.0 mm respectively.The overpressure attenuation rate reached maximum value of 93.3%and impulse attenuation capacity of this structure are better than those of single-layer polyurea and polyurethane foam with higher areal density.
基金supported financially by the Fundamental Research Funds for the Central Universities (YWF-22-K-101,YWF-23-L-805 and YWF-23-YG-QB-006)the support from the National Natural Science Foundation of China (12372106)Fundamental Research Funds for the Central Universities
文摘3D printing techniques offer an effective method in fabricating complex radially multi-material structures.However,it is challenging for complex and delicate radially multi-material model geometries without supporting structures,such as tissue vessels and tubular graft,among others.In this work,we tackle these challenges by developing a polar digital light processing technique which uses a rod as the printing platform.The 3D model fabrication is accomplished through line projection.The rotation and translation of the rod are synchronized to project and illuminate the photosensitive material volume.By controlling the distance between the rod and the printing window,we achieved the printing of tubular structures with a minimum wall thickness as thin as 50 micrometers.By controlling the width of fine slits at the printing window,we achieved the printing of structures with a minimum feature size of 10 micrometers.Our process accomplished the fabrication of thin-walled tubular graft structure with a thickness of only 100 micrometers and lengths of several centimeters within a timeframe of just 100 s.Additionally,it enables the printing of axial multi-material structures,thereby achieving adjustable mechanical strength.This method is conducive to rapid customization of tubular grafts and the manufacturing of tubular components in fields such as dentistry,aerospace,and more.