The intermittent nature of solar irradiance is a critical constraint for the realization of continuous photocatalytic hydrogen evolution,thus urging the development of more powerful systems persistently active after i...The intermittent nature of solar irradiance is a critical constraint for the realization of continuous photocatalytic hydrogen evolution,thus urging the development of more powerful systems persistently active after illumination.This limitation is bypassed in round-the-clock photocatalytic architectures,which incorporate advanced charge storage to de-correlate pho-ton absorption and catalytic turnover time scales.The strategies involve defect-mediated trap states,multi-electron redox processes,radical-dependent stabilization,and an interfacial charge pool in Faradaic junctions to work together,leading to extended hydrogen evolution reaction(HER)in the dark.Long afterglow phosphorescent materials(e.g.,Sr_(2)MgSi_(2)O_(7):Eu^(2+),Dy^(3+))incorporated in heterojunction architectures with type II or Z-scheme band alignments can also promote fast charge separation for energy storage and subsequently enable controlled release after light quenching by the phosphorescent emis-sion.Advances in band-structure engineering,plasmonic coupling,and redox-active interfacial design result in systems with extraordinary stability and catalytic activity under natural day-night cycles.These stable photocatalytic systems off er a fundamentally new strategy for effi cient and environmentally benign sunlight-driven fuel production,meeting both per-formance and sustainability challenges to renewable energy technologies.展开更多
Visible and near-infrared photodetectors are widely used in intelligent driving,health monitoring,and other fields.However,the application of photodetectors in the near-infrared region is significantly impacted by hig...Visible and near-infrared photodetectors are widely used in intelligent driving,health monitoring,and other fields.However,the application of photodetectors in the near-infrared region is significantly impacted by high dark current,which can greatly reduce their performance and sensitivity,thereby limiting their effectiveness in certain applications.In this work,the introduction of a C60 back interface layer successfully mitigated back interface reactions to decrease the thickness of the Mo(S,Se)_(2)layer,tailoring the back-contact barrier and preventing reverse charge injection,resulting in a kesterite photodetector with an ultralow dark current density of 5.2×10^(-9)mA/cm^(2)and ultra-weak-light detection at levels as low as 25 pW/cm^(2).Besides,under a self-powered operation,it demonstrates outstanding performance,achieving a peak responsivity of 0.68 A/W,a wide response range spanning from 300 to 1600 nm,and an impressive detectivity of 5.27×10^(14)Jones.In addition,it offers exceptionally rapid response times,with rise and decay times of 70 and 650 ns,respectively.This research offers important insights for developing high-performance self-powered near-infrared photodetectors that have high responsivity,rapid response times,and ultralow dark current.展开更多
Although multicrystalline Si photovoltaics have been extensively studied and applied in the collection of solar energy,the same systems suffer significant efficiency losses in indoor settings,where ambient light condi...Although multicrystalline Si photovoltaics have been extensively studied and applied in the collection of solar energy,the same systems suffer significant efficiency losses in indoor settings,where ambient light conditions are considerably smaller in intensity and possess greater components of non-normal incidence.Yet,indoor light-driven,stand-alone devices can offer sustainable advances in next-generation technologies such as the Internet of Things.Here,we present a non-invasive solution to aid in photovoltaic indoor light collection—radially distributed waveguide-encoded lattice(RDWEL)slim films(thickness 1.5 mm).Embedded with a monotonical radial array of cylindrical waveguides(±20°),the RDWEL demonstrates seamless light collection(FoV(fields of view)=74.5°)and imparts enhancements in JSC(short circuit current density)of 44%and 14%for indoor and outdoor lighting conditions,respectively,when coupled to a photovoltaic device and compared to an unstructured but otherwise identical slim film coating.展开更多
Two-dimensional(2D)MoS_(2) is considered an excellent candidate material for nextgeneration photodetectors.However,the high dark current and low photocurrent in MoS_(2) devices severely hinder their practical applicat...Two-dimensional(2D)MoS_(2) is considered an excellent candidate material for nextgeneration photodetectors.However,the high dark current and low photocurrent in MoS_(2) devices severely hinder their practical application.Strategies for suppressing dark current and enhancing photocurrent should be explored.Herein,we propose a modification strategy for MoS_(2) by utilizing Ag_(70) nanoclusters(NCs)as electron reservoirs and photoabsorbers to suppress dark current and enhance the photocurrent of 2D MoS_(2) photodetector.Remarkably,the dark current is effectively suppressed by four orders of magnitude,while the photocurrent is enhanced by over tenfold upon modification with Ag_(70) NCs,compared to the pristine MoS_(2) photodetector.The reduction in dark current is attributed to charge transfer from MoS_(2) to Ag_(70) NCs owing to the strong electronwithdrawing property of Ag_(70) NCs.The increase in photocurrent benefits from enhanced optical absorption of the photodetector after Ag_(70) NCs modification and the subsequent injection of photoexcited electrons from Ag_(70) NCs to MoS_(2).Compared to isolated MoS_(2),the modulated photodetector shows exceptional improvements in several key figures of merit(such as responsivity,detectivity,external quantum efficiency,and photoswitching on/off ratio).This study opens up new avenues for building high-performance 2D MoS_(2) photodetectors.展开更多
Improving device efficiency is fundamental for advancing energy harvesting technology,particularly in systems designed to convert light energy into electrical output.In our previous studies,we developed a basic struct...Improving device efficiency is fundamental for advancing energy harvesting technology,particularly in systems designed to convert light energy into electrical output.In our previous studies,we developed a basic structure light pressure electric generator(Basic-LPEG),which utilized a layered configuration of Ag/Pb(Zr,Ti)O_(3)(PZT)/Pt/GaAs to generate electricity based on light-induced pressure on the PZT.In this study,we sought to enhance the performance of this Basic-LPEG by introducing Ag nanoparticles/graphene oxide(AgNPs/GO)composite units(NP-LPEG),creating upgraded harvesting device.Specifically,by depositing the AgNPs/GO units twice onto the Basic-LPEG,we observed an increase in output voltage and current from 241 mV and 3.1μA to 310 mV and 9.3μA,respectively,under a solar simulator.The increase in electrical output directly correlated with the intensity of the light pressure impacting the PZT,as well as matched the Raman measurements,finite-difference time-domain simulations,and COMSOL Multiphysics Simulation.Experimental data revealed that the enhancement in electrical output was proportional to the number of hot spots generated between Ag nanoparticles,where the electric field experienced substantial amplification.These results underline the effectiveness of AgNPs/GO units in boosting the light-induced electric generation capacity,thereby providing a promising pathway for high-efficiency energy harvesting devices.展开更多
AIM:To investigate the effects of different light intensities and various mydriatic and miotic drugs on pupil accommodation in guinea pigs.METHODS:Forty-two-week-old guinea pigs were randomly divided into four groups ...AIM:To investigate the effects of different light intensities and various mydriatic and miotic drugs on pupil accommodation in guinea pigs.METHODS:Forty-two-week-old guinea pigs were randomly divided into four groups to assess pupillary responses under varying light intensities(100,250,500 lx)and pharmacological interventions(1%atropine,1%cyclopentolate,1%tropicamide,or 2%pilocarpine).Baseline pupil size and eccentricity were recorded using a non-contact Python-based imaging system integrating edge detection and pixel-to-distance conversion.Direct illumination effects were measured at sequential time points,followed by drug administration and longitudinal tracking of pupillary changes.The protocol was repeated at 12wk of age for developmental comparisons.Postexperiment,enucleated eyes were analyzed to evaluate in vitro vs in vivo differences.RESULTS:Significant age-dependent differences in pupil dynamics were observed.Both 2-and 12-week-old guinea pigs exhibited marked pupil constriction under direct illumination(P<0.001),with decreased eccentricity post-constriction(P<0.001).Indirect illumination caused inconsistent pupil size changes(2-week:P=0.68;12-week:P=0.49).Pharmacologically,atropine,cyclopentolate,and tropicamide induced pupil dilation(P<0.001),whereas pilocarpine caused constriction(P<0.001).All drug groups showed reduced eccentricity(P<0.001).In vivo/in vitro comparisons revealed significant structural differences.CONCLUSION:This study investigates pupillary responses in developing guinea pigs,revealing a direct pupillary light reflex(PLR)with light intensity-dependent responses,while indirect PLR was undetectable.The differential effects of muscarinic modulators on pupillary responses underscore the critical role of cholinergic signaling in ocular accommodation,with age-related variations in sensitivity.Additionally,a novel non-contact measurement methodology achieved a precision of 0.01 mm for pupillary quantification,enhancing accuracy in ocular studies.展开更多
Cellulose frameworks have emerged as promising materials for light management due to their exceptional light-scattering capabilities and sustainable nature.Conventional biomass-derived cellulose frameworks face a fund...Cellulose frameworks have emerged as promising materials for light management due to their exceptional light-scattering capabilities and sustainable nature.Conventional biomass-derived cellulose frameworks face a fundamental trade-off between haze and transparency,coupled with impractical thicknesses(≥1 mm).Inspired by squid’s skin-peeling mechanism,this work develops a peroxyformic acid(HCOOOH)-enabled precision peeling strategy to isolate intact 10-μm-thick bamboo green(BG)frameworks—100×thinner than wood-based counterparts while achieving an unprecedented optical performance(88%haze with 80%transparency).This performance surpasses delignified biomass(transparency<40%at 1 mm)and matches engineered cellulose composites,yet requires no energy-intensive nanofibrillation.The preserved native cellulose I crystalline structure(64.76%crystallinity)and wax-coated uniaxial fibril alignment(Hermans factor:0.23)contribute to high mechanical strength(903 MPa modulus)and broadband light scattering.As a light-management layer in polycrystalline silicon solar cells,the BG framework boosts photoelectric conversion efficiency by 0.41%absolute(18.74%→19.15%),outperforming synthetic anti-reflective coatings.The work establishes a scalable,waste-to-wealth route for optical-grade cellulose materials in next-generation optoelectronics.展开更多
This study developed a novel heterogeneous Vis-Photo+Fenton-like system by integrating visible-light-responsive Co_(3)O_(4)/TiO_(2) photocatalysis with peroxymonosulfate(PMS)activation for efficient atrazine(ATZ)degra...This study developed a novel heterogeneous Vis-Photo+Fenton-like system by integrating visible-light-responsive Co_(3)O_(4)/TiO_(2) photocatalysis with peroxymonosulfate(PMS)activation for efficient atrazine(ATZ)degradation.The synergistic process achieved complete ATZ removal within 60 min under near-neutral pH(6.9),outperform-ing individual Fenton-like(39%)and photocatalytic(24%)processes.Key factors influencing the degradation efficiency included light sources(UV>visible),pH(optimal at 6.9),catalyst dosage(0.01 g Co_(3)O_(4)/TiO_(2)),and PMS:ATZ molar ratio(1:2).The system exhibited a synergistic coefficient of 5.03(degradation)and 1.97(miner-alization),attributed to enhanced radical generation and accelerated Co^(3+)/Co^(2+)redox cycling through photoin-duced electron transfer.Intermediate analysis revealed dealkylation,dechlorination,and oxidation pathways,with reduced toxicity of by-products(e.g.,CEAT,CIAT)confirmed by ecotoxicity assessments.The mineralization efficiency(Vis-Photo+Fenton-like)reached 83.1%,significantly higher than that of standalone processes(Fenton-like:43.2%;photocatalysis:30.5%).The catalyst demonstrated excellent stability(nearly 90%recov-ery,<1μg/L Co leaching)and practical applicability.This study provides an efficient,sludge-free,and solar-compatible strategy for eliminating persistent herbicides in water treatment.展开更多
A high-sensitivity,low-noise single photon avalanche diode(SPAD)detector was presented based on a 180 nm BCD process.The proposed device utilizes a p-implant layer/high-voltage n-well(HVNW)junction to form a deep aval...A high-sensitivity,low-noise single photon avalanche diode(SPAD)detector was presented based on a 180 nm BCD process.The proposed device utilizes a p-implant layer/high-voltage n-well(HVNW)junction to form a deep avalanche multiplication region for near-infrared(NIR)sensitivity enhancement.By optimizing the device size and electric field of the guard ring,the fill factor(FF)is significantly improved,further increasing photon detection efficiency(PDE).To solve the dark noise caused by the increasing active diameter,a field polysilicon gate structure connected to the p+anode was investigated,effectively suppressing dark count noise by 76.6%.It is experimentally shown that when the active diameter increases from 5 to 10μm,the FF is significantly improved from 20.7%to 39.1%,and thus the peak PDE also rises from 13.3%to 25.8%.At an excess bias voltage of 5 V,a NIR photon detection probability(PDP)of 6.8%at 905 nm,a dark count rate(DCR)of 2.12 cps/μm^(2),an afterpulsing probability(AP)of 1.2%,and a timing jitter of 216 ps are achieved,demonstrating excellent single photon detection performance.展开更多
Progressive photoreceptor cell death is one of the main pathological features of age-related macular degeneration and eventually leads to vision loss.Ferroptosis has been demonstrated to be associated with retinal deg...Progressive photoreceptor cell death is one of the main pathological features of age-related macular degeneration and eventually leads to vision loss.Ferroptosis has been demonstrated to be associated with retinal degenerative diseases.However,the molecular mechanisms underlying ferroptosis and photoreceptor cell death in age-related macular degeneration remain largely unexplored.Bioinformatics and biochemical analyses in this study revealed xC^(–),solute carrier family 7 member 11-regulated ferroptosis as the predominant pathological process of photoreceptor cell degeneration in a light-induced dry age-related macular degeneration mouse model.This process involves the nuclear factor-erythroid factor 2-related factor 2-solute carrier family 7 member 11-glutathione peroxidase 4 signaling pathway,through which cystine depletion,iron ion accumulation,and enhanced lipid peroxidation ultimately lead to photoreceptor cell death and subsequent visual function impairment.We demonstrated that solute carrier family 7 member 11 overexpression blocked this process by inhibiting oxidative stress in vitro and in vivo.Conversely,solute carrier family 7 member 11 knockdown or the solute carrier family 7 member 11 inhibitor sulfasalazine and ferroptosis-inducing agent erastin aggravated H_(2)O_(2)-induced ferroptosis of 661W cells.These findings indicate solute carrier family 7 member 11 may be a potential therapeutic target for patients with retinal degenerative diseases including age-related macular degeneration.展开更多
To fully utilize the resources provided by optical fiber networks,a cross-band quantum light source generating photon pairs,where one photon in a pair is at C band and the other is at O band,is proposed in this work.T...To fully utilize the resources provided by optical fiber networks,a cross-band quantum light source generating photon pairs,where one photon in a pair is at C band and the other is at O band,is proposed in this work.This source is based on spontaneous four-wave mixing(SFWM)in a piece of shallow-ridge silicon waveguide.Theoretical analysis shows that the waveguide dispersion could be tailored by adjusting the ridge width,enabling broadband photon pair generation by SFWM across C band and O band.The spontaneous Raman scattering(SpRS)in silicon waveguides is also investigated experimentally.It shows that there are two regions in the spectrum of generated photons from SpRS,which could be used to achieve cross-band photon pair generation.A chip of shallow-ridge silicon waveguide samples with different ridge widths has been fabricated,through which cross-band photon pair generation is demonstrated experimentally.The experimental results show that the source can be achieved using dispersion-optimized shallow-ridge silicon waveguides.This cross-band quantum light source provides a way to develop new fiber-based quantum communication functions utilizing both C band and O band and extends applications of quantum networks.展开更多
Light adaptation enables the vertebrate visual system to operate over a wide range of ambient illumination.Regulation of phototransduction in photoreceptors is considered a major mechanism underlying light adaptation....Light adaptation enables the vertebrate visual system to operate over a wide range of ambient illumination.Regulation of phototransduction in photoreceptors is considered a major mechanism underlying light adaptation.However,various types of neurons and glial cells exist in the retina,and whether and how all retinal cells interact to adapt to light/dark conditions at the cellular and molecular levels requires systematic investigation.Therefore,we utilized single-cell RNA sequencing to dissect retinal cell-type-specific transcriptomes during light/dark adaptation in mice.The results demonstrated that,in addition to photoreceptors,other retinal cell types also showed dynamic molecular changes and specifically enriched signaling pathways under light/dark adaptation.Importantly,Müller glial cells(MGs)were identified as hub cells for intercellular interactions,displaying complex cell‒cell communication with other retinal cells.Furthermore,light increased the transcription of the deiodinase Dio2 in MGs,which converted thyroxine(T4)to active triiodothyronine(T3).Subsequently,light increased T3 levels and regulated mitochondrial respiration in retinal cells in response to light conditions.As cones specifically express the thyroid hormone receptor Thrb,they responded to the increase in T3 by adjusting light responsiveness.Loss of the expression of Dio2 specifically in MGs decreased the light responsive ability of cones.These results suggest that retinal cells display global transcriptional changes under light/dark adaptation and that MGs coordinate intercellular communication during light/dark adaptation via thyroid hormone signaling.展开更多
Dendrobium officinale has high medicinal value but grows slowly in natural environment due to its special CAM photosynthetic pathway.In this study,D.officinale were grown aeroponically with light/dark cycles of 12 h/1...Dendrobium officinale has high medicinal value but grows slowly in natural environment due to its special CAM photosynthetic pathway.In this study,D.officinale were grown aeroponically with light/dark cycles of 12 h/12 h,4 h/4 h,and 2 h/2 h for 150 d.The photosynthetic electron transfer characteristics,photosynthetic CO_(2) fixation pathways,and accumulations of biomass and soluble polysaccharides in D.officinale leaves were studied.The results showed that the photosynthetic apparatus states of D.officinale in aeroponic cultivation under short light/dark cycles of 4 h/4 h and 2 h/2 h were better than that under 12 h/12 h.The dark net CO_(2) exchange percentages of D.officinale were negative in short light/dark cycles of 4 h/4 h and 2 h/2 h,and the daily net CO_(2) exchange amount and dry/fresh weight increases were doubled compared with those in 12 h/12 h light/dark cycle.High soluble polysaccharides content and the soluble polysaccharides yield of D.officinale were obtained in the shorter light/dark cycle of 2 h/2 h.Therefore,the photosynthetic pathway of D.officinale could be switched from CAM to C3 by short light/dark cycles of 4 h/4 h and 2 h/2 h,and its higher biomass accumulation and soluble polysaccharides yield could be obtained by the shorter light/dark cycle of 2 h/2 h in aeroponic cultivation.展开更多
Circadian clocks time developmental stages of fruit flies Drosophila melanogaster, while light/dark (LD) cycles delimit emergence of adults, conceding only during the "allowed gate." Previous studies have revealed...Circadian clocks time developmental stages of fruit flies Drosophila melanogaster, while light/dark (LD) cycles delimit emergence of adults, conceding only during the "allowed gate." Previous studies have revealed that time-to-emergence can be altered by mutations in the core clock gene period (per), or by altering the length of LD cycles. Since this evidence came from studies on genetically manipulated flies, or on flies maintained under LD cycles with limited range of periods, inferences that can be drawn are limited. Moreover, the extent of shortening or lengthening of time-to-emergence re- mains yet unknown. In order to pursue this further, we assayed time-to-emergence of D. rnelanogaster under 12 different LD cycles as well as in constant light (LL) and constant dark conditions (DD). Time-to-emergence in flies occurred earlier under LL than in LD cycles and DD. Among the LD cycles, time-to-emergence occurred earlier under T4-T8, followed by T36-T48, and then T12-T32, suggesting that egg-to-emergence duration in flies becomes shorter when the length of LD cycles deviates from 24 h, bearing a strong positive and a marginally negative correlation with day length, for values shorter and longer than 24 h, respectively. These results suggest that the extent of mismatch between the period of circadian clocks and environmental cycles determines the time-to-emergence in Drosophila.展开更多
The paper presents a detailed analysis of ordinary and dark energy density of the cosmos based on two different but complimentary theories. First, and starting from the concept of the speed of light being an average o...The paper presents a detailed analysis of ordinary and dark energy density of the cosmos based on two different but complimentary theories. First, and starting from the concept of the speed of light being an average over multi-fractals, we use Magueijo-Smolin’s ingenious revision of Einstein’s special relativity famous formula E = mc2 to a doubly special formula which includes the Planck energy as invariant to derive the ordinary energy density E(O) = mc2/22 and the dark energy density E(D) = mc2(21/22) wheremis the mass andcis the speed of light. Second we use the topological theory of pure gravity to reach the same result thus confirming the correctness of the theory of varying speed of light as well as the COBE, WMAP and Type 1a supernova cosmological measurements.展开更多
The common marmoset (Callithrix jacchus) has attracted extensive attention for use as a non-human primate model in biomedical research, especially in the study of neuropsychiatric disorders. However, behavioral test...The common marmoset (Callithrix jacchus) has attracted extensive attention for use as a non-human primate model in biomedical research, especially in the study of neuropsychiatric disorders. However, behavioral test methods are still limited in the field of marmoset research. The light-dark box is widely used for the evaluation of anxiety in rodents, but little is known about light-dark preference in marmosets. Here, we modified the light-dark test to study this behavior. The modified apparatus consisted of three compartments: one transparent open area and two closed opaque compartments. The closed compartments could be dark or light. We found that both adult and young marmosets liked to explore the open area, but the young animals showed more interest than adults. Furthermore, when one of the closed compartments was light and the other dark, the adult marmosets showed a preference for the dark compartment, but the young animals had no preference. These results suggest that the exploratory behavior and the light-dark preference in marmosets are age-dependent. Our study provides a new method to study exploration, anxiety, and fear in marmosets.展开更多
In the proposed light-dark dual universe, the light universe is the observable universe with light and kinetic energy that fueled the Big Bang, and the dark universe without light and kinetic energy has been observed ...In the proposed light-dark dual universe, the light universe is the observable universe with light and kinetic energy that fueled the Big Bang, and the dark universe without light and kinetic energy has been observed as dark energy since about 9 billion years after the Big Bang. The light-dark dual universe started from the zero-energy universe through the four-stage cyclic transformation. Emerging from the zero-energy universe, the four-stage transformation consists of the 11D (dimensional) positive-negative energy dual membrane universe, the 10D positive-negative energy dual string universe, the 10D positive-negative energy dual particle universe, and the 4D (light)-variable D (dark) positive-negative energy dual particle asymmetrical universe. The transformation can then be reversed back to the zero-energy universe through the reverse four-stage transformation. The light universe is an observable four-dimensional universe started with the inflation and the Big Bang, and the dark universe is a variable dimensional universe from 10D to 4D. The dark universe could be observed as dark energy only when the dark universe turned into a four-dimensional universe. The four-stage transformation explains the four force fields in our universe. The theoretical calculated percentages of dark energy, dark matter, and baryonic matter are 72.8. 22.7, and 4.53, respectively, in nearly complete agreement with observed 72.8, 22.7, and 4.56, respectively. According to the calculation, dark energy started in 4.47 billion years ago in agreement with the observed 4.71 ± 0.98 billion years ago. The zero-energy cyclic universe is based on the space-object structures.展开更多
基金Nguyen Tat Thanh University,Ho Chi Minh city,Vietnam,for supporting this study
文摘The intermittent nature of solar irradiance is a critical constraint for the realization of continuous photocatalytic hydrogen evolution,thus urging the development of more powerful systems persistently active after illumination.This limitation is bypassed in round-the-clock photocatalytic architectures,which incorporate advanced charge storage to de-correlate pho-ton absorption and catalytic turnover time scales.The strategies involve defect-mediated trap states,multi-electron redox processes,radical-dependent stabilization,and an interfacial charge pool in Faradaic junctions to work together,leading to extended hydrogen evolution reaction(HER)in the dark.Long afterglow phosphorescent materials(e.g.,Sr_(2)MgSi_(2)O_(7):Eu^(2+),Dy^(3+))incorporated in heterojunction architectures with type II or Z-scheme band alignments can also promote fast charge separation for energy storage and subsequently enable controlled release after light quenching by the phosphorescent emis-sion.Advances in band-structure engineering,plasmonic coupling,and redox-active interfacial design result in systems with extraordinary stability and catalytic activity under natural day-night cycles.These stable photocatalytic systems off er a fundamentally new strategy for effi cient and environmentally benign sunlight-driven fuel production,meeting both per-formance and sustainability challenges to renewable energy technologies.
基金supported by the National Natural Science Foundation of China(No.52472225)the Science and Technology Plan Project of Shenzhen(No.20220808165025003),China。
文摘Visible and near-infrared photodetectors are widely used in intelligent driving,health monitoring,and other fields.However,the application of photodetectors in the near-infrared region is significantly impacted by high dark current,which can greatly reduce their performance and sensitivity,thereby limiting their effectiveness in certain applications.In this work,the introduction of a C60 back interface layer successfully mitigated back interface reactions to decrease the thickness of the Mo(S,Se)_(2)layer,tailoring the back-contact barrier and preventing reverse charge injection,resulting in a kesterite photodetector with an ultralow dark current density of 5.2×10^(-9)mA/cm^(2)and ultra-weak-light detection at levels as low as 25 pW/cm^(2).Besides,under a self-powered operation,it demonstrates outstanding performance,achieving a peak responsivity of 0.68 A/W,a wide response range spanning from 300 to 1600 nm,and an impressive detectivity of 5.27×10^(14)Jones.In addition,it offers exceptionally rapid response times,with rise and decay times of 70 and 650 ns,respectively.This research offers important insights for developing high-performance self-powered near-infrared photodetectors that have high responsivity,rapid response times,and ultralow dark current.
基金supported by the European Research Council(ERC)under the European Union's Horizon 2020 Research and Innovation Programme(Grant Agreement No.818762)the Engineering and Physical Sciences Research Council(Grant No.EP/V048953/1)and the Isaac Newton Trust(grant 22.39(m))。
文摘Although multicrystalline Si photovoltaics have been extensively studied and applied in the collection of solar energy,the same systems suffer significant efficiency losses in indoor settings,where ambient light conditions are considerably smaller in intensity and possess greater components of non-normal incidence.Yet,indoor light-driven,stand-alone devices can offer sustainable advances in next-generation technologies such as the Internet of Things.Here,we present a non-invasive solution to aid in photovoltaic indoor light collection—radially distributed waveguide-encoded lattice(RDWEL)slim films(thickness 1.5 mm).Embedded with a monotonical radial array of cylindrical waveguides(±20°),the RDWEL demonstrates seamless light collection(FoV(fields of view)=74.5°)and imparts enhancements in JSC(short circuit current density)of 44%and 14%for indoor and outdoor lighting conditions,respectively,when coupled to a photovoltaic device and compared to an unstructured but otherwise identical slim film coating.
基金supported by the National Natural Science Foundation of China(Nos.92461304 and 52202192)China Postdoctoral Science Foundation(Nos.2020M682338 and 2023T160593)+2 种基金China National Postdoctoral Program for Innovative Talents(No.BX20230329)Zhengzhou Universitythe support from the Center of New Materials and Device of Huazhong University of Science and Technology.
文摘Two-dimensional(2D)MoS_(2) is considered an excellent candidate material for nextgeneration photodetectors.However,the high dark current and low photocurrent in MoS_(2) devices severely hinder their practical application.Strategies for suppressing dark current and enhancing photocurrent should be explored.Herein,we propose a modification strategy for MoS_(2) by utilizing Ag_(70) nanoclusters(NCs)as electron reservoirs and photoabsorbers to suppress dark current and enhance the photocurrent of 2D MoS_(2) photodetector.Remarkably,the dark current is effectively suppressed by four orders of magnitude,while the photocurrent is enhanced by over tenfold upon modification with Ag_(70) NCs,compared to the pristine MoS_(2) photodetector.The reduction in dark current is attributed to charge transfer from MoS_(2) to Ag_(70) NCs owing to the strong electronwithdrawing property of Ag_(70) NCs.The increase in photocurrent benefits from enhanced optical absorption of the photodetector after Ag_(70) NCs modification and the subsequent injection of photoexcited electrons from Ag_(70) NCs to MoS_(2).Compared to isolated MoS_(2),the modulated photodetector shows exceptional improvements in several key figures of merit(such as responsivity,detectivity,external quantum efficiency,and photoswitching on/off ratio).This study opens up new avenues for building high-performance 2D MoS_(2) photodetectors.
基金supported by Korea Evaluation Institute of Industrial Technology(KEIT)grant funded by the Korea Government(MOTIE)(RS-2022-00154720,Technology Innovation Program Development of next-generation power semiconductor based on Si-on-SiC structure)the National Research Foundation of Korea(NRF)by the Korea government(RS-2023-NR076826)Global-Learning&Academic Research Institution for Master's·PhD students,and Postdocs(LAMP)Program of the National Research Foundation of Korea(NRF)by the Ministry of Education(No.RS-2024-00443714).
文摘Improving device efficiency is fundamental for advancing energy harvesting technology,particularly in systems designed to convert light energy into electrical output.In our previous studies,we developed a basic structure light pressure electric generator(Basic-LPEG),which utilized a layered configuration of Ag/Pb(Zr,Ti)O_(3)(PZT)/Pt/GaAs to generate electricity based on light-induced pressure on the PZT.In this study,we sought to enhance the performance of this Basic-LPEG by introducing Ag nanoparticles/graphene oxide(AgNPs/GO)composite units(NP-LPEG),creating upgraded harvesting device.Specifically,by depositing the AgNPs/GO units twice onto the Basic-LPEG,we observed an increase in output voltage and current from 241 mV and 3.1μA to 310 mV and 9.3μA,respectively,under a solar simulator.The increase in electrical output directly correlated with the intensity of the light pressure impacting the PZT,as well as matched the Raman measurements,finite-difference time-domain simulations,and COMSOL Multiphysics Simulation.Experimental data revealed that the enhancement in electrical output was proportional to the number of hot spots generated between Ag nanoparticles,where the electric field experienced substantial amplification.These results underline the effectiveness of AgNPs/GO units in boosting the light-induced electric generation capacity,thereby providing a promising pathway for high-efficiency energy harvesting devices.
文摘AIM:To investigate the effects of different light intensities and various mydriatic and miotic drugs on pupil accommodation in guinea pigs.METHODS:Forty-two-week-old guinea pigs were randomly divided into four groups to assess pupillary responses under varying light intensities(100,250,500 lx)and pharmacological interventions(1%atropine,1%cyclopentolate,1%tropicamide,or 2%pilocarpine).Baseline pupil size and eccentricity were recorded using a non-contact Python-based imaging system integrating edge detection and pixel-to-distance conversion.Direct illumination effects were measured at sequential time points,followed by drug administration and longitudinal tracking of pupillary changes.The protocol was repeated at 12wk of age for developmental comparisons.Postexperiment,enucleated eyes were analyzed to evaluate in vitro vs in vivo differences.RESULTS:Significant age-dependent differences in pupil dynamics were observed.Both 2-and 12-week-old guinea pigs exhibited marked pupil constriction under direct illumination(P<0.001),with decreased eccentricity post-constriction(P<0.001).Indirect illumination caused inconsistent pupil size changes(2-week:P=0.68;12-week:P=0.49).Pharmacologically,atropine,cyclopentolate,and tropicamide induced pupil dilation(P<0.001),whereas pilocarpine caused constriction(P<0.001).All drug groups showed reduced eccentricity(P<0.001).In vivo/in vitro comparisons revealed significant structural differences.CONCLUSION:This study investigates pupillary responses in developing guinea pigs,revealing a direct pupillary light reflex(PLR)with light intensity-dependent responses,while indirect PLR was undetectable.The differential effects of muscarinic modulators on pupillary responses underscore the critical role of cholinergic signaling in ocular accommodation,with age-related variations in sensitivity.Additionally,a novel non-contact measurement methodology achieved a precision of 0.01 mm for pupillary quantification,enhancing accuracy in ocular studies.
基金supported by National Natural Science Foundation of China(32494793).
文摘Cellulose frameworks have emerged as promising materials for light management due to their exceptional light-scattering capabilities and sustainable nature.Conventional biomass-derived cellulose frameworks face a fundamental trade-off between haze and transparency,coupled with impractical thicknesses(≥1 mm).Inspired by squid’s skin-peeling mechanism,this work develops a peroxyformic acid(HCOOOH)-enabled precision peeling strategy to isolate intact 10-μm-thick bamboo green(BG)frameworks—100×thinner than wood-based counterparts while achieving an unprecedented optical performance(88%haze with 80%transparency).This performance surpasses delignified biomass(transparency<40%at 1 mm)and matches engineered cellulose composites,yet requires no energy-intensive nanofibrillation.The preserved native cellulose I crystalline structure(64.76%crystallinity)and wax-coated uniaxial fibril alignment(Hermans factor:0.23)contribute to high mechanical strength(903 MPa modulus)and broadband light scattering.As a light-management layer in polycrystalline silicon solar cells,the BG framework boosts photoelectric conversion efficiency by 0.41%absolute(18.74%→19.15%),outperforming synthetic anti-reflective coatings.The work establishes a scalable,waste-to-wealth route for optical-grade cellulose materials in next-generation optoelectronics.
基金supported by the Financial Supports of the National Natural Science Foundation of China(Nos.51508056,52370030 and 42007352)the Chongqing Postgraduate Joint Training Base Project(No.JDLHPYJD2022005)the special fund of Henan Key Labora-tory of Water Pollution Control and Rehabilitation Technology(No.CJSZ2024001).
文摘This study developed a novel heterogeneous Vis-Photo+Fenton-like system by integrating visible-light-responsive Co_(3)O_(4)/TiO_(2) photocatalysis with peroxymonosulfate(PMS)activation for efficient atrazine(ATZ)degradation.The synergistic process achieved complete ATZ removal within 60 min under near-neutral pH(6.9),outperform-ing individual Fenton-like(39%)and photocatalytic(24%)processes.Key factors influencing the degradation efficiency included light sources(UV>visible),pH(optimal at 6.9),catalyst dosage(0.01 g Co_(3)O_(4)/TiO_(2)),and PMS:ATZ molar ratio(1:2).The system exhibited a synergistic coefficient of 5.03(degradation)and 1.97(miner-alization),attributed to enhanced radical generation and accelerated Co^(3+)/Co^(2+)redox cycling through photoin-duced electron transfer.Intermediate analysis revealed dealkylation,dechlorination,and oxidation pathways,with reduced toxicity of by-products(e.g.,CEAT,CIAT)confirmed by ecotoxicity assessments.The mineralization efficiency(Vis-Photo+Fenton-like)reached 83.1%,significantly higher than that of standalone processes(Fenton-like:43.2%;photocatalysis:30.5%).The catalyst demonstrated excellent stability(nearly 90%recov-ery,<1μg/L Co leaching)and practical applicability.This study provides an efficient,sludge-free,and solar-compatible strategy for eliminating persistent herbicides in water treatment.
基金supported by the National Natural Science Foundation of China under Grant 62171233the Natural Science Foundation of China,Jiangsu Province under Grant BK20241891the Jiangsu Province Graduate Research and Practice Innovation Plan under Grants SJCX24_0313 and KYCX24_1169。
文摘A high-sensitivity,low-noise single photon avalanche diode(SPAD)detector was presented based on a 180 nm BCD process.The proposed device utilizes a p-implant layer/high-voltage n-well(HVNW)junction to form a deep avalanche multiplication region for near-infrared(NIR)sensitivity enhancement.By optimizing the device size and electric field of the guard ring,the fill factor(FF)is significantly improved,further increasing photon detection efficiency(PDE).To solve the dark noise caused by the increasing active diameter,a field polysilicon gate structure connected to the p+anode was investigated,effectively suppressing dark count noise by 76.6%.It is experimentally shown that when the active diameter increases from 5 to 10μm,the FF is significantly improved from 20.7%to 39.1%,and thus the peak PDE also rises from 13.3%to 25.8%.At an excess bias voltage of 5 V,a NIR photon detection probability(PDP)of 6.8%at 905 nm,a dark count rate(DCR)of 2.12 cps/μm^(2),an afterpulsing probability(AP)of 1.2%,and a timing jitter of 216 ps are achieved,demonstrating excellent single photon detection performance.
基金supported by the National Natural Science Foundation of China,Nos.82171076(to XS)and U22A20311(to XS),82101168(to TL)Shanghai Science and technology Innovation Action Plan,No.23Y11901300(to JS)+1 种基金Science and Technology Commission of Shanghai Municipality,No.21ZR1451500(to TL)Shanghai Pujiang Program,No.22PJ1412200(to BY)。
文摘Progressive photoreceptor cell death is one of the main pathological features of age-related macular degeneration and eventually leads to vision loss.Ferroptosis has been demonstrated to be associated with retinal degenerative diseases.However,the molecular mechanisms underlying ferroptosis and photoreceptor cell death in age-related macular degeneration remain largely unexplored.Bioinformatics and biochemical analyses in this study revealed xC^(–),solute carrier family 7 member 11-regulated ferroptosis as the predominant pathological process of photoreceptor cell degeneration in a light-induced dry age-related macular degeneration mouse model.This process involves the nuclear factor-erythroid factor 2-related factor 2-solute carrier family 7 member 11-glutathione peroxidase 4 signaling pathway,through which cystine depletion,iron ion accumulation,and enhanced lipid peroxidation ultimately lead to photoreceptor cell death and subsequent visual function impairment.We demonstrated that solute carrier family 7 member 11 overexpression blocked this process by inhibiting oxidative stress in vitro and in vivo.Conversely,solute carrier family 7 member 11 knockdown or the solute carrier family 7 member 11 inhibitor sulfasalazine and ferroptosis-inducing agent erastin aggravated H_(2)O_(2)-induced ferroptosis of 661W cells.These findings indicate solute carrier family 7 member 11 may be a potential therapeutic target for patients with retinal degenerative diseases including age-related macular degeneration.
基金supported by the Quantum Science and Technology-National Science and Technology Major Project (Grant No.2024ZD0302502 for WZ)the National Natural Science Foundation of China(Grant No.92365210 for WZ)+1 种基金Tsinghua Initiative Scientific Research Program (for WZ)the project of Tsinghua University-Zhuhai Huafa Industrial Share Company Joint Institute for Architecture Optoelectronic Technologies (JIAOT,for YH)。
文摘To fully utilize the resources provided by optical fiber networks,a cross-band quantum light source generating photon pairs,where one photon in a pair is at C band and the other is at O band,is proposed in this work.This source is based on spontaneous four-wave mixing(SFWM)in a piece of shallow-ridge silicon waveguide.Theoretical analysis shows that the waveguide dispersion could be tailored by adjusting the ridge width,enabling broadband photon pair generation by SFWM across C band and O band.The spontaneous Raman scattering(SpRS)in silicon waveguides is also investigated experimentally.It shows that there are two regions in the spectrum of generated photons from SpRS,which could be used to achieve cross-band photon pair generation.A chip of shallow-ridge silicon waveguide samples with different ridge widths has been fabricated,through which cross-band photon pair generation is demonstrated experimentally.The experimental results show that the source can be achieved using dispersion-optimized shallow-ridge silicon waveguides.This cross-band quantum light source provides a way to develop new fiber-based quantum communication functions utilizing both C band and O band and extends applications of quantum networks.
文摘Light adaptation enables the vertebrate visual system to operate over a wide range of ambient illumination.Regulation of phototransduction in photoreceptors is considered a major mechanism underlying light adaptation.However,various types of neurons and glial cells exist in the retina,and whether and how all retinal cells interact to adapt to light/dark conditions at the cellular and molecular levels requires systematic investigation.Therefore,we utilized single-cell RNA sequencing to dissect retinal cell-type-specific transcriptomes during light/dark adaptation in mice.The results demonstrated that,in addition to photoreceptors,other retinal cell types also showed dynamic molecular changes and specifically enriched signaling pathways under light/dark adaptation.Importantly,Müller glial cells(MGs)were identified as hub cells for intercellular interactions,displaying complex cell‒cell communication with other retinal cells.Furthermore,light increased the transcription of the deiodinase Dio2 in MGs,which converted thyroxine(T4)to active triiodothyronine(T3).Subsequently,light increased T3 levels and regulated mitochondrial respiration in retinal cells in response to light conditions.As cones specifically express the thyroid hormone receptor Thrb,they responded to the increase in T3 by adjusting light responsiveness.Loss of the expression of Dio2 specifically in MGs decreased the light responsive ability of cones.These results suggest that retinal cells display global transcriptional changes under light/dark adaptation and that MGs coordinate intercellular communication during light/dark adaptation via thyroid hormone signaling.
基金supported by China Agriculture Research System(Grant No.CARS-21)National Natural Science Foundation of China(Grant No.31372089)。
文摘Dendrobium officinale has high medicinal value but grows slowly in natural environment due to its special CAM photosynthetic pathway.In this study,D.officinale were grown aeroponically with light/dark cycles of 12 h/12 h,4 h/4 h,and 2 h/2 h for 150 d.The photosynthetic electron transfer characteristics,photosynthetic CO_(2) fixation pathways,and accumulations of biomass and soluble polysaccharides in D.officinale leaves were studied.The results showed that the photosynthetic apparatus states of D.officinale in aeroponic cultivation under short light/dark cycles of 4 h/4 h and 2 h/2 h were better than that under 12 h/12 h.The dark net CO_(2) exchange percentages of D.officinale were negative in short light/dark cycles of 4 h/4 h and 2 h/2 h,and the daily net CO_(2) exchange amount and dry/fresh weight increases were doubled compared with those in 12 h/12 h light/dark cycle.High soluble polysaccharides content and the soluble polysaccharides yield of D.officinale were obtained in the shorter light/dark cycle of 2 h/2 h.Therefore,the photosynthetic pathway of D.officinale could be switched from CAM to C3 by short light/dark cycles of 4 h/4 h and 2 h/2 h,and its higher biomass accumulation and soluble polysaccharides yield could be obtained by the shorter light/dark cycle of 2 h/2 h in aeroponic cultivation.
文摘Circadian clocks time developmental stages of fruit flies Drosophila melanogaster, while light/dark (LD) cycles delimit emergence of adults, conceding only during the "allowed gate." Previous studies have revealed that time-to-emergence can be altered by mutations in the core clock gene period (per), or by altering the length of LD cycles. Since this evidence came from studies on genetically manipulated flies, or on flies maintained under LD cycles with limited range of periods, inferences that can be drawn are limited. Moreover, the extent of shortening or lengthening of time-to-emergence re- mains yet unknown. In order to pursue this further, we assayed time-to-emergence of D. rnelanogaster under 12 different LD cycles as well as in constant light (LL) and constant dark conditions (DD). Time-to-emergence in flies occurred earlier under LL than in LD cycles and DD. Among the LD cycles, time-to-emergence occurred earlier under T4-T8, followed by T36-T48, and then T12-T32, suggesting that egg-to-emergence duration in flies becomes shorter when the length of LD cycles deviates from 24 h, bearing a strong positive and a marginally negative correlation with day length, for values shorter and longer than 24 h, respectively. These results suggest that the extent of mismatch between the period of circadian clocks and environmental cycles determines the time-to-emergence in Drosophila.
文摘The paper presents a detailed analysis of ordinary and dark energy density of the cosmos based on two different but complimentary theories. First, and starting from the concept of the speed of light being an average over multi-fractals, we use Magueijo-Smolin’s ingenious revision of Einstein’s special relativity famous formula E = mc2 to a doubly special formula which includes the Planck energy as invariant to derive the ordinary energy density E(O) = mc2/22 and the dark energy density E(D) = mc2(21/22) wheremis the mass andcis the speed of light. Second we use the topological theory of pure gravity to reach the same result thus confirming the correctness of the theory of varying speed of light as well as the COBE, WMAP and Type 1a supernova cosmological measurements.
基金supported by the Youth Innovation Promotion Association of the Chinese Academy of Sciences and an SA-SIBS scholarshipthe National Basic Research Development Program (973 Program) of China (2011CBA00400)the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB02020100)
文摘The common marmoset (Callithrix jacchus) has attracted extensive attention for use as a non-human primate model in biomedical research, especially in the study of neuropsychiatric disorders. However, behavioral test methods are still limited in the field of marmoset research. The light-dark box is widely used for the evaluation of anxiety in rodents, but little is known about light-dark preference in marmosets. Here, we modified the light-dark test to study this behavior. The modified apparatus consisted of three compartments: one transparent open area and two closed opaque compartments. The closed compartments could be dark or light. We found that both adult and young marmosets liked to explore the open area, but the young animals showed more interest than adults. Furthermore, when one of the closed compartments was light and the other dark, the adult marmosets showed a preference for the dark compartment, but the young animals had no preference. These results suggest that the exploratory behavior and the light-dark preference in marmosets are age-dependent. Our study provides a new method to study exploration, anxiety, and fear in marmosets.
文摘In the proposed light-dark dual universe, the light universe is the observable universe with light and kinetic energy that fueled the Big Bang, and the dark universe without light and kinetic energy has been observed as dark energy since about 9 billion years after the Big Bang. The light-dark dual universe started from the zero-energy universe through the four-stage cyclic transformation. Emerging from the zero-energy universe, the four-stage transformation consists of the 11D (dimensional) positive-negative energy dual membrane universe, the 10D positive-negative energy dual string universe, the 10D positive-negative energy dual particle universe, and the 4D (light)-variable D (dark) positive-negative energy dual particle asymmetrical universe. The transformation can then be reversed back to the zero-energy universe through the reverse four-stage transformation. The light universe is an observable four-dimensional universe started with the inflation and the Big Bang, and the dark universe is a variable dimensional universe from 10D to 4D. The dark universe could be observed as dark energy only when the dark universe turned into a four-dimensional universe. The four-stage transformation explains the four force fields in our universe. The theoretical calculated percentages of dark energy, dark matter, and baryonic matter are 72.8. 22.7, and 4.53, respectively, in nearly complete agreement with observed 72.8, 22.7, and 4.56, respectively. According to the calculation, dark energy started in 4.47 billion years ago in agreement with the observed 4.71 ± 0.98 billion years ago. The zero-energy cyclic universe is based on the space-object structures.