Battery technology plays a crucial role across various sectors,powering devices from smartphones to electric vehicles and supporting grid-scale energy storage.To ensure their safety and efficiency,batteries must be ev...Battery technology plays a crucial role across various sectors,powering devices from smartphones to electric vehicles and supporting grid-scale energy storage.To ensure their safety and efficiency,batteries must be evaluated under diverse operating conditions.Traditional modeling techniques,which often rely on first principles and atomic-level calculations,struggle with practical applications due to incomplete or noisy data.Furthermore,the complexity of battery dynamics,shaped by physical,chemical,and electrochemical interactions,presents substantial challenges for precise and efficient modeling.The Transformer model,originally designed for natural language processing,has proven effective in time-series analysis and forecasting.It adeptly handles the extensive,complex datasets produced during battery cycles,efficiently filtering out noise and identifying critical features without extensive preprocessing.This capability positions Transformers as potent tools for tackling the intricacies of battery data.This review explores the application of customized Transformers in battery state estimation,emphasizing crucial aspects such as charging,health assessment,lifetime prediction,and safety monitoring.It highlights the distinct advantages of Transformer-based models and addresses ongoing challenges and future opportunities in the field.By combining data-driven AI techniques with empirical insights from battery analysis,these pre-trained models can deliver precise diagnostics and comprehensive monitoring,enhancing performance metrics like health monitoring,anomaly detection,and early-warning systems.This integrated approach promises significant improvements in battery technology management and application.展开更多
Time-resolved flow cytometry(TRFC)was used to measure metabolic differences in estrogen receptor-positive breast cancer cells.This specialty cytometry technique measures fluorescence lifetimes as a single-cell paramet...Time-resolved flow cytometry(TRFC)was used to measure metabolic differences in estrogen receptor-positive breast cancer cells.This specialty cytometry technique measures fluorescence lifetimes as a single-cell parameter thereby providing a unique approach for high-throughput cell counting and screening.Differences in fluorescence lifetime were detected and this was associated with sensitivity to the commonly prescribed therapeutic tamoxifen.Differences in fluorescence lifetime are attributed to the binding states of the autofluorescent metabolite NAD(P)H.The function of NAD(P)H is well described and in general involves cycling from a reduced to oxidized state to facilitate electron transport for the conversion of pyruvate to lactate.NAD(P)H fluorescence lifetimes depend on the bound or unbound state of the metabolite,which also relates to metabolic transitions between oxidative phosphorylation and glycolysis.To determine if fundamental metabolic profiles differ for cells that are sensitive to tamoxifen compared to those that are resistant,large populations of MCF-7 breast cancer cells were screened and fluorescence lifetimes were quantified.Additionally,metabolic differences associated with tamoxifen sensitivity were measured with a Seahorse HS mini metabolic analyzer(Agilent Technologies Inc.Santa Clara,CA)and confocal imaging.Results show that tamoxifen-resistant breast cancer cells have increased utilization of glycolysis for energy production compared to tamoxifen-sensitive breast cancer cells.This work is impacting because it establishes an early step toward developing a reliable screening technology in which large cell censuses can be differentiated for drug sensitivity in a label-free fashion.展开更多
Objective:To understand the current status and changing trends in the lifetime risk of residents in Henan Province,China to develop and die from cancer.Methods:Lifetime risk was estimated using the Adjusted for Multip...Objective:To understand the current status and changing trends in the lifetime risk of residents in Henan Province,China to develop and die from cancer.Methods:Lifetime risk was estimated using the Adjusted for Multiple Primaries(AMP)method,incorporating cancer incidence,mortality,and all-cause mortality data from 55 cancer registries in Henan Province,China.Estimates were calculated overall and stratified by gender and area.The annual percent change(APC)in lifetime risk from 2010 to 2020,stratified by gender and cancer site,was estimated using a log-linear model.Results:In 2020,the lifetime risk of developing and dying from cancer was 30.19%(95%CI:29.63%-30.76%)and 23.62%(95%CI:23.28%-23.95%),respectively.These estimates were higher in men,with values of 31.22%(95%CI:30.59%-31.85%)for developing cancer and 26.73%(95%CI:26.29%-27.16%)for dying from cancer,compared with women,who had values of 29.02%(95%CI:28.12%-29.91%)and 20.08%(95%CI:19.51%-20.64%),respectively.There were also geographical differences,with higher estimates in urban areas compared with rural areas.Residents had the highest lifetime risk of developing lung cancer,with a rate of 6.94%,followed by breast cancer(4.14%),stomach cancer(3.95%),esophageal cancer(3.75%),and liver cancer(2.86%).Similarly,the highest lifetime risk of dying from cancer was observed for the following sites:lung(5.99%),stomach(3.60%),esophagus(3.39%),liver(2.78%),and colorectum(1.55%).Overall,the lifetime risk of developing cancer increased,with an APC of 0.75%(P<0.05).Varying trends were observed across different cancer sites.There were gradual decreases in nasopharynx,esophagus,stomach,and liver cancers.Conversely,increasing trends were noted for most other sites,with the highest APCs observed in thyroid,prostate,lymphoma,kidney,and gallbladder cancers.Conclusion:The lifetime risks of developing and dying from cancer were 30.19%and 23.62%,respectively.Variations in cancer risk across different regions,genders,specific cancer sites,and over calendar years provide important information for cancer prevention and policy making in the population.展开更多
A novel series of Mn^(4+)and Eu^(3+)co-doped double-perovskite Ca_(2)ScNbO_(6)(CSNO)phosphor was synthesized in this work.The phase structure and photoluminescence properties were systematically researched.Due to the ...A novel series of Mn^(4+)and Eu^(3+)co-doped double-perovskite Ca_(2)ScNbO_(6)(CSNO)phosphor was synthesized in this work.The phase structure and photoluminescence properties were systematically researched.Due to the different thermal quenching properties of Mn^(4+)and Eu^(3+)ions,a dual-mode temperature measurement technique over a wide temperature range was established.The CSNO phosphor co-doped with Mn^(4+)and Eu^(3+)ions has a self-calibrated effect due to the different thermal quenching effects of Mn^(4+)and Eu^(3+)ions.The maximum relative sensitivity(S_(R1,R2))values of the CSNO:0.1 mol%Mn^(4+)/0.5 mol%Eu^(3+)phosphor are determined to be 1.92%/K and 1.76%/K at 523 K,under excitation at 296 and 396 nm,respectively.Additionally,the temperature-dependent lifetime of Mn^(4+)indicates that the maximum S_(R3,R4) values for the synthesized phosphors are 1.669%/K(λ_(ex)=296 nm)and1.664%/K(λ_(ex)=396 nm),re spectively.It is interesting to note that different SRcan be obtained by varying the excitation wavelength to the CSNO:0.1 mol%Mn^(4+)/0.5 mol%Eu^(3+)phosphor.Ultimately,this work provides a reference for the development of highly sensitive fluorescent materials based on dualemitting centers of double-perovskite.展开更多
The dicarbon(C_(2))molecule is an important molecular species observed in many carbon-containing gaseous environments.The spectroscopic and dissociative studies of C_(2)have attracted great attention for a long time f...The dicarbon(C_(2))molecule is an important molecular species observed in many carbon-containing gaseous environments.The spectroscopic and dissociative studies of C_(2)have attracted great attention for a long time for understanding its electronic characters as well as the evolution and cycling of carbon in the universe.In this study,the lifetimes of C_(2)populated at the three high-lying electronic states of(2-4)^(3)Δ_(g) in the vacuum ultraviolet(VUV)region have been experimentally measured using a time-of-flight mass spectrometer and the VUV-pump-UV-probe photoionization scheme.The measurements showed that all the rovibronic levels in the 2(g)^(3)Δ_(g) state exhibit shorter lifetimes than the dynamical limit of the experimental method,consistent with the theoretically predicted radiative lifetimes.Dependence of the lifetime on the vibrational level was observed in the 3^(3)Δ_(g) state,and a marginal rotational dependence was noticed in the vʹ=1 vibrational level.For the 4^(3)Δ_(g) state,the rotationally resolved lifetimes in the vʹ=1 vibrational level were found to be slightly longer than those in the vʹ=0 and 2 vibrational levels.Such a complicated dependence of the lifetime on the rovibronic level makes further experimental and theoretical investigations highly desired for understanding the dynamics in the high-lying excited states of C_(2).展开更多
In order to accurately evaluate the creep-fatigue lifetime of GH720Li superalloy,a lifetime prediction model was established,reflecting the interaction between creep damage and low-cycle fatigue damage.The creep-fatig...In order to accurately evaluate the creep-fatigue lifetime of GH720Li superalloy,a lifetime prediction model was established,reflecting the interaction between creep damage and low-cycle fatigue damage.The creep-fatigue lifetime prediction results of GH720Li superalloy with an average grain size of 17.3μm were essentially within a scatter band of 2 times,indicating a strong agreement between the predicted lifetimes and experimental data.Then,considering that the grain size of the dual-property turbine disc decreases from the rim to the center,a grain-size-sensitive lifetime prediction model for creep-fatigue was established by introducing the ratio of grain boundary area.The improved model overcame the limitation of most traditional prediction methods,which failed to reflect the relationship between grain size and creep-fatigue lifetime.展开更多
The lifetime of the 5d6s ^(3)D_(1) clock state in Lu^(+)exhibits a large discrepancy between experimental and theoretical values.To resolve this discrepancy,we perform calculations of the magnetic dipole transition ra...The lifetime of the 5d6s ^(3)D_(1) clock state in Lu^(+)exhibits a large discrepancy between experimental and theoretical values.To resolve this discrepancy,we perform calculations of the magnetic dipole transition rate between the 5d6s ^(3)D_(1) and 6s^(2)^(1)S_(0) states using the multi-configuration Dirac–Hartree–Fock method.The effects of electron correlations,Breit interaction,and quantum electrodynamics(QED)corrections on the transition parameters are analyzed systematically.The calculated 5d6s ^(3)D_(1)–6s^(2)^(1)S_(0) magnetic dipole transition rate,1.69(7)×10^(-6)s^(-1),shows excellent agreement with the experimental measurement.To accurately determine the lifetime of the^(3)D_(1) clock state,the hyperfine-induced electric quadrupole transition rate between the^(3)D_(1) and ground states is also calculated.Furthermore,the rates of various transitions between states in the 5d6s configuration are obtained.The lifetimes of the ^(3)D_(2,3)and ^(1)D_(2) states are consistent with previous theoretical calculations.展开更多
Schottky mass spectrometry utilizing heavy-ion storage rings is a powerful technique for the precise mass and decay half-life measurements of highly charged ions.Owing to the nondestructive ion detection features of S...Schottky mass spectrometry utilizing heavy-ion storage rings is a powerful technique for the precise mass and decay half-life measurements of highly charged ions.Owing to the nondestructive ion detection features of Schottky noise detectors,the number of stored ions in the ring is determined by the peak area in the measured revolution frequency spectrum.Because of their intrinsic amplitude-frequency characteristic(AFC),Schottky detector systems exhibit varying sensitivities at different frequencies.Using low-energy electron-cooled stored ions,a new method is developed to calibrate the AFC curve of the Schottky detector system of the Experimental Cooler Storage Ring(CSRe)storage ring located in Lanzhou,China.Using the amplitude-calibrated frequency spectrum,a notable refinement was observed in the precision of both the peak position and peak area.As a result,the storage lifetimes of the electron-cooled fully ionized^(56)Fe^(26+)ions were determined with high precision at beam energies of 13.7 and 116.4 MeV/u,despite of frequency drifts during the experiment.When electron cooling was turned off,the effective vacuum condition experienced by the 116.4 MeV/u^(56)Fe^(26+)ions was determined using amplitude-calibrated spectra,revealing a value of 2×10^(−10)mbar,which is consistent with vacuum gauge readings along the CSRe ring.The method reported herein will be adapted for the next-generation storage ring of the HIAF facility under construction in Huizhou,China.It can also be adapted to other storage ring facilities worldwide to improve precision and enhance lifetime measurements using many ions in the ring.展开更多
Stimulated emission and lasing of GaN-based laser diodes(LDs)were reported at 1995[1]and 1996[2],right after the breakthrough of p-type doping[3−5],material quality[6]and the invention of high-brightness GaN-based LED...Stimulated emission and lasing of GaN-based laser diodes(LDs)were reported at 1995[1]and 1996[2],right after the breakthrough of p-type doping[3−5],material quality[6]and the invention of high-brightness GaN-based LEDs[7,8].However,it took much longer time for GaN-based LDs to achieve high power,high wall plug efficiency,and long lifetime.Until 2019,Nichia reported blue LDs with these performances[9],which open wide applications with GaN-based blue LDs.展开更多
A minority carrier lifetime of 25.46 μs in a P-type 4H-SiC epilayer has been attained through sequential thermal oxidation and hydrogen annealing. Thermal oxidation can enhance the minority carrier lifetime in the 4H...A minority carrier lifetime of 25.46 μs in a P-type 4H-SiC epilayer has been attained through sequential thermal oxidation and hydrogen annealing. Thermal oxidation can enhance the minority carrier lifetime in the 4H-SiC epilayer by reducing carbon vacancies. However, this process also generates carbon clusters with limited diffusivity and contributes to the enlargement of surface pits on the 4H-SiC. High-temperature hydrogen annealing effectively reduces stacking fault and dislocation density. Moreover, electron spin resonance analysis indicates a significant reduction in carbon vacancy defects after hydrogen annealing. The mechanisms of the elimination of carbon vacancies by hydrogen annealing include the decomposition of carbon clusters formed during thermal oxidation and the low-pressure selective etching by hydrogen,which increases the carbon content on the 4H-SiC surface and facilitates carbon diffusion. Consequently, the combination of thermal oxidation and hydrogen annealing eliminates carbon vacancies more effectively, substantially enhancing the minority carrier lifetime in P-type 4H-SiC. This improvement is advantageous for the application of high-voltage SiC bipolar devices.展开更多
Minority carrier lifetimesτare a fundamental parameter in semiconductor devices,representing the average time it takes for excess minority carriers to recombine.This characteristic is crucial for understanding and op...Minority carrier lifetimesτare a fundamental parameter in semiconductor devices,representing the average time it takes for excess minority carriers to recombine.This characteristic is crucial for understanding and optimizing the performance of semiconductor materials,as it directly influences charge carrier dynamics and overall device efficiency.This work presents a development of PbS thin film deposited by thermal evaporation,at which the PbS thin film was further employed for structural,optical properties,andτ.Especially,the PbS film is probed with an in-house setup for identifying theτ.The procedure is to subject the PbS thin film with a flashlight from a light source with a middle rotating frequency.The derivedτin the in-house characterization setup agrees well with the value from the higher cost characterizing approach of photoluminescence.Therefore,the in-house setup provides additional tools for identifying theτvalues for semiconductor devices.展开更多
The widespread usage of rechargeable batteries in portable devices,electric vehicles,and energy storage systems has underscored the importance for accurately predicting their lifetimes.However,data scarcity often limi...The widespread usage of rechargeable batteries in portable devices,electric vehicles,and energy storage systems has underscored the importance for accurately predicting their lifetimes.However,data scarcity often limits the accuracy of prediction models,which is escalated by the incompletion of data induced by the issues such as sensor failures.To address these challenges,we propose a novel approach to accommodate data insufficiency through achieving external information from incomplete data samples,which are usually discarded in existing studies.In order to fully unleash the prediction power of incomplete data,we have investigated the Multiple Imputation by Chained Equations(MICE)method that diversifies the training data through exploring the potential data patterns.The experimental results demonstrate that the proposed method significantly outperforms the baselines in the most considered scenarios while reducing the prediction root mean square error(RMSE)by up to 18.9%.Furthermore,we have also observed that the penetration of incomplete data benefits the explainability of the prediction model through facilitating the feature selection.展开更多
We study age-structured branching models with reproduction law depending on the remaining lifetime of the parent. The lifespan of an individual is determined at its birth and its remaining lifetime decreases at the un...We study age-structured branching models with reproduction law depending on the remaining lifetime of the parent. The lifespan of an individual is determined at its birth and its remaining lifetime decreases at the unit speed. The models, without or with immigration, are constructed as measure-valued processes by pathwise unique solutions of stochastic equations driven by time-space Poisson random measures. In the subcritical branching case, we give a sufficient condition for the ergodicity of the process with immigration. Two large number laws and a central limit theorem of the occupation times are proved.展开更多
Room-temperature phosphorescence(RTP)materials exhibiting long emission lifetimes have gained increasing attention owing to their potential applications in encryption,anti-counterfeiting,and sensing.However,most polym...Room-temperature phosphorescence(RTP)materials exhibiting long emission lifetimes have gained increasing attention owing to their potential applications in encryption,anti-counterfeiting,and sensing.However,most polymers exhibit a short RTP lifetime(<1 s)because of their unstable triplet excitons.Herein,a new strategy of polymer chain stabilized phosphorescence(PCSP),which yields a new kind of RTP polymers with an ultralong lifetime and a sensitive oxygen response,has been reported.The rigid polymer chains of poly(methyl mathacrylate)(PMMA)immobilize the emitter molecules through multiple interactions between them,giving rise to efficient RTP.Meanwhile,the loosely-packed amorphous polymer chains allow oxygen to diffuse inside,endowing the doped polymers with oxygen sensitivity.Flexible and transparent polymer films exhibited an impressive ultralong RTP lifetime of 2.57 s at room temperature in vacuum,which was among the best performance of PMMA.Intriguingly,their RTP was rapidly quenched in the presence of oxygen.Furthermore,RTP microparticles with a diameter of 1.63μm were synthesized using in situ dispersion polymerization technique.Finally,oxygen sensors for quick,visual,and quantitative oxygen detection were developed based on the RTP microparticles through phosphorescence lifetime and image analysis.With distinctive advantages such as an ultralong lifetime,oxygen sensitivity,ease of fabrication,and cost-effectiveness,PCSP opens a new avenue to sensitive materials for oxygen detection.展开更多
A high speed LIGBT with localized lifetime control by using high dose and low en ergy helium implantation(LC-LIGBT) is proposed.Compared with conventional LIGB Ts,particle irradiation results show that trade-off relat...A high speed LIGBT with localized lifetime control by using high dose and low en ergy helium implantation(LC-LIGBT) is proposed.Compared with conventional LIGB Ts,particle irradiation results show that trade-off relationship between turn- off time and forward voltage drop is improved.At the same time,the forward volta ge drop and turn-off time of such device are researched,when localized lifetime control region place near the p+-n junction,even in p+ anode.The results s how for the first time,helium ions,which stop in the p+ anode,also contribute to the forward voltage drop increasing and turn-off time reducing.展开更多
A method for fast gate oxide TDDB lifetime prediction for process control monitors (PCM) is proposed. For normal TDDB lifetime prediction at operation voltage and temperature, we must ge(three lifetimes at relative...A method for fast gate oxide TDDB lifetime prediction for process control monitors (PCM) is proposed. For normal TDDB lifetime prediction at operation voltage and temperature, we must ge(three lifetimes at relative low stress voltages and operation temperature. Then we use these three lifetimes to project the TDDB lifetime at operation voltage and temperature via the E-model. This requires a very long time for measurement. With our new method,it can be calculated quickly by projecting the TDDB lifetime at operation voltage and temperature with measurement data at relatively high stress voltages. Our test case indicates that this method is very effective. And the result with our new method is very close to that with the normal TDDB lifetime prediction method. But the measurement time is less than 50s for one sample,less than 1/100000 of that with the normal prediction method. With this new method,we can monitor gate oxide TDDB lifetime on-line.展开更多
Although magnesium(Mg)alloys are the lightest among structural metals,their inadequate corrosion resistance makes them difficult to be used in energy-saving lightweight structures.Moreover,the improvement in corrosion...Although magnesium(Mg)alloys are the lightest among structural metals,their inadequate corrosion resistance makes them difficult to be used in energy-saving lightweight structures.Moreover,the improvement in corrosion resistance by the conventional surface treatments is always achieved at the expense of sacrificing the fatigue lifetime.In this study,high purity aluminum(Al)and AlMgSi alloy coatings were deposited on Mg alloys via an in-situ micro-forging(MF)assisted cold spray(MFCS)process for simultaneous higher corrosion resistance and longer fatigue lifetime.Besides contributing to a highly dense microstructure,the in-situ MF also greatly refines the grain of the deposited Al alloy coating to the sub-micrometer range due to the enhanced dynamic recrystallization and also generates notable compressive residual stress up to 210 MPa within the AlMgSi coating.The absence of secondary phases in the AlMgSi alloy coatings enable the coated Mg alloy with corrosion resistance,which is even better than its bulk AlMgSi counterparts.The unique combination of refined microstructure and the prominent compressive residual stress within the AlMgSi coatings,effectively delayed the crack initiation upon repeated dynamic loading,thereby leading to∼10 times increase in the fatigue lifetime of the Mg Alloy.However,although residual stress is also generated in the submmicro-sized grained pure Al coating,the low intrinsic strength of the coating layer leads to a lower fatigue lifetime than the uncoated Mg alloy substrate.The present work is aimed to provide a facile approach to break the trade-off between corrosion resistance improvement and fatigue lifetime of the coated Mg alloys.展开更多
A class of lifetime distributions, new better than equilibrium in expectation (NBEE), and its dual, new worse than equilibrium in expectation (NWEE), are studied based on the comparison of the expectations of life...A class of lifetime distributions, new better than equilibrium in expectation (NBEE), and its dual, new worse than equilibrium in expectation (NWEE), are studied based on the comparison of the expectations of lifetime X and its equilibrium Xo. The relationships of the NBEE (NWEE) and other lifetime distribution classes are discussed. It is proved that the NBEE is very large, and increasing failure rate (IFR), new better than used (NBU) and the L class are its subclasses. The closure properties under two kinds of reliability operations, namely, convolution and mixture, are investigated. Furthermore, a Poisson shock model and a special cumulative model are also studied, in which the necessary and sufficient conditions for the NBEE (NWEE) lifetime distribution of the systems are established. In the homogenous Poisson shock model, the system lifetime belongs to NBEE(NWEE) if and only if the corresponding discrete failure distribution belongs to the discrete NBEE(NWEE). While in the cumulative model, the system has an NBEE lifetime if and only if the stochastic threshold of accumulated damage is NBEE.展开更多
Up to present, there have been no studies concerning the application of fluid-structure interaction(FSI) analysis to the lifetime estimation of multi-stage centrifugal compressors under dangerous unsteady aerodynami...Up to present, there have been no studies concerning the application of fluid-structure interaction(FSI) analysis to the lifetime estimation of multi-stage centrifugal compressors under dangerous unsteady aerodynamic excitations. In this paper, computational fluid dynamics(CFD) simulations of a three-stage natural gas pipeline centrifugal compressor are performed under near-choke and near-surge conditions, and the unsteady aerodynamic pressure acting on impeller blades are obtained. Then computational structural dynamics(CSD) analysis is conducted through a one-way coupling FSI model to predict alternating stresses in impeller blades. Finally, the compressor lifetime is estimated using the nominal stress approach. The FSI results show that the impellers of latter stages suffer larger fluctuation stresses but smaller mean stresses than those at preceding stages under near-choke and near-surge conditions. The most dangerous position in the compressor is found to be located near the leading edge of the last-stage impeller blade. Compressor lifetime estimation shows that the investigated compressor can run up to 102.7 h under the near-choke condition and 200.2 h under the near-surge condition. This study is expected to provide a scientific guidance for the operation safety of natural gas pipeline centrifugal compressors.展开更多
Availability is a main feature of design and operation of all engineering system. Recently,availability evaluation of periodical inspection systems with different structures is at the center of attention due to the wi...Availability is a main feature of design and operation of all engineering system. Recently,availability evaluation of periodical inspection systems with different structures is at the center of attention due to the wide application in engineering. In this paper, an analytical and probabilistic availability model for periodical inspection system is proposed by a new recursively algorithm,which can achieve limiting average availability and instantaneous availability of periodical inspection system under arbitrary lifetime and repair-time distributions. Then three application examples are presented, the systems lifetime and repair-time are respectively fellow exponential/exponential,Weibull/normal and Weibull/lognormal distribution. Finally, a Weibull/lognormal system is studied to analyze the dynamic relationship between inspection period and availability. The results indicate that the proposed approach can provide the technology support for improving system availability and determining reasonable inspection period.展开更多
基金the support provided by the California Department of Transportation(Caltrans)through the Fiscal Year 2023-24 grant(65A0686)for the research project titled‘Revolutions in Battery technologies and Future Electric Vehicles’。
文摘Battery technology plays a crucial role across various sectors,powering devices from smartphones to electric vehicles and supporting grid-scale energy storage.To ensure their safety and efficiency,batteries must be evaluated under diverse operating conditions.Traditional modeling techniques,which often rely on first principles and atomic-level calculations,struggle with practical applications due to incomplete or noisy data.Furthermore,the complexity of battery dynamics,shaped by physical,chemical,and electrochemical interactions,presents substantial challenges for precise and efficient modeling.The Transformer model,originally designed for natural language processing,has proven effective in time-series analysis and forecasting.It adeptly handles the extensive,complex datasets produced during battery cycles,efficiently filtering out noise and identifying critical features without extensive preprocessing.This capability positions Transformers as potent tools for tackling the intricacies of battery data.This review explores the application of customized Transformers in battery state estimation,emphasizing crucial aspects such as charging,health assessment,lifetime prediction,and safety monitoring.It highlights the distinct advantages of Transformer-based models and addresses ongoing challenges and future opportunities in the field.By combining data-driven AI techniques with empirical insights from battery analysis,these pre-trained models can deliver precise diagnostics and comprehensive monitoring,enhancing performance metrics like health monitoring,anomaly detection,and early-warning systems.This integrated approach promises significant improvements in battery technology management and application.
基金the National Institute of Health for supporting this research under grants NIH R35GM152076,NIH 1SC1GM127175-01,NIH T32GM148394.
文摘Time-resolved flow cytometry(TRFC)was used to measure metabolic differences in estrogen receptor-positive breast cancer cells.This specialty cytometry technique measures fluorescence lifetimes as a single-cell parameter thereby providing a unique approach for high-throughput cell counting and screening.Differences in fluorescence lifetime were detected and this was associated with sensitivity to the commonly prescribed therapeutic tamoxifen.Differences in fluorescence lifetime are attributed to the binding states of the autofluorescent metabolite NAD(P)H.The function of NAD(P)H is well described and in general involves cycling from a reduced to oxidized state to facilitate electron transport for the conversion of pyruvate to lactate.NAD(P)H fluorescence lifetimes depend on the bound or unbound state of the metabolite,which also relates to metabolic transitions between oxidative phosphorylation and glycolysis.To determine if fundamental metabolic profiles differ for cells that are sensitive to tamoxifen compared to those that are resistant,large populations of MCF-7 breast cancer cells were screened and fluorescence lifetimes were quantified.Additionally,metabolic differences associated with tamoxifen sensitivity were measured with a Seahorse HS mini metabolic analyzer(Agilent Technologies Inc.Santa Clara,CA)and confocal imaging.Results show that tamoxifen-resistant breast cancer cells have increased utilization of glycolysis for energy production compared to tamoxifen-sensitive breast cancer cells.This work is impacting because it establishes an early step toward developing a reliable screening technology in which large cell censuses can be differentiated for drug sensitivity in a label-free fashion.
基金supported by Henan Province Science and Technology Tackling Key Issues Project(grant number:232102310166).
文摘Objective:To understand the current status and changing trends in the lifetime risk of residents in Henan Province,China to develop and die from cancer.Methods:Lifetime risk was estimated using the Adjusted for Multiple Primaries(AMP)method,incorporating cancer incidence,mortality,and all-cause mortality data from 55 cancer registries in Henan Province,China.Estimates were calculated overall and stratified by gender and area.The annual percent change(APC)in lifetime risk from 2010 to 2020,stratified by gender and cancer site,was estimated using a log-linear model.Results:In 2020,the lifetime risk of developing and dying from cancer was 30.19%(95%CI:29.63%-30.76%)and 23.62%(95%CI:23.28%-23.95%),respectively.These estimates were higher in men,with values of 31.22%(95%CI:30.59%-31.85%)for developing cancer and 26.73%(95%CI:26.29%-27.16%)for dying from cancer,compared with women,who had values of 29.02%(95%CI:28.12%-29.91%)and 20.08%(95%CI:19.51%-20.64%),respectively.There were also geographical differences,with higher estimates in urban areas compared with rural areas.Residents had the highest lifetime risk of developing lung cancer,with a rate of 6.94%,followed by breast cancer(4.14%),stomach cancer(3.95%),esophageal cancer(3.75%),and liver cancer(2.86%).Similarly,the highest lifetime risk of dying from cancer was observed for the following sites:lung(5.99%),stomach(3.60%),esophagus(3.39%),liver(2.78%),and colorectum(1.55%).Overall,the lifetime risk of developing cancer increased,with an APC of 0.75%(P<0.05).Varying trends were observed across different cancer sites.There were gradual decreases in nasopharynx,esophagus,stomach,and liver cancers.Conversely,increasing trends were noted for most other sites,with the highest APCs observed in thyroid,prostate,lymphoma,kidney,and gallbladder cancers.Conclusion:The lifetime risks of developing and dying from cancer were 30.19%and 23.62%,respectively.Variations in cancer risk across different regions,genders,specific cancer sites,and over calendar years provide important information for cancer prevention and policy making in the population.
基金Project supported by National Natural Science Foundation of China(12004062)Natural Science Foundation of Chongqing(CSTB2024NSCQLZX0030)+1 种基金the Science and Technology Research Program of Chongqing Municipal Education Commission(KJZD-M202300601,KJZD-K202300612,KJQN202300613)Venture and Innovation Support Program for Chongqing Overseas Returnees(CX2019085,CX2022024)。
文摘A novel series of Mn^(4+)and Eu^(3+)co-doped double-perovskite Ca_(2)ScNbO_(6)(CSNO)phosphor was synthesized in this work.The phase structure and photoluminescence properties were systematically researched.Due to the different thermal quenching properties of Mn^(4+)and Eu^(3+)ions,a dual-mode temperature measurement technique over a wide temperature range was established.The CSNO phosphor co-doped with Mn^(4+)and Eu^(3+)ions has a self-calibrated effect due to the different thermal quenching effects of Mn^(4+)and Eu^(3+)ions.The maximum relative sensitivity(S_(R1,R2))values of the CSNO:0.1 mol%Mn^(4+)/0.5 mol%Eu^(3+)phosphor are determined to be 1.92%/K and 1.76%/K at 523 K,under excitation at 296 and 396 nm,respectively.Additionally,the temperature-dependent lifetime of Mn^(4+)indicates that the maximum S_(R3,R4) values for the synthesized phosphors are 1.669%/K(λ_(ex)=296 nm)and1.664%/K(λ_(ex)=396 nm),re spectively.It is interesting to note that different SRcan be obtained by varying the excitation wavelength to the CSNO:0.1 mol%Mn^(4+)/0.5 mol%Eu^(3+)phosphor.Ultimately,this work provides a reference for the development of highly sensitive fluorescent materials based on dualemitting centers of double-perovskite.
基金supported by the National Natural Science Foundation of China(No.22122308)Beijing National Laboratory for Molecular Sciences(BNLMS).Hong Gao is also partially supported by the Innovation Capability Support Program of Shaanxi Province(2023-CX-TD-49)supported by the China Postdoctoral Science Foundation(No.2020TQ0324).
文摘The dicarbon(C_(2))molecule is an important molecular species observed in many carbon-containing gaseous environments.The spectroscopic and dissociative studies of C_(2)have attracted great attention for a long time for understanding its electronic characters as well as the evolution and cycling of carbon in the universe.In this study,the lifetimes of C_(2)populated at the three high-lying electronic states of(2-4)^(3)Δ_(g) in the vacuum ultraviolet(VUV)region have been experimentally measured using a time-of-flight mass spectrometer and the VUV-pump-UV-probe photoionization scheme.The measurements showed that all the rovibronic levels in the 2(g)^(3)Δ_(g) state exhibit shorter lifetimes than the dynamical limit of the experimental method,consistent with the theoretically predicted radiative lifetimes.Dependence of the lifetime on the vibrational level was observed in the 3^(3)Δ_(g) state,and a marginal rotational dependence was noticed in the vʹ=1 vibrational level.For the 4^(3)Δ_(g) state,the rotationally resolved lifetimes in the vʹ=1 vibrational level were found to be slightly longer than those in the vʹ=0 and 2 vibrational levels.Such a complicated dependence of the lifetime on the rovibronic level makes further experimental and theoretical investigations highly desired for understanding the dynamics in the high-lying excited states of C_(2).
基金financially supported by the National Natural Science Foundation of China(Nos.52306183,12272245,11832007,12172238)the Natural Science Foundation of Zhejiang Province,China(No.LQ23E050022)+1 种基金the Natural Science Foundation of Sichuan Province,China(Nos.2022NSFSC0324,2022JDJQ0011)the Open Project of Failure Mechanics and Engineering Disaster Prevention,Key Laboratory of Sichuan Province,China(No.FMEDP202305)。
文摘In order to accurately evaluate the creep-fatigue lifetime of GH720Li superalloy,a lifetime prediction model was established,reflecting the interaction between creep damage and low-cycle fatigue damage.The creep-fatigue lifetime prediction results of GH720Li superalloy with an average grain size of 17.3μm were essentially within a scatter band of 2 times,indicating a strong agreement between the predicted lifetimes and experimental data.Then,considering that the grain size of the dual-property turbine disc decreases from the rim to the center,a grain-size-sensitive lifetime prediction model for creep-fatigue was established by introducing the ratio of grain boundary area.The improved model overcame the limitation of most traditional prediction methods,which failed to reflect the relationship between grain size and creep-fatigue lifetime.
基金supported by the Innovation Program for Quantum Science and Technology(Grant No.2021ZD0300902)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB35010202)+1 种基金the Operation and Maintenance of Major Scientific and Technological Infrastructure of the Chinese Academy of Sciences(GrantNo.2024000014)the Natural Science Foundation of Shaanxi Province(Grant No.2025JC-YBMS-038)。
文摘The lifetime of the 5d6s ^(3)D_(1) clock state in Lu^(+)exhibits a large discrepancy between experimental and theoretical values.To resolve this discrepancy,we perform calculations of the magnetic dipole transition rate between the 5d6s ^(3)D_(1) and 6s^(2)^(1)S_(0) states using the multi-configuration Dirac–Hartree–Fock method.The effects of electron correlations,Breit interaction,and quantum electrodynamics(QED)corrections on the transition parameters are analyzed systematically.The calculated 5d6s ^(3)D_(1)–6s^(2)^(1)S_(0) magnetic dipole transition rate,1.69(7)×10^(-6)s^(-1),shows excellent agreement with the experimental measurement.To accurately determine the lifetime of the^(3)D_(1) clock state,the hyperfine-induced electric quadrupole transition rate between the^(3)D_(1) and ground states is also calculated.Furthermore,the rates of various transitions between states in the 5d6s configuration are obtained.The lifetimes of the ^(3)D_(2,3)and ^(1)D_(2) states are consistent with previous theoretical calculations.
基金supported by the National Key R&D Program of China (No. 2023YFA1606401 and 2018YFA0404401)the Young Scholar of Regional Development,CAS ([2023] 15)+1 种基金Chinese Academy of Sciences Stable Support for Young Teams in Basic Research (No. YSBR-002)Special Fund for Strategic Pilot Technology of Chinese Academy of Sciences (No. XDB34000000)
文摘Schottky mass spectrometry utilizing heavy-ion storage rings is a powerful technique for the precise mass and decay half-life measurements of highly charged ions.Owing to the nondestructive ion detection features of Schottky noise detectors,the number of stored ions in the ring is determined by the peak area in the measured revolution frequency spectrum.Because of their intrinsic amplitude-frequency characteristic(AFC),Schottky detector systems exhibit varying sensitivities at different frequencies.Using low-energy electron-cooled stored ions,a new method is developed to calibrate the AFC curve of the Schottky detector system of the Experimental Cooler Storage Ring(CSRe)storage ring located in Lanzhou,China.Using the amplitude-calibrated frequency spectrum,a notable refinement was observed in the precision of both the peak position and peak area.As a result,the storage lifetimes of the electron-cooled fully ionized^(56)Fe^(26+)ions were determined with high precision at beam energies of 13.7 and 116.4 MeV/u,despite of frequency drifts during the experiment.When electron cooling was turned off,the effective vacuum condition experienced by the 116.4 MeV/u^(56)Fe^(26+)ions was determined using amplitude-calibrated spectra,revealing a value of 2×10^(−10)mbar,which is consistent with vacuum gauge readings along the CSRe ring.The method reported herein will be adapted for the next-generation storage ring of the HIAF facility under construction in Huizhou,China.It can also be adapted to other storage ring facilities worldwide to improve precision and enhance lifetime measurements using many ions in the ring.
基金supported by the Natural Science Foundation of Jiangsu Province(Grant.BK20232042).
文摘Stimulated emission and lasing of GaN-based laser diodes(LDs)were reported at 1995[1]and 1996[2],right after the breakthrough of p-type doping[3−5],material quality[6]and the invention of high-brightness GaN-based LEDs[7,8].However,it took much longer time for GaN-based LDs to achieve high power,high wall plug efficiency,and long lifetime.Until 2019,Nichia reported blue LDs with these performances[9],which open wide applications with GaN-based blue LDs.
基金Project supported by the National Key Research and Development Program of China (Grant Nos. 2023YFB3609500 and 2023YFB3609502)the National Natural Science Foundation of China (Grant No. 62274137)+1 种基金the Natural Science Foundation of Jiangxi Province, China (Grant No. 20232BAB202043)the Science and Technology Project of Fujian Province of China (Grant No. 2020I0001)。
文摘A minority carrier lifetime of 25.46 μs in a P-type 4H-SiC epilayer has been attained through sequential thermal oxidation and hydrogen annealing. Thermal oxidation can enhance the minority carrier lifetime in the 4H-SiC epilayer by reducing carbon vacancies. However, this process also generates carbon clusters with limited diffusivity and contributes to the enlargement of surface pits on the 4H-SiC. High-temperature hydrogen annealing effectively reduces stacking fault and dislocation density. Moreover, electron spin resonance analysis indicates a significant reduction in carbon vacancy defects after hydrogen annealing. The mechanisms of the elimination of carbon vacancies by hydrogen annealing include the decomposition of carbon clusters formed during thermal oxidation and the low-pressure selective etching by hydrogen,which increases the carbon content on the 4H-SiC surface and facilitates carbon diffusion. Consequently, the combination of thermal oxidation and hydrogen annealing eliminates carbon vacancies more effectively, substantially enhancing the minority carrier lifetime in P-type 4H-SiC. This improvement is advantageous for the application of high-voltage SiC bipolar devices.
基金funded by The Vietnam Ministry of Education and Training under project number B2024-BKA-12.
文摘Minority carrier lifetimesτare a fundamental parameter in semiconductor devices,representing the average time it takes for excess minority carriers to recombine.This characteristic is crucial for understanding and optimizing the performance of semiconductor materials,as it directly influences charge carrier dynamics and overall device efficiency.This work presents a development of PbS thin film deposited by thermal evaporation,at which the PbS thin film was further employed for structural,optical properties,andτ.Especially,the PbS film is probed with an in-house setup for identifying theτ.The procedure is to subject the PbS thin film with a flashlight from a light source with a middle rotating frequency.The derivedτin the in-house characterization setup agrees well with the value from the higher cost characterizing approach of photoluminescence.Therefore,the in-house setup provides additional tools for identifying theτvalues for semiconductor devices.
文摘The widespread usage of rechargeable batteries in portable devices,electric vehicles,and energy storage systems has underscored the importance for accurately predicting their lifetimes.However,data scarcity often limits the accuracy of prediction models,which is escalated by the incompletion of data induced by the issues such as sensor failures.To address these challenges,we propose a novel approach to accommodate data insufficiency through achieving external information from incomplete data samples,which are usually discarded in existing studies.In order to fully unleash the prediction power of incomplete data,we have investigated the Multiple Imputation by Chained Equations(MICE)method that diversifies the training data through exploring the potential data patterns.The experimental results demonstrate that the proposed method significantly outperforms the baselines in the most considered scenarios while reducing the prediction root mean square error(RMSE)by up to 18.9%.Furthermore,we have also observed that the penetration of incomplete data benefits the explainability of the prediction model through facilitating the feature selection.
基金supported by the National Key R&D Program of China(2020YFA0712901).
文摘We study age-structured branching models with reproduction law depending on the remaining lifetime of the parent. The lifespan of an individual is determined at its birth and its remaining lifetime decreases at the unit speed. The models, without or with immigration, are constructed as measure-valued processes by pathwise unique solutions of stochastic equations driven by time-space Poisson random measures. In the subcritical branching case, we give a sufficient condition for the ergodicity of the process with immigration. Two large number laws and a central limit theorem of the occupation times are proved.
基金National Natural Science Foundation of China(No.22475241)Guangdong Basic and Applied Basic Research Foundation(Nos.2022A1515010826 and 2023A1515012696)the Fundamental Research Funds for the Central Universities(Nos.17lgjc03 and 18lgpy04).
文摘Room-temperature phosphorescence(RTP)materials exhibiting long emission lifetimes have gained increasing attention owing to their potential applications in encryption,anti-counterfeiting,and sensing.However,most polymers exhibit a short RTP lifetime(<1 s)because of their unstable triplet excitons.Herein,a new strategy of polymer chain stabilized phosphorescence(PCSP),which yields a new kind of RTP polymers with an ultralong lifetime and a sensitive oxygen response,has been reported.The rigid polymer chains of poly(methyl mathacrylate)(PMMA)immobilize the emitter molecules through multiple interactions between them,giving rise to efficient RTP.Meanwhile,the loosely-packed amorphous polymer chains allow oxygen to diffuse inside,endowing the doped polymers with oxygen sensitivity.Flexible and transparent polymer films exhibited an impressive ultralong RTP lifetime of 2.57 s at room temperature in vacuum,which was among the best performance of PMMA.Intriguingly,their RTP was rapidly quenched in the presence of oxygen.Furthermore,RTP microparticles with a diameter of 1.63μm were synthesized using in situ dispersion polymerization technique.Finally,oxygen sensors for quick,visual,and quantitative oxygen detection were developed based on the RTP microparticles through phosphorescence lifetime and image analysis.With distinctive advantages such as an ultralong lifetime,oxygen sensitivity,ease of fabrication,and cost-effectiveness,PCSP opens a new avenue to sensitive materials for oxygen detection.
文摘A high speed LIGBT with localized lifetime control by using high dose and low en ergy helium implantation(LC-LIGBT) is proposed.Compared with conventional LIGB Ts,particle irradiation results show that trade-off relationship between turn- off time and forward voltage drop is improved.At the same time,the forward volta ge drop and turn-off time of such device are researched,when localized lifetime control region place near the p+-n junction,even in p+ anode.The results s how for the first time,helium ions,which stop in the p+ anode,also contribute to the forward voltage drop increasing and turn-off time reducing.
文摘A method for fast gate oxide TDDB lifetime prediction for process control monitors (PCM) is proposed. For normal TDDB lifetime prediction at operation voltage and temperature, we must ge(three lifetimes at relative low stress voltages and operation temperature. Then we use these three lifetimes to project the TDDB lifetime at operation voltage and temperature via the E-model. This requires a very long time for measurement. With our new method,it can be calculated quickly by projecting the TDDB lifetime at operation voltage and temperature with measurement data at relatively high stress voltages. Our test case indicates that this method is very effective. And the result with our new method is very close to that with the normal TDDB lifetime prediction method. But the measurement time is less than 50s for one sample,less than 1/100000 of that with the normal prediction method. With this new method,we can monitor gate oxide TDDB lifetime on-line.
基金supported by the National Natural Science Foundation of China(51875443)Guangdong Basic and Applied Basic Research Foundation(2019B1515120016,202002030290).
文摘Although magnesium(Mg)alloys are the lightest among structural metals,their inadequate corrosion resistance makes them difficult to be used in energy-saving lightweight structures.Moreover,the improvement in corrosion resistance by the conventional surface treatments is always achieved at the expense of sacrificing the fatigue lifetime.In this study,high purity aluminum(Al)and AlMgSi alloy coatings were deposited on Mg alloys via an in-situ micro-forging(MF)assisted cold spray(MFCS)process for simultaneous higher corrosion resistance and longer fatigue lifetime.Besides contributing to a highly dense microstructure,the in-situ MF also greatly refines the grain of the deposited Al alloy coating to the sub-micrometer range due to the enhanced dynamic recrystallization and also generates notable compressive residual stress up to 210 MPa within the AlMgSi coating.The absence of secondary phases in the AlMgSi alloy coatings enable the coated Mg alloy with corrosion resistance,which is even better than its bulk AlMgSi counterparts.The unique combination of refined microstructure and the prominent compressive residual stress within the AlMgSi coatings,effectively delayed the crack initiation upon repeated dynamic loading,thereby leading to∼10 times increase in the fatigue lifetime of the Mg Alloy.However,although residual stress is also generated in the submmicro-sized grained pure Al coating,the low intrinsic strength of the coating layer leads to a lower fatigue lifetime than the uncoated Mg alloy substrate.The present work is aimed to provide a facile approach to break the trade-off between corrosion resistance improvement and fatigue lifetime of the coated Mg alloys.
基金The National Natural Science Foundation of China(No. 10801032)
文摘A class of lifetime distributions, new better than equilibrium in expectation (NBEE), and its dual, new worse than equilibrium in expectation (NWEE), are studied based on the comparison of the expectations of lifetime X and its equilibrium Xo. The relationships of the NBEE (NWEE) and other lifetime distribution classes are discussed. It is proved that the NBEE is very large, and increasing failure rate (IFR), new better than used (NBU) and the L class are its subclasses. The closure properties under two kinds of reliability operations, namely, convolution and mixture, are investigated. Furthermore, a Poisson shock model and a special cumulative model are also studied, in which the necessary and sufficient conditions for the NBEE (NWEE) lifetime distribution of the systems are established. In the homogenous Poisson shock model, the system lifetime belongs to NBEE(NWEE) if and only if the corresponding discrete failure distribution belongs to the discrete NBEE(NWEE). While in the cumulative model, the system has an NBEE lifetime if and only if the stochastic threshold of accumulated damage is NBEE.
基金Supported by National Natural Science Foundation of China(Grant No51406148)National Science Technology Support Program of China(Grant No.2012BAA08B06)Postdoctoral Science Foundation o China(Grant No.2014M552444)
文摘Up to present, there have been no studies concerning the application of fluid-structure interaction(FSI) analysis to the lifetime estimation of multi-stage centrifugal compressors under dangerous unsteady aerodynamic excitations. In this paper, computational fluid dynamics(CFD) simulations of a three-stage natural gas pipeline centrifugal compressor are performed under near-choke and near-surge conditions, and the unsteady aerodynamic pressure acting on impeller blades are obtained. Then computational structural dynamics(CSD) analysis is conducted through a one-way coupling FSI model to predict alternating stresses in impeller blades. Finally, the compressor lifetime is estimated using the nominal stress approach. The FSI results show that the impellers of latter stages suffer larger fluctuation stresses but smaller mean stresses than those at preceding stages under near-choke and near-surge conditions. The most dangerous position in the compressor is found to be located near the leading edge of the last-stage impeller blade. Compressor lifetime estimation shows that the investigated compressor can run up to 102.7 h under the near-choke condition and 200.2 h under the near-surge condition. This study is expected to provide a scientific guidance for the operation safety of natural gas pipeline centrifugal compressors.
文摘Availability is a main feature of design and operation of all engineering system. Recently,availability evaluation of periodical inspection systems with different structures is at the center of attention due to the wide application in engineering. In this paper, an analytical and probabilistic availability model for periodical inspection system is proposed by a new recursively algorithm,which can achieve limiting average availability and instantaneous availability of periodical inspection system under arbitrary lifetime and repair-time distributions. Then three application examples are presented, the systems lifetime and repair-time are respectively fellow exponential/exponential,Weibull/normal and Weibull/lognormal distribution. Finally, a Weibull/lognormal system is studied to analyze the dynamic relationship between inspection period and availability. The results indicate that the proposed approach can provide the technology support for improving system availability and determining reasonable inspection period.