In this paper, a sensing model for the coverage analysis of wireless sensor networks is provided. Using this model and Monte Carlo method, the ratio of private range to sensing range required to obtain the desired cov...In this paper, a sensing model for the coverage analysis of wireless sensor networks is provided. Using this model and Monte Carlo method, the ratio of private range to sensing range required to obtain the desired coverage can be derived considering the scale of deployment area and the number of sensor nodes. Base on the coverage analysis, an energy-efficient distributed node scheduling scheme is proposed to prolong the network lifetime while maintaining the desired sensing coverage, which does not need the geographic or neighbor information of nodes. The proposed scheme can also handle uneven distribution, and it is robust against node failures. Theoretical and simulation results demonstrate its efficiency and usefulness.展开更多
In this paper,we present a new method for finding a fixed local-optimal policy for computing the customer lifetime value.The method is developed for a class of ergodic controllable finite Markov chains.We propose an a...In this paper,we present a new method for finding a fixed local-optimal policy for computing the customer lifetime value.The method is developed for a class of ergodic controllable finite Markov chains.We propose an approach based on a non-converging state-value function that fluctuates(increases and decreases) between states of the dynamic process.We prove that it is possible to represent that function in a recursive format using a one-step-ahead fixed-optimal policy.Then,we provide an analytical formula for the numerical realization of the fixed local-optimal strategy.We also present a second approach based on linear programming,to solve the same problem,that implement the c-variable method for making the problem computationally tractable.At the end,we show that these two approaches are related:after a finite number of iterations our proposed approach converges to same result as the linear programming method.We also present a non-traditional approach for ergodicity verification.The validity of the proposed methods is successfully demonstrated theoretically and,by simulated credit-card marketing experiments computing the customer lifetime value for both an optimization and a game theory approach.展开更多
基金Supported by China Scholarship Council(No.201306255014)
文摘In this paper, a sensing model for the coverage analysis of wireless sensor networks is provided. Using this model and Monte Carlo method, the ratio of private range to sensing range required to obtain the desired coverage can be derived considering the scale of deployment area and the number of sensor nodes. Base on the coverage analysis, an energy-efficient distributed node scheduling scheme is proposed to prolong the network lifetime while maintaining the desired sensing coverage, which does not need the geographic or neighbor information of nodes. The proposed scheme can also handle uneven distribution, and it is robust against node failures. Theoretical and simulation results demonstrate its efficiency and usefulness.
文摘In this paper,we present a new method for finding a fixed local-optimal policy for computing the customer lifetime value.The method is developed for a class of ergodic controllable finite Markov chains.We propose an approach based on a non-converging state-value function that fluctuates(increases and decreases) between states of the dynamic process.We prove that it is possible to represent that function in a recursive format using a one-step-ahead fixed-optimal policy.Then,we provide an analytical formula for the numerical realization of the fixed local-optimal strategy.We also present a second approach based on linear programming,to solve the same problem,that implement the c-variable method for making the problem computationally tractable.At the end,we show that these two approaches are related:after a finite number of iterations our proposed approach converges to same result as the linear programming method.We also present a non-traditional approach for ergodicity verification.The validity of the proposed methods is successfully demonstrated theoretically and,by simulated credit-card marketing experiments computing the customer lifetime value for both an optimization and a game theory approach.