期刊文献+
共找到777,369篇文章
< 1 2 250 >
每页显示 20 50 100
Life-cycle thinking and performance-based design of bridges:A state-of-the-art review
1
作者 Alaa Al Hawarneh M.Shahria Alam +1 位作者 Rajeev Ruparathna Stavroula J.Pantazopoulou 《Resilient Cities and Structures》 2025年第2期30-45,共16页
Given the growing emphasis on life-cycle analysis in bridge design,the design community is transitioning from the concept of performance-based design in structural engineering to a performance-based design approach wi... Given the growing emphasis on life-cycle analysis in bridge design,the design community is transitioning from the concept of performance-based design in structural engineering to a performance-based design approach within a life-cycle context.This approach considers various indicators,including cost,environmental impact,and societal factors when designing bridges.This shift enables a comprehensive assessment of structural resilience by exam-ining the bridge’s ability to endure various hazards throughout its lifespan.This study provides a comprehensive review of two key research domains that have emerged in the field of bridge life-cycle analysis,namely life-cycle sustainability(LCS)and life-cycle performance(LCP).The discussion on the LCS of bridges encompasses both assessment-based and optimization-based studies,while the exploration of LCP focuses on research examining structures subjected to deterioration over their service life due to deprecating phenomena such as corrosion and relative humidity changes,as well as extreme hazards like earthquakes and floods.Moreover,this study discusses the integration between LCS and LCP,highlighting how combined consideration of these factors can minimize damage costs,improve resiliency,and extend the lifespan of the structure.A detailed evaluation encompasses various life-cycle metrics,structural performance indicators,time-dependent modelling techniques,and analy-sis methods proposed in the literature.Additionally,the research identifies critical gaps and trends in life-cycle analysis within the realm of bridge engineering,providing a concise yet thorough overview for advancing con-siderations in the life-cycle design of bridges. 展开更多
关键词 life-cycle analysis life-cycle sustainability life-cycle performance Multiple-hazards Resiliency Climate change
暂未订购
Coupling mechanism analysis of CO_(2) non-Darcy flow in multi-scale reservoirs: A case study of the life-cycle process of fracturing-development in shale oil reservoirs
2
作者 Zhen-Hua Rui Hai-Yang Deng +4 位作者 Ting Hu Guang-Long Sheng Malcolm Wilson Birol Dindoruk Shirish Patil 《Petroleum Science》 2025年第3期1171-1199,共29页
With policy support for carbon capture,utilization,and storage(CCUS),an integrated approach that combines energy storage fracturing,CO_(2)-enhanced oil recovery(EOR),and storage emerges as a promising direction for th... With policy support for carbon capture,utilization,and storage(CCUS),an integrated approach that combines energy storage fracturing,CO_(2)-enhanced oil recovery(EOR),and storage emerges as a promising direction for the shale oil industry.The process of energy storage fracturing induces significant changes in the pressure and saturation of the medium.However,conventional simulations often overlook the effects of fracturing and shut-in operations on the seepage field and production performance.Furthermore,fractured shale reservoirs exhibit complex non-Darcy flow characteristics due to intricate pore structures and multi-scale porous media.A comprehensive understanding of flow mechanisms is essential for effective reservoir development and CO_(2) storage.This study establishes a multi-component simulation model that encompasses the life-cycle of fracturing,shut-in,production,and CO_(2) huff-n-puff processes,thereby ensuring the continuity of the seepage field.The model accounts for the effect of nano-confinement on phase behavior by modifying the equation of state.Furthermore,the flux term is adjusted to incorporate Maxwell–Stefan diffusion,pre-/post-Darcy flow,and stress sensitivity.The embedded discrete fracture model(EDFM)is employed to simulate multiphase flow within multi-scale media,and the results from the validation model align satisfactorily with those derived from ECLIPSE.Mechanism analysis indicates that the interaction of multiple mechanisms significantly influences both production and storage performance.Under the multi-mechanism coupling,the cumulative oil production increased by 12.01%,while the utilization and storage factors increased by 62.93%and 8.93%,respectively.The role of molecular diffusion in shale oil reservoirs may be overstated,contributing only a 0.26% enhancement in oil production.Simulation results show that the energy storage fracturing strategy can increase oil production and net present value by 12.47%and 15.07%,respectively.Sensitivity analysis indicates that the CO_(2) injection rate is the main factor affecting the recovery factor,followed by CO_(2) injection time and the number of cycles,with fracturing fluid volume having the least impact.This study develops a multi-process,multi-mechanism simulation framework for multi-scale shale oil reservoirs.This framework provides a robust evaluation system for CCUS-EOR,facilitating informed decision-making in fracturing stimulation,development planning,and parameter optimization. 展开更多
关键词 Shale oil reservoir life-cycle simulation Multiple mechanism coupling Non-Darcy flow CCUS-EOR
原文传递
Reliability-based life-cycle cost seismic design optimization of coastal bridge piers with nonuniform corrosion using different materials 被引量:2
3
作者 Wu Xiangtong Yuan Wenting Guo Anxin 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2024年第1期209-225,共17页
Reinforcement corrosion is the main cause of performance deterioration of reinforced concrete(RC)structures.Limited research has been performed to investigate the life-cycle cost(LCC)of coastal bridge piers with nonun... Reinforcement corrosion is the main cause of performance deterioration of reinforced concrete(RC)structures.Limited research has been performed to investigate the life-cycle cost(LCC)of coastal bridge piers with nonuniform corrosion using different materials.In this study,a reliability-based design optimization(RBDO)procedure is improved for the design of coastal bridge piers using six groups of commonly used materials,i.e.,normal performance concrete(NPC)with black steel(BS)rebar,high strength steel(HSS)rebar,epoxy coated(EC)rebar,and stainless steel(SS)rebar(named NPC-BS,NPC-HSS,NPC-EC,and NPC-SS,respectively),NPC with BS with silane soakage on the pier surface(named NPC-Silane),and high-performance concrete(HPC)with BS rebar(named HPC-BS).First,the RBDO procedure is improved for the design optimization of coastal bridge piers,and a bridge is selected to illustrate the procedure.Then,reliability analysis of the pier designed with each group of materials is carried out to obtain the time-dependent reliability in terms of the ultimate and serviceability performances.Next,the repair time of the pier is predicted based on the time-dependent reliability indices.Finally,the time-dependent LCCs for the pier are obtained for the selection of the optimal design. 展开更多
关键词 reliability-based design optimization(RBDO) life-cycle cost(LCC) nonuniform corrosion coastal bridge pier REPAIR
在线阅读 下载PDF
Preventing the Immense Increase in the Life-Cycle Energy and Carbon Footprints of LLM-Powered Intelligent Chatbots 被引量:2
4
作者 Peng Jiang Christian Sonne +2 位作者 Wangliang Li Fengqi You Siming You 《Engineering》 SCIE EI CAS CSCD 2024年第9期202-210,共9页
Intelligent chatbots powered by large language models(LLMs)have recently been sweeping the world,with potential for a wide variety of industrial applications.Global frontier technology companies are feverishly partici... Intelligent chatbots powered by large language models(LLMs)have recently been sweeping the world,with potential for a wide variety of industrial applications.Global frontier technology companies are feverishly participating in LLM-powered chatbot design and development,providing several alternatives beyond the famous ChatGPT.However,training,fine-tuning,and updating such intelligent chatbots consume substantial amounts of electricity,resulting in significant carbon emissions.The research and development of all intelligent LLMs and software,hardware manufacturing(e.g.,graphics processing units and supercomputers),related data/operations management,and material recycling supporting chatbot services are associated with carbon emissions to varying extents.Attention should therefore be paid to the entire life-cycle energy and carbon footprints of LLM-powered intelligent chatbots in both the present and future in order to mitigate their climate change impact.In this work,we clarify and highlight the energy consumption and carbon emission implications of eight main phases throughout the life cycle of the development of such intelligent chatbots.Based on a life-cycle and interaction analysis of these phases,we propose a system-level solution with three strategic pathways to optimize the management of this industry and mitigate the related footprints.While anticipating the enormous potential of this advanced technology and its products,we make an appeal for a rethinking of the mitigation pathways and strategies of the life-cycle energy usage and carbon emissions of the LLM-powered intelligent chatbot industry and a reshaping of their energy and environmental implications at this early stage of development. 展开更多
关键词 Large language models Intelligent chatbots Carbon emissions Energy and environmental footprints life-cycle assessment Global cooperation
在线阅读 下载PDF
Study of the Transport Behavior of Multispherical Proppant in Intersecting Fracture Based on Discrete Element Method 被引量:1
5
作者 Chengyong Peng JianshuWu +2 位作者 Mao Jiang Biao Yin Yishan Lou 《Energy Engineering》 EI 2025年第1期185-201,共17页
To analyze the differences in the transport and distribution of different types of proppants and to address issues such as the short effective support of proppant and poor placement in hydraulically intersecting fract... To analyze the differences in the transport and distribution of different types of proppants and to address issues such as the short effective support of proppant and poor placement in hydraulically intersecting fractures,this study considered the combined impact of geological-engineering factors on conductivity.Using reservoir production parameters and the discrete elementmethod,multispherical proppants were constructed.Additionally,a 3D fracture model,based on the specified conditions of the L block,employed coupled(Computational Fluid Dynamics)CFD-DEM(Discrete ElementMethod)for joint simulations to quantitatively analyze the transport and placement patterns of multispherical proppants in intersecting fractures.Results indicate that turbulent kinetic energy is an intrinsic factor affecting proppant transport.Moreover,the efficiency of placement and migration distance of low-sphericity quartz sand constructed by the DEM in the main fracture are significantly reduced compared to spherical ceramic proppants,with a 27.7%decrease in the volume fraction of the fracture surface,subsequently affecting the placement concentration and damaging fracture conductivity.Compared to small-angle fractures,controlling artificial and natural fractures to expand at angles of 45°to 60°increases the effective support length by approximately 20.6%.During hydraulic fracturing of gas wells,ensuring the fracture support area and post-closure conductivity can be achieved by controlling the sphericity of proppants and adjusting the perforation direction to control the direction of artificial fractures. 展开更多
关键词 Hydraulic fracturing discrete element method PROPPANT SPHERICITY CFD-DEM
在线阅读 下载PDF
Structural Modal Parameter Recognition and Related Damage Identification Methods under Environmental Excitations:A Review 被引量:3
6
作者 Chao Zhang Shang-Xi Lai Hua-Ping Wang 《Structural Durability & Health Monitoring》 EI 2025年第1期25-54,共30页
Modal parameters can accurately characterize the structural dynamic properties and assess the physical state of the structure.Therefore,it is particularly significant to identify the structural modal parameters accordi... Modal parameters can accurately characterize the structural dynamic properties and assess the physical state of the structure.Therefore,it is particularly significant to identify the structural modal parameters according to the monitoring data information in the structural health monitoring(SHM)system,so as to provide a scientific basis for structural damage identification and dynamic model modification.In view of this,this paper reviews methods for identifying structural modal parameters under environmental excitation and briefly describes how to identify structural damages based on the derived modal parameters.The paper primarily introduces data-driven modal parameter recognition methods(e.g.,time-domain,frequency-domain,and time-frequency-domain methods,etc.),briefly describes damage identification methods based on the variations of modal parameters(e.g.,natural frequency,modal shapes,and curvature modal shapes,etc.)and modal validation methods(e.g.,Stability Diagram and Modal Assurance Criterion,etc.).The current status of the application of artificial intelligence(AI)methods in the direction of modal parameter recognition and damage identification is further discussed.Based on the pre-vious analysis,the main development trends of structural modal parameter recognition and damage identification methods are given to provide scientific references for the optimized design and functional upgrading of SHM systems. 展开更多
关键词 Structural health monitoring data information modal parameters damage identification AI method
在线阅读 下载PDF
Combing the Entropy Weight Method with Fuzzy Mathematics for Assessing the Quality and Post-Ripening Mechanism of High-Temperature Daqu during Storage 被引量:1
7
作者 YANG Junlin YANG Shaojuan +8 位作者 WU Cheng YIN Yanshun YOU Xiaolong ZHAO Wenyu ZHU Anran WANG Jia HU Feng HU Jianfeng WANG Diqiang 《食品科学》 北大核心 2025年第9期48-62,共15页
This study investigated the physicochemical properties,enzyme activities,volatile flavor components,microbial communities,and sensory evaluation of high-temperature Daqu(HTD)during the maturation process,and a standar... This study investigated the physicochemical properties,enzyme activities,volatile flavor components,microbial communities,and sensory evaluation of high-temperature Daqu(HTD)during the maturation process,and a standard system was established for comprehensive quality evaluation of HTD.There were obvious changes in the physicochemical properties,enzyme activities,and volatile flavor components at different storage periods,which affected the sensory evaluation of HTD to a certain extent.The results of high-throughput sequencing revealed significant microbial diversity,and showed that the bacterial community changed significantly more than did the fungal community.During the storage process,the dominant bacterial genera were Kroppenstedtia and Thermoascus.The correlation between dominant microorganisms and quality indicators highlighted their role in HTD quality.Lactococcus,Candida,Pichia,Paecilomyces,and protease activity played a crucial role in the formation of isovaleraldehyde.Acidic protease activity had the greatest impact on the microbial community.Moisture promoted isobutyric acid generation.Furthermore,the comprehensive quality evaluation standard system was established by the entropy weight method combined with multi-factor fuzzy mathematics.Consequently,this study provides innovative insights for comprehensive quality evaluation of HTD during storage and establishes a groundwork for scientific and rational storage of HTD and quality control of sauce-flavor Baijiu. 展开更多
关键词 microbial community high-temperature Daqu comprehensive quality evaluation entropy weight method maturation process
在线阅读 下载PDF
In situ stress inversion using nonlinear stress boundaries achieved by the bubbling method 被引量:1
8
作者 Xige Liu Chenchun Huang +3 位作者 Wancheng Zhu Joung Oh Chengguo Zhang Guangyao Si 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第3期1510-1527,共18页
Due to the heterogeneity of rock masses and the variability of in situ stress,the traditional linear inversion method is insufficiently accurate to achieve high accuracy of the in situ stress field.To address this cha... Due to the heterogeneity of rock masses and the variability of in situ stress,the traditional linear inversion method is insufficiently accurate to achieve high accuracy of the in situ stress field.To address this challenge,nonlinear stress boundaries for a numerical model are determined through regression analysis of a series of nonlinear coefficient matrices,which are derived from the bubbling method.Considering the randomness and flexibility of the bubbling method,a parametric study is conducted to determine recommended ranges for these parameters,including the standard deviation(σb)of bubble radii,the non-uniform coefficient matrix number(λ)for nonlinear stress boundaries,and the number(m)and positions of in situ stress measurement points.A model case study provides a reference for the selection of these parameters.Additionally,when the nonlinear in situ stress inversion method is employed,stress distortion inevitably occurs near model boundaries,aligning with the Saint Venant's principle.Two strategies are proposed accordingly:employing a systematic reduction of nonlinear coefficients to achieve high inversion accuracy while minimizing significant stress distortion,and excluding regions with severe stress distortion near the model edges while utilizing the central part of the model for subsequent simulations.These two strategies have been successfully implemented in the nonlinear in situ stress inversion of the Xincheng Gold Mine and have achieved higher inversion accuracy than the linear method.Specifically,the linear and nonlinear inversion methods yield root mean square errors(RMSE)of 4.15 and 3.2,and inversion relative errors(δAve)of 22.08%and 17.55%,respectively.Therefore,the nonlinear inversion method outperforms the traditional multiple linear regression method,even in the presence of a systematic reduction in the nonlinear stress boundaries. 展开更多
关键词 In situ stress field Inversion method The bubbling method Nonlinear stress boundary Multiple linear regression method
在线阅读 下载PDF
Insight Into the Separation-of-Variable Methods for the Closed-Form Solutions of Free Vibration of Rectangular Thin Plates
9
作者 Yufeng Xing Ye Yuan Gen Li 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期329-355,共27页
The separation-of-variable(SOV)methods,such as the improved SOV method,the variational SOV method,and the extended SOV method,have been proposed by the present authors and coworkers to obtain the closed-form analytica... The separation-of-variable(SOV)methods,such as the improved SOV method,the variational SOV method,and the extended SOV method,have been proposed by the present authors and coworkers to obtain the closed-form analytical solutions for free vibration and eigenbuckling of rectangular plates and circular cylindrical shells.By taking the free vibration of rectangular thin plates as an example,this work presents the theoretical framework of the SOV methods in an instructive way,and the bisection–based solution procedures for a group of nonlinear eigenvalue equations.Besides,the explicit equations of nodal lines of the SOV methods are presented,and the relations of nodal line patterns and frequency orders are investigated.It is concluded that the highly accurate SOV methods have the same accuracy for all frequencies,the mode shapes about repeated frequencies can also be precisely captured,and the SOV methods do not have the problem of missing roots as well. 展开更多
关键词 Separation-of-variable method Rayleigh quotient nodal line eigenvalue equation bisection method
在线阅读 下载PDF
Improved methods,properties,applications and prospects of microbial induced carbonate precipitation(MICP)treated soil:A review 被引量:2
10
作者 Xuanshuo Zhang Hongyu Wang +3 位作者 Ya Wang Jinghui Wang Jing Cao Gang Zhang 《Biogeotechnics》 2025年第1期34-54,共21页
Soil improvement is one of the most important issues in geotechnical engineering practice.The wide application of traditional improvement techniques(cement/chemical materials)are limited due to damage ecological en-vi... Soil improvement is one of the most important issues in geotechnical engineering practice.The wide application of traditional improvement techniques(cement/chemical materials)are limited due to damage ecological en-vironment and intensify carbon emissions.However,the use of microbially induced calcium carbonate pre-cipitation(MICP)to obtain bio-cement is a novel technique with the potential to induce soil stability,providing a low-carbon,environment-friendly,and sustainable integrated solution for some geotechnical engineering pro-blems in the environment.This paper presents a comprehensive review of the latest progress in soil improvement based on the MICP strategy.It systematically summarizes and overviews the mineralization mechanism,influ-encing factors,improved methods,engineering characteristics,and current field application status of the MICP.Additionally,it also explores the limitations and correspondingly proposes prospective applications via the MICP approach for soil improvement.This review indicates that the utilization of different environmental calcium-based wastes in MICP and combination of materials and MICP are conducive to meeting engineering and market demand.Furthermore,we recommend and encourage global collaborative study and practice with a view to commercializing MICP technique in the future.The current review purports to provide insights for engineers and interdisciplinary researchers,and guidance for future engineering applications. 展开更多
关键词 Soil improvement Bio-cement MICP Improved methods Field application cases
在线阅读 下载PDF
一种基于Least Square Method算法的城轨车辆车门动作时间精准判断的研究
11
作者 李宏菱 宋华杰 +3 位作者 马仲智 周辉 李晴 陈龙 《时代汽车》 2025年第3期190-192,共3页
为研究城市轨道交通车辆客室车门动作时间精准性,门的动作主要依靠直流无刷电机的驱动,所以门动作判断的根本,是对电机运动状态的判读,门运动过程中由于电机码盘线受杂波干扰,系统无法准确寻找计时点从而影响系统判断门运动时间;建立波... 为研究城市轨道交通车辆客室车门动作时间精准性,门的动作主要依靠直流无刷电机的驱动,所以门动作判断的根本,是对电机运动状态的判读,门运动过程中由于电机码盘线受杂波干扰,系统无法准确寻找计时点从而影响系统判断门运动时间;建立波形矫正模型,利用数学方法校准波形,让MCU找出最佳计时点并处理(误差不超过10ms),采用最小二乘法模型,通过最小化误差的平方和找到一组数据的最佳函数匹配,求得未知的数据,并使得这些求得的数据与实际数据之间误差的平方和为最小,可精准地得到门动作时间。模拟测试结果表明,门动作时间测算误差所示其误差为7.42ms,小于10ms。 展开更多
关键词 城轨车辆 客室车门 电机码盘 Least Square method算法 门动作时间精准
在线阅读 下载PDF
Research on Bearing Fault Diagnosis Method Based on Deep Learning 被引量:1
12
作者 Ting Zheng 《Journal of Electronic Research and Application》 2025年第1期1-6,共6页
Bearing is an indispensable key component in mechanical equipment,and its working state is directly related to the stability and safety of the whole equipment.In recent years,with the rapid development of artificial i... Bearing is an indispensable key component in mechanical equipment,and its working state is directly related to the stability and safety of the whole equipment.In recent years,with the rapid development of artificial intelligence technology,especially the breakthrough of deep learning technology,it provides a new idea for bearing fault diagnosis.Deep learning can automatically learn features from a large amount of data,has a strong nonlinear modeling ability,and can effectively solve the problems existing in traditional methods.Aiming at the key problems in bearing fault diagnosis,this paper studies the fault diagnosis method based on deep learning,which not only provides a new solution for bearing fault diagnosis but also provides a reference for the application of deep learning in other mechanical fault diagnosis fields. 展开更多
关键词 Deep learning Bearing failure Diagnostic methods
在线阅读 下载PDF
A dual⁃parameter method for seismic resilience assessment of buildings 被引量:1
13
作者 LI Shuang HU Binbin +1 位作者 LIU Wen ZHAI Changhai 《Journal of Southeast University(English Edition)》 2025年第1期1-11,共11页
To quantify the seismic resilience of buildings,a method for evaluating functional loss from the component level to the overall building is proposed,and the dual-parameter seismic resilience assessment method based on... To quantify the seismic resilience of buildings,a method for evaluating functional loss from the component level to the overall building is proposed,and the dual-parameter seismic resilience assessment method based on postearthquake loss and recovery time is improved.A threelevel function tree model is established,which can consider the dynamic changes in weight coefficients of different category of components relative to their functional losses.Bayesian networks are utilized to quantify the impact of weather conditions,construction technology levels,and worker skill levels on component repair time.A method for determining the real-time functional recovery curve of buildings based on the component repair process is proposed.Taking a three-story teaching building as an example,the seismic resilience indices under basic earthquakes and rare earthquakes are calculated.The results show that the seismic resilience grade of the teaching building is comprehensively judged as GradeⅢ,and its resilience grade is more significantly affected by postearthquake loss.The proposed method can be used to predict the seismic resilience of buildings prior to earthquakes,identify weak components within buildings,and provide guidance for taking measures to enhance the seismic resilience of buildings. 展开更多
关键词 seismic resilience assessment dual-parameter method functional loss recovery time Bayesian networks
在线阅读 下载PDF
A Review of the Hydrodynamic Damping Characteristics of Blade-like Structures:Focus on the Quantitative Identification Methods and Key Influencing Parameters 被引量:1
14
作者 Yongshun Zeng Zhaohui Qian +1 位作者 Jiayun Zhang Zhifeng Yao 《哈尔滨工程大学学报(英文版)》 2025年第1期21-34,共14页
Ocean energy has progressively gained considerable interest due to its sufficient potential to meet the world’s energy demand,and the blade is the core component in electricity generation from the ocean current.Howev... Ocean energy has progressively gained considerable interest due to its sufficient potential to meet the world’s energy demand,and the blade is the core component in electricity generation from the ocean current.However,the widened hydraulic excitation frequency may satisfy the blade resonance due to the time variation in the velocity and angle of attack of the ocean current,even resulting in blade fatigue and destructively interfering with grid stability.A key parameter that determines the resonance amplitude of the blade is the hydrodynamic damping ratio(HDR).However,HDR is difficult to obtain due to the complex fluid-structure interaction(FSI).Therefore,a literature review was conducted on the hydrodynamic damping characteristics of blade-like structures.The experimental and simulation methods used to identify and obtain the HDR quantitatively were described,placing emphasis on the experimental processes and simulation setups.Moreover,the accuracy and efficiency of different simulation methods were compared,and the modal work approach was recommended.The effects of key typical parameters,including flow velocity,angle of attack,gap,rotational speed,and cavitation,on the HDR were then summarized,and the suggestions on operating conditions were presented from the perspective of increasing the HDR.Subsequently,considering multiple flow parameters,several theoretical derivations and semi-empirical prediction formulas for HDR were introduced,and the accuracy and application were discussed.Based on the shortcomings of the existing research,the direction of future research was finally determined.The current work offers a clear understanding of the HDR of blade-like structures,which could improve the evaluation accuracy of flow-induced vibration in the design stage. 展开更多
关键词 Blade fatigue Hydrodynamic damping ratio Identification method Affecting factors Prediction formula
在线阅读 下载PDF
Formation mechanism of herpetrione self-assembled nanoparticles based on p H-driven method 被引量:1
15
作者 Yuwen Zhu Xiang Deng +4 位作者 Yan Wu Baode Shen Lingyu Hang Yuye Xue Hailong Yuan 《Chinese Chemical Letters》 2025年第1期387-391,共5页
The self-assembled nanoparticles(SAN)formed during the decoction process of traditional Chinese medicine(TCM)exhibit non-uniform particle sizes and a tendency for aggregation.Our group found that the p H-driven method... The self-assembled nanoparticles(SAN)formed during the decoction process of traditional Chinese medicine(TCM)exhibit non-uniform particle sizes and a tendency for aggregation.Our group found that the p H-driven method can improve the self-assembly phenomenon of Herpetospermum caudigerum Wall.,and the SAN exhibited uniform particle size and demonstrated good stability.In this paper,we analyzed the interactions between the main active compound,herpetrione(Her),and its main carrier,Herpetospermum caudigerum Wall.polysaccharide(HCWP),along with their self-assembly mechanisms under different p H values.The binding constants of Her and HCWP increase with rising p H,leading to the formation of Her-HCWP SAN with a smaller particle size,higher zeta potential,and improved thermal stability.While the contributions of hydrogen bonding and electrostatic attraction to the formation of Her-HCWP SAN increase with rising p H,the hydrophobic force consistently plays a dominant role.This study enhances our scientific understanding of the self-assembly phenomenon of TCM improved by p H driven method. 展开更多
关键词 Traditional Chinese medicine NANOPARTICLES Herpetrione Interaction pH-driven method Self-assembly Isothermal titration calorimetry
原文传递
Photometry-free sky area visibility estimation method for All-sky Camera 被引量:1
16
作者 Haiwen Xie Hui Zhi +4 位作者 Zhe Kang Shiyu Deng Bingli Niu Lei Wang Xiaojun Jiang 《Astronomical Techniques and Instruments》 2025年第1期52-64,共13页
Observatories typically deploy all-sky cameras for monitoring cloud cover and weather conditions.However,many of these cameras lack scientific-grade sensors,r.esulting in limited photometric precision,which makes calc... Observatories typically deploy all-sky cameras for monitoring cloud cover and weather conditions.However,many of these cameras lack scientific-grade sensors,r.esulting in limited photometric precision,which makes calculating the sky area visibility distribution via extinction measurement challenging.To address this issue,we propose the Photometry-Free Sky Area Visibility Estimation(PFSAVE)method.This method uses the standard magnitude of the faintest star observed within a given sky area to estimate visibility.By employing a pertransformation refitting optimization strategy,we achieve a high-precision coordinate transformation model with an accuracy of 0.42 pixels.Using the results of HEALPix segmentation is also introduced to achieve high spatial resolution.Comprehensive analysis based on real allsky images demonstrates that our method exhibits higher accuracy than the extinction-based method.Our method supports both manual and robotic dynamic scheduling,especially under partially cloudy conditions. 展开更多
关键词 All-sky cameras Astronomy image processing Ground-based astronomy Calibration Computational methods Observational astronomy
在线阅读 下载PDF
Estimation of Chloride Diffusivity in Hydrated Tricalcium Silicate Using a Hydration-Diffusion Integrated Method
17
作者 WANG Xin SHEN Dejian +2 位作者 TAO Sijie LIU Ruixin WU Shengxing 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2025年第1期49-64,共16页
This study aims to develop a chloride diffusion simulation method that considers the hydration microstructure and pore solution properties during the hydration of tricalcium silicate(C3S).The method combines the hydra... This study aims to develop a chloride diffusion simulation method that considers the hydration microstructure and pore solution properties during the hydration of tricalcium silicate(C3S).The method combines the hydration simulation,thermodynamic calculation,and finite element analysis to examine the effects of pore solution,including effect of electrochemical potential,effect of chemical activity,and effect of mechanical interactions between ions,on the chloride effective diffusion coefficient of hydrated C3S paste.The results indicate that the effect of electrochemical potential on chloride diffusion becomes stronger with increasing hydration age due to the increase in the content of hydrated calcium silicate;as the hydration age increases,the effect of chemical activity on chloride diffusion weakens when the number of diffusible elements decreases;the effect of mechanical interactions between ions on chloride diffusion decreases with the increase of hydration age. 展开更多
关键词 tricalcium silicate simulation method chloride diffusion coefficient pore solution
原文传递
Optimal Scheduling of an Independent Electro-Hydrogen System with Hybrid Energy Storage Using a Multi-Objective Standardization Fusion Method
18
作者 Suliang Ma Zeqing Meng +1 位作者 Mingxuan Chen Yuan Jiang 《Energy Engineering》 EI 2025年第1期63-84,共22页
In the independent electro-hydrogen system(IEHS)with hybrid energy storage(HESS),achieving optimal scheduling is crucial.Still,it presents a challenge due to the significant deviations in values ofmultiple optimizatio... In the independent electro-hydrogen system(IEHS)with hybrid energy storage(HESS),achieving optimal scheduling is crucial.Still,it presents a challenge due to the significant deviations in values ofmultiple optimization objective functions caused by their physical dimensions.These deviations seriously affect the scheduling process.A novel standardization fusion method has been established to address this issue by analyzing the variation process of each objective function’s values.The optimal scheduling results of IEHS with HESS indicate that the economy and overall energy loss can be improved 2–3 times under different optimization methods.The proposed method better balances all optimization objective functions and reduces the impact of their dimensionality.When the cost of BESS decreases by approximately 30%,its participation deepens by about 1 time.Moreover,if the price of the electrolyzer is less than 15¥/kWh or if the cost of the fuel cell drops below 4¥/kWh,their participation will increase substantially.This study aims to provide a more reasonable approach to solving multi-objective optimization problems. 展开更多
关键词 Electro-hydrogen system multi-objective optimization standardization method hybrid energy storage system
在线阅读 下载PDF
Effects of plasma screening on the^(1)P^(o)(n=3,n=4)resonance states of H-and He using the stabilization method
19
作者 仲子鑫 吕柄宽 +2 位作者 姜子实 KAR Sabyasachi HO Yew Kam 《黑龙江大学自然科学学报》 2025年第4期469-487,共19页
The effects of plasma screening on the ^(1)P^(o) resonance states of H-and He below the n=3 and n=4 thresholds of the respective subsystemsare investigated using the stabilization method and correlated exponential wav... The effects of plasma screening on the ^(1)P^(o) resonance states of H-and He below the n=3 and n=4 thresholds of the respective subsystemsare investigated using the stabilization method and correlated exponential wave functions.Two plasma mediums,namely,the Debye plasma and quantum plasma environments are considered.The screened Coulomb potential(SCP)obtained from Debye-Hückel model is used to represent Debye plasma environments and the exponential cosine screened Coulomb potential(ECSCP)obtained from a modified Debye-Hückel model is used to represent quantum plasma environments.The resonance parameters(resonance positions and widths)are presented in terms of the screening parameters. 展开更多
关键词 quantum plasma Debye plasma P-wave resonance states correlated exponential wave functions stabilization method
在线阅读 下载PDF
Towards a blank design method for manufacturing big-tapered profiled ring disk by spinning-rolling process 被引量:1
20
作者 Xuechao LI Lianggang GUO +1 位作者 Xiaoqing CHEN Heng LI 《Chinese Journal of Aeronautics》 2025年第1期70-86,共17页
The big-tapered profiled ring disk is a key component of engines for rockets and missiles.A new forming technology,as called spinning-rolling process,has been proposed previously for the high performance,high efficien... The big-tapered profiled ring disk is a key component of engines for rockets and missiles.A new forming technology,as called spinning-rolling process,has been proposed previously for the high performance,high efficiency and low-cost manufacturing of the component.Blank design is the key part of plastic forming process design.For spinning-rolling process,the shape and size of the blank play a crucial role in process stability,deformation behavior and dimensional accuracy.So this work proposes a blank design method to determine the geometry structure and sizes of the blank.The mathematical model for calculating the blank size has been deduced based on volume conservation and neutral layer length invariance principle.The FE simulation and corresponding trial production of an actual big-tapered profiled ring disk show that the proposed blank design method is applicative.In order to obtain a preferred blank,the influence rules of blank size determined by different deformation degrees(rolling ratio k)on the spinning-rolling process are revealed by comprehensive FE simulations.Overall considering the process stability,circularity of the deformed ring disk and forming forces,a reasonable range of deformation degree(rolling ratio k)is recommended for the blank design of the new spinning-rolling process. 展开更多
关键词 Blank design method Spinning-rolling process Big-tapered profiled ring disk Rolling ratio Intelligent FE simulation
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部