With the socio-economic change that has taken place over the last years,in addition to an increase in sustainability regulation,stakeholders have gained importance and organizations are more active in relation to gene...With the socio-economic change that has taken place over the last years,in addition to an increase in sustainability regulation,stakeholders have gained importance and organizations are more active in relation to generating social impact,but society demands more and better social impact from organizations.The objectives of this paper are to clarify the concepts of impact and social impact optimization,and to detect levers and barriers to help organizations optimize the social impact that they generate.A qualitative approach based on interviews with social impact leaders from organizations with different forms(big companies,small and medium-sized enterprises,corporate foundations,b-corps,community foundations,public and private foundations,associations and investing firms)is applied,together with focus groups with stakeholders from those organizations that are best practices.展开更多
Driven by a steady increase in both food and non-food prices, the expected growth of consumer price index (CPI) for September was 2.5 percent year on year. This is a gain on the August level of 2.3 percent year on y...Driven by a steady increase in both food and non-food prices, the expected growth of consumer price index (CPI) for September was 2.5 percent year on year. This is a gain on the August level of 2.3 percent year on year. Upward pressures on price leading up to the Chinese National Day holiday in early October and rising crude oil prices globally also contributed to an upward adjustment in prices.展开更多
Reintroduction is an important strategy to restore or re-establish wild populations of endangered species.Pre-release training is a necessary step to ensure postreintroduction survival.However,studies reported contrad...Reintroduction is an important strategy to restore or re-establish wild populations of endangered species.Pre-release training is a necessary step to ensure postreintroduction survival.However,studies reported contradicting outcomes after pre-release training of juveniles and adults.This study used farmed and feral American mink(Neovison vison)to analyze the influence of captive breeding on the morphology,structure and efficiency of the two major hindlimb levers,the femur and tibia pivoted by hip and knee joints that are essential for locomotion.Results showed that captive breeding did not alter the sexual dimorphism of the two levers that are related to survival in the wild.Captive-bred mink showed slightly altered morphology of the femur and fundamental structure of the hindlimb levers that improved efficiency,but this resulted in reduction of performance related to foraging in both terrestrial and aquatic environments,especially for females.These findings suggest that reintroduction of mustelid as exampled by the mink here should focus on juveniles because the skeletal alterations associated with captive rearing were recorded only among adults and are irreversible in adulthood.In contrast,captive-reared juveniles showed no skeletal alterations and would be expected to recovery from any atrophy of the muscular system caused by captive rearing for shorter durations.Our results support the application of pre-release training of juveniles in enriched environments as a method for alleviating structural alteration of appendages and enhancing locomotion to increase survival probability in complex habitats.展开更多
The quest for widespread applications especially in extreme environments accentuates the necessity to design materials with robust mechanical and thermodynamic stabilities.Almost all existing materials yield temperatu...The quest for widespread applications especially in extreme environments accentuates the necessity to design materials with robust mechanical and thermodynamic stabilities.Almost all existing materials yield temperature-variant mechanical properties,essentially determined by their different atomic bonding regimes.In general,weak non-covalent interactions are considered to diminish the structural anti-destabilization of covalent crystals despite the toughening effect.Whereas,starting from multiscale theoretical modeling,we herein reveal an anomalous stabilizing effect in cellulose nanocrystals(CNCs)by the cooperation between the non-covalent hydrogen bonds and covalent glucosidic skeleton,namely molecular levers(MLs).It is surprising to find that the hydrogen bonds in MLs behave like covalent bindings under cryogenic conditions,which provide anomalously enhanced strength and toughness for CNCs.Thermodynamic analyses demonstrate that the unique dynamical mechanical behaviors from ambient to deep cryogenic temperatures are synergetic results of the intrinsic temperature dependence veiled in MLs and the overall thermo-induced CNC destabilization/amorphization.As the consequence,the variation trend of mechanical strength exhibits a bilinear temperature dependence with~77 K as the turning point.Our underlying investigations not only establish the bottom–up interrelations from the hydrogen bonding thermodynamics to the crystal-scale mechanical properties,but also facilitate the potential application of cellulose-based materials at extremely low temperatures such as those in outer space.展开更多
This paper introduces damping amplifier friction vibration absorbers(DAFVAs),compound damping amplifier friction vibration absorbers(CDAFVAs),nested damping amplifier friction vibration absorbers(NDAFVAs),and levered ...This paper introduces damping amplifier friction vibration absorbers(DAFVAs),compound damping amplifier friction vibration absorbers(CDAFVAs),nested damping amplifier friction vibration absorbers(NDAFVAs),and levered damping amplifier friction vibration absorbers(LDAFVAs)for controlling the structural vibrations and addressing the limitations of conventional tuned mass dampers(TMDs)and frictiontuned mass dampers(FTMDs).The closed-form analytical solution for the optimized design parameters is obtained using the H_(2)and H_(∞)optimization approaches.The efficiency of the recently established closed-form equations for the optimal design parameters is confirmed by the analytical examination.The closed form formulas for the dynamic responses of the main structure and the vibration absorbers are derived using the transfer matrix formulations.The foundation is provided by the harmonic and random-white noise excitations.Moreover,the effectiveness of the innovative dampers has been validated through numerical analysis.The optimal DAFVAs,CDAFVAs,NDAFVAs,and LDAFVAs exhibit at least 30%lower vibration reduction capacity compared with the optimal TMD.To demonstrate the effectiveness of the damping amplification mechanism,the novel absorbers are compared with a conventional FTMD.The results show that the optimized novel absorbers achieve at least 91%greater vibration reduction than the FTMD.These results show how the suggested designs might strengthen the structure's resilience to dynamic loads.展开更多
Geospatial information acquired with Unmanned Aerial Vehicles(UAV)provides valuable decision-making support in many different domains,and technological advances coincide with a demand for ever more sophisticated data ...Geospatial information acquired with Unmanned Aerial Vehicles(UAV)provides valuable decision-making support in many different domains,and technological advances coincide with a demand for ever more sophisticated data products.One consequence is a research and development focus on more accurately referenced images and derivatives,which has long been a weakness especially of low to medium cost UAV systems equipped with relatively inexpensive inertial measurement unit(IMU)and Global Navigation Satellite System(GNSS)receivers.This research evaluates the positional accuracy of the real-time kinematics(RTK)GNSS on the DJI Matrice 600 Pro,one of the first available and widely used UAVs with potentially surveying-grade performance.Although a very high positional accuracy of the drone itself of 2 to 3 cm is claimed by DJI,the actual accuracy of the drone RTK for positioning the images and for using it for mapping purposes without additional ground control is not known.To begin with,the actual GNSS RTK position of reference center(the physical point on the antenna)on the drone is not indicated,and uncertainty regarding this also exists among the professional user community.In this study the reference center was determined through a set of experiments using the dual frequency static Leica GNSS with RTK capability.The RTK positioning data from the drone were then used for direct georeferencing,and its results were evaluated.Test flights were carried out over a 70 x 70 m area with an altitude of 40 m above the ground,with a ground sampling distance of 1.3 cm.Evaluated against ground control points,the planimetric accuracy of direct georeferencing for the photogrammetric product ranged between 30 and 60 cm.Analysis of direct georeferencing results showed a time delay of up to 0.28 seconds between the drone GNSS RTK and camera image acquisition affecting direct georeferencing results.展开更多
Disturbance specific force caused by the lever arm ef-fects in integration navigation system is investigated,Navigation errors eaused by the lever arm effects have been demonstrated under three flinght scenarios of th...Disturbance specific force caused by the lever arm ef-fects in integration navigation system is investigated,Navigation errors eaused by the lever arm effects have been demonstrated under three flinght scenarios of the air-craft.Analytical under three flight scenarios of the ari-craft.Analytical results show that disturbance specific force resulted from lever arm effects may become one of the major error sources while an aircraft undertakes the maneuvers,and mavigation errors caused by the lever arm effects accumulate rapidly with time.Therefore,a com-pensation method must be taken into account to eliminate the disturbance specific force caused by the lever arm ef-fects in integration navigation system.展开更多
A micro-displacement sensor based on fiber Bragg grating(FBG) is proposed. The device consists of a pair of FBGs with different central wavelengths fabricated by femtosecond laser phase mask method and a metal substra...A micro-displacement sensor based on fiber Bragg grating(FBG) is proposed. The device consists of a pair of FBGs with different central wavelengths fabricated by femtosecond laser phase mask method and a metal substrate with lever structure. The displacement is amplified by lever structure and it converts into axial tension of FBG, which has a high displacement sensitivity. The amplification factors obtained by theoretical analysis and finite element simulation are 2.67 and 2.50, respectively. The experimental results show that in the range of 0-50 μm the shift of FBG center wavelength is linearly related to the displacement of measured object and displacement sensitivity reaches 121 pm/μm. In addition, the cascaded FBG is used to compensate the temperature.展开更多
Flexure-based mechanisms are widely utilized in nano manipulations. The closed-form statics and dynamics modeling is difficult due to the complex topologies, the inevitable compliance of levers, the Hertzian contact i...Flexure-based mechanisms are widely utilized in nano manipulations. The closed-form statics and dynamics modeling is difficult due to the complex topologies, the inevitable compliance of levers, the Hertzian contact interface, etc. This paper presents the closed-form modeling of an XY nano-manipulator consisting of statically indeterminate symmetric(SIS) structures using leaf and circular flexure hinges. Theoretical analysis reveals that the lever’s compliance, the contact stiffness, and the load mass have significant influence on the static and dynamic performances of the system.Experiments are conducted to verify the effectiveness of the established models. If no piezoelectric actuator(PEA) is installed, the influence of the contact stiffness can be eliminated. Experimental results show that the estimation error on the output stiffness and first natural frequency can reach 2% and 1.7%, respectively. If PEAs are installed, the contact stiffness shows up in the models. As no effective method is currently available to measure or estimate the contact stiffness, it is impossible to precisely estimate the performance of the overall system. In this case, the established closed-form models can be utilized to calculate the bounds of the performance. The established closed-form models are widely applicable in the design and optimization of planar flexure-based mechanisms.展开更多
To utilizing the characteristic of radar cross section (RCS) of the low detectable aircraft, a special path planning algorithm to eluding radars by the variable RCS is presented. The algorithm first gives the RCS ch...To utilizing the characteristic of radar cross section (RCS) of the low detectable aircraft, a special path planning algorithm to eluding radars by the variable RCS is presented. The algorithm first gives the RCS changing model of low detectable aircraft, then establishes a threat model of a ground-based air defense system according to the relations between RCS and the radar range coverage. By the new cost functions of the flight path, which consider both factors of the survival probability and the distance of total route, this path planning method is simulated based on the Dijkstra algorithm, and the planned route meets the flight capacity constraints. Simulation results show that using the effective path planning algorithm, the low detectable aircraft can give full play to its own advantage of stealth to achieve the purpose of silent penetration.展开更多
This study introduces a wheeled robot platform with jumping ability.To realize jump movement,a twisted string lever mechanism is used,which is characterized by its compactness and variable gear ratio.Based on robot mo...This study introduces a wheeled robot platform with jumping ability.To realize jump movement,a twisted string lever mechanism is used,which is characterized by its compactness and variable gear ratio.Based on robot modeling and parameter calculation,the twisted string actuator shows its advantage when applied to situations such as jumping of robots,where explosiveness of output force matters.In this study,a wheeled bipedal robot equipped with the twisted string actuator is designed and fabricated.It weighs 16.0 kg and can perform jumps when it encounters obstacles.The prototype can jump up to a stage with a maximum height of 1.0 m using electric power,which is approximately 1.5 times the height of its stretched legs.展开更多
A force-aided lever with a preload spring is not only force-saving but also energy-saving. Therefore, it has great potential to be applied to dry clutch actuations. However, the negative stiffness of the clutch diaphr...A force-aided lever with a preload spring is not only force-saving but also energy-saving. Therefore, it has great potential to be applied to dry clutch actuations. However, the negative stiffness of the clutch diaphragm spring introduces unstable dynamics which becomes more intensive due to the preload spring. In order to explore the intensified unstability, this paper builds dynamic models for the rotating lever coupling a negative stiffness diaphragm spring and a preload spring. The stability analysis using the Routh-Huiwitz criterion shows that the open-loop system can never be stable due to the negative stiffness. Even if the diaphragm spring stiffness is positive, the system is still unstable when the preload of the spring exceeds an upper limit. A proportionalintegral-derivative(PID) closed-loop scheme addressing this problem is designed to stabilize the system. The stability analysis for the closed-loop system shows that stable region emerges in spite of the negative stiffness; the more the negative stiffness is, the less the allowed preload is. Further, the influences of the dimensions and PID parameters on the stability condition are investigated. Finally, the transient dynamic responses of the system subjected to disturbance are compared between the unstable open-loop and stabilized closed-loop systems.展开更多
Current research of automatic transmission(AT)mainly focuses on the improvement of driving performance,and configuration innovation is one of the main research directions.However,finding new configurations of ATs is o...Current research of automatic transmission(AT)mainly focuses on the improvement of driving performance,and configuration innovation is one of the main research directions.However,finding new configurations of ATs is one of the main limitations of configuration innovation.In the present study,epicyclic gear trains(EGTs)are applied to investigate mechanisms of 9-speed ATs.Then four kinematic configurations are proposed for automatic transitions.In order to evaluate the performance of proposed mechanisms,the lever analogy method is applied to conduct kinematic and mechanical analyses.The power flow analysis is conducted,and then transmission efficiencies are calculated based on the torque method.The comparative analysis between the proposed and existing mechanisms is carried out where obtained results show that proposed mechanisms have reasonable performance and can be used in ATs.The prototype of an AT is manufactured and the speed test is conducted,which proves the accuracy of analysis and the feasibility of proposed mechanisms.展开更多
Failure of loose gully deposits under the effect of rainfall contributes to the potential risk of debris flow.In the past decades, researches on hydraulic mechanism and time-dependent characteristics of loosedeposits ...Failure of loose gully deposits under the effect of rainfall contributes to the potential risk of debris flow.In the past decades, researches on hydraulic mechanism and time-dependent characteristics of loosedeposits failure are frequently reported, however adequate measures for reducing debris flow are notavailable practically. In this context, a time-dependent model was established to determine the changesof water table of loose deposits using hydraulic and topographic theories. In addition, the variation inwater table with elapsed time was analyzed. The formulas for calculating hydrodynamic and hydrostaticpressures on each strip and block unit of deposit were proposed, and the slope stability and failure risk ofthe loose deposits were assessed based on the time-dependent hydraulic characteristics of establishedmodel. Finally, the failure mechanism of deposits based on infinite slope theory was illustrated, with anexample, to calculate sliding force, anti-sliding force and residual sliding force applied to each slice. Theresults indicate that failure of gully deposits under the effect of rainfall is the result of continuouslyincreasing hydraulic pressure and water table. The time-dependent characteristics of loose depositfailure are determined by the factors of hydraulic properties, drainage area of interest, rainfall pattern,rainfall duration and intensity.展开更多
In inertial navigation system(INS) and global positioning system(GPS) integrated system, GPS antennas are usually not located at the same location as the inertial measurement unit(IMU) of the INS, so the lever arm eff...In inertial navigation system(INS) and global positioning system(GPS) integrated system, GPS antennas are usually not located at the same location as the inertial measurement unit(IMU) of the INS, so the lever arm effect exists, which makes the observation equation highly nonlinear. The INS/GPS integration with constant lever arm effect is studied. The position relation of IMU and GPS's antenna is represented in the earth centered earth fixed frame, while the velocity relation of these two systems is represented in local horizontal frame. Due to the small integration time interval of INS, i.e. 0.1 s in this work, the nonlinearity in the INS error equation is trivial, so the linear INS error model is constructed and addressed by Kalman filter's prediction step. On the other hand, the high nonlinearity in the observation equation due to lever arm effect is addressed by unscented Kalman filter's update step to attain higher accuracy and better applicability. Simulation is designed and the performance of the hybrid filter is validated.展开更多
In order to meet the requirements of nondestructive testing of true 3D topography of micro-nano structures,a novel three-dimensional atomic force microscope(3D-AFM)based on flared tip is developed.A high-precision sca...In order to meet the requirements of nondestructive testing of true 3D topography of micro-nano structures,a novel three-dimensional atomic force microscope(3D-AFM)based on flared tip is developed.A high-precision scanning platform is designed to achieve fast servo through moving probe and sample simultaneously,and several combined nanopositioning stages are used to guarantee linearity and orthogonality of displacement.To eliminate the signal deviation caused by AFM-head movement,a traceable optical lever system is designed for cantilever deformation detection.In addition,a method of tailoring the cantilever of commercial probe with flared tip is proposed to reduce the lateral force applied on the tip in measurement.The tailored probe is mounted on the 3D-AFM,and 3D imaging experiments are conducted on different samples by use of adaptive-angle scanning strategy.The results show the roob-mean-square value of the vertical displacement noise(RMS)of the prototype is less than 0.1 nm and the high/width measurement repeatability(peak-to-peak)is less than 2.5 nm.展开更多
文摘With the socio-economic change that has taken place over the last years,in addition to an increase in sustainability regulation,stakeholders have gained importance and organizations are more active in relation to generating social impact,but society demands more and better social impact from organizations.The objectives of this paper are to clarify the concepts of impact and social impact optimization,and to detect levers and barriers to help organizations optimize the social impact that they generate.A qualitative approach based on interviews with social impact leaders from organizations with different forms(big companies,small and medium-sized enterprises,corporate foundations,b-corps,community foundations,public and private foundations,associations and investing firms)is applied,together with focus groups with stakeholders from those organizations that are best practices.
文摘Driven by a steady increase in both food and non-food prices, the expected growth of consumer price index (CPI) for September was 2.5 percent year on year. This is a gain on the August level of 2.3 percent year on year. Upward pressures on price leading up to the Chinese National Day holiday in early October and rising crude oil prices globally also contributed to an upward adjustment in prices.
基金funded by China State Forestry and Grassland Administration Project for Rescue and Captive Breeding of Endangered and Rare Wildlife(2018).
文摘Reintroduction is an important strategy to restore or re-establish wild populations of endangered species.Pre-release training is a necessary step to ensure postreintroduction survival.However,studies reported contradicting outcomes after pre-release training of juveniles and adults.This study used farmed and feral American mink(Neovison vison)to analyze the influence of captive breeding on the morphology,structure and efficiency of the two major hindlimb levers,the femur and tibia pivoted by hip and knee joints that are essential for locomotion.Results showed that captive breeding did not alter the sexual dimorphism of the two levers that are related to survival in the wild.Captive-bred mink showed slightly altered morphology of the femur and fundamental structure of the hindlimb levers that improved efficiency,but this resulted in reduction of performance related to foraging in both terrestrial and aquatic environments,especially for females.These findings suggest that reintroduction of mustelid as exampled by the mink here should focus on juveniles because the skeletal alterations associated with captive rearing were recorded only among adults and are irreversible in adulthood.In contrast,captive-reared juveniles showed no skeletal alterations and would be expected to recovery from any atrophy of the muscular system caused by captive rearing for shorter durations.Our results support the application of pre-release training of juveniles in enriched environments as a method for alleviating structural alteration of appendages and enhancing locomotion to increase survival probability in complex habitats.
基金the Youth Innovation Promotion Association CAS(No.2022465)the National Natural Science Foundation of China(Nos.12172346,12102422,12202431,and 12232016)+1 种基金the Fundamental Research Funds for the Central Universities(No.WK2090000040)China Postdoctoral Science Foundation(Nos.2021TQ0323 and 2021M703085).
文摘The quest for widespread applications especially in extreme environments accentuates the necessity to design materials with robust mechanical and thermodynamic stabilities.Almost all existing materials yield temperature-variant mechanical properties,essentially determined by their different atomic bonding regimes.In general,weak non-covalent interactions are considered to diminish the structural anti-destabilization of covalent crystals despite the toughening effect.Whereas,starting from multiscale theoretical modeling,we herein reveal an anomalous stabilizing effect in cellulose nanocrystals(CNCs)by the cooperation between the non-covalent hydrogen bonds and covalent glucosidic skeleton,namely molecular levers(MLs).It is surprising to find that the hydrogen bonds in MLs behave like covalent bindings under cryogenic conditions,which provide anomalously enhanced strength and toughness for CNCs.Thermodynamic analyses demonstrate that the unique dynamical mechanical behaviors from ambient to deep cryogenic temperatures are synergetic results of the intrinsic temperature dependence veiled in MLs and the overall thermo-induced CNC destabilization/amorphization.As the consequence,the variation trend of mechanical strength exhibits a bilinear temperature dependence with~77 K as the turning point.Our underlying investigations not only establish the bottom–up interrelations from the hydrogen bonding thermodynamics to the crystal-scale mechanical properties,but also facilitate the potential application of cellulose-based materials at extremely low temperatures such as those in outer space.
基金the postdoctoral research grant received from the University of Glasgow for the partial financial support for this research work。
文摘This paper introduces damping amplifier friction vibration absorbers(DAFVAs),compound damping amplifier friction vibration absorbers(CDAFVAs),nested damping amplifier friction vibration absorbers(NDAFVAs),and levered damping amplifier friction vibration absorbers(LDAFVAs)for controlling the structural vibrations and addressing the limitations of conventional tuned mass dampers(TMDs)and frictiontuned mass dampers(FTMDs).The closed-form analytical solution for the optimized design parameters is obtained using the H_(2)and H_(∞)optimization approaches.The efficiency of the recently established closed-form equations for the optimal design parameters is confirmed by the analytical examination.The closed form formulas for the dynamic responses of the main structure and the vibration absorbers are derived using the transfer matrix formulations.The foundation is provided by the harmonic and random-white noise excitations.Moreover,the effectiveness of the innovative dampers has been validated through numerical analysis.The optimal DAFVAs,CDAFVAs,NDAFVAs,and LDAFVAs exhibit at least 30%lower vibration reduction capacity compared with the optimal TMD.To demonstrate the effectiveness of the damping amplification mechanism,the novel absorbers are compared with a conventional FTMD.The results show that the optimized novel absorbers achieve at least 91%greater vibration reduction than the FTMD.These results show how the suggested designs might strengthen the structure's resilience to dynamic loads.
文摘Geospatial information acquired with Unmanned Aerial Vehicles(UAV)provides valuable decision-making support in many different domains,and technological advances coincide with a demand for ever more sophisticated data products.One consequence is a research and development focus on more accurately referenced images and derivatives,which has long been a weakness especially of low to medium cost UAV systems equipped with relatively inexpensive inertial measurement unit(IMU)and Global Navigation Satellite System(GNSS)receivers.This research evaluates the positional accuracy of the real-time kinematics(RTK)GNSS on the DJI Matrice 600 Pro,one of the first available and widely used UAVs with potentially surveying-grade performance.Although a very high positional accuracy of the drone itself of 2 to 3 cm is claimed by DJI,the actual accuracy of the drone RTK for positioning the images and for using it for mapping purposes without additional ground control is not known.To begin with,the actual GNSS RTK position of reference center(the physical point on the antenna)on the drone is not indicated,and uncertainty regarding this also exists among the professional user community.In this study the reference center was determined through a set of experiments using the dual frequency static Leica GNSS with RTK capability.The RTK positioning data from the drone were then used for direct georeferencing,and its results were evaluated.Test flights were carried out over a 70 x 70 m area with an altitude of 40 m above the ground,with a ground sampling distance of 1.3 cm.Evaluated against ground control points,the planimetric accuracy of direct georeferencing for the photogrammetric product ranged between 30 and 60 cm.Analysis of direct georeferencing results showed a time delay of up to 0.28 seconds between the drone GNSS RTK and camera image acquisition affecting direct georeferencing results.
文摘Disturbance specific force caused by the lever arm ef-fects in integration navigation system is investigated,Navigation errors eaused by the lever arm effects have been demonstrated under three flinght scenarios of the air-craft.Analytical under three flight scenarios of the ari-craft.Analytical results show that disturbance specific force resulted from lever arm effects may become one of the major error sources while an aircraft undertakes the maneuvers,and mavigation errors caused by the lever arm effects accumulate rapidly with time.Therefore,a com-pensation method must be taken into account to eliminate the disturbance specific force caused by the lever arm ef-fects in integration navigation system.
基金Projects(51875585, 51875584, 51935013) supported by the National Natural Science Foundation of ChinaProject(2020JJ4247) supported by the Natural Science Foundation of Hunan Province,ChinaProject(ZHD202001) supported by the Opening Project of Science and Technology on Reliability Physics and Application Technology of Electronic Component Laboratory,China。
文摘A micro-displacement sensor based on fiber Bragg grating(FBG) is proposed. The device consists of a pair of FBGs with different central wavelengths fabricated by femtosecond laser phase mask method and a metal substrate with lever structure. The displacement is amplified by lever structure and it converts into axial tension of FBG, which has a high displacement sensitivity. The amplification factors obtained by theoretical analysis and finite element simulation are 2.67 and 2.50, respectively. The experimental results show that in the range of 0-50 μm the shift of FBG center wavelength is linearly related to the displacement of measured object and displacement sensitivity reaches 121 pm/μm. In addition, the cascaded FBG is used to compensate the temperature.
基金Supported by National Natural Science Foundation of China(Grant Nos.61403214,61327802,U1613220)Tianjin Provincial Natural Science Foundation of China(Grant Nos.14JCZDJC31800,14JCQNJC04700)
文摘Flexure-based mechanisms are widely utilized in nano manipulations. The closed-form statics and dynamics modeling is difficult due to the complex topologies, the inevitable compliance of levers, the Hertzian contact interface, etc. This paper presents the closed-form modeling of an XY nano-manipulator consisting of statically indeterminate symmetric(SIS) structures using leaf and circular flexure hinges. Theoretical analysis reveals that the lever’s compliance, the contact stiffness, and the load mass have significant influence on the static and dynamic performances of the system.Experiments are conducted to verify the effectiveness of the established models. If no piezoelectric actuator(PEA) is installed, the influence of the contact stiffness can be eliminated. Experimental results show that the estimation error on the output stiffness and first natural frequency can reach 2% and 1.7%, respectively. If PEAs are installed, the contact stiffness shows up in the models. As no effective method is currently available to measure or estimate the contact stiffness, it is impossible to precisely estimate the performance of the overall system. In this case, the established closed-form models can be utilized to calculate the bounds of the performance. The established closed-form models are widely applicable in the design and optimization of planar flexure-based mechanisms.
文摘To utilizing the characteristic of radar cross section (RCS) of the low detectable aircraft, a special path planning algorithm to eluding radars by the variable RCS is presented. The algorithm first gives the RCS changing model of low detectable aircraft, then establishes a threat model of a ground-based air defense system according to the relations between RCS and the radar range coverage. By the new cost functions of the flight path, which consider both factors of the survival probability and the distance of total route, this path planning method is simulated based on the Dijkstra algorithm, and the planned route meets the flight capacity constraints. Simulation results show that using the effective path planning algorithm, the low detectable aircraft can give full play to its own advantage of stealth to achieve the purpose of silent penetration.
基金Project supported by the Grant from Zhejiang Lab,China(No.2019KE0AD01)。
文摘This study introduces a wheeled robot platform with jumping ability.To realize jump movement,a twisted string lever mechanism is used,which is characterized by its compactness and variable gear ratio.Based on robot modeling and parameter calculation,the twisted string actuator shows its advantage when applied to situations such as jumping of robots,where explosiveness of output force matters.In this study,a wheeled bipedal robot equipped with the twisted string actuator is designed and fabricated.It weighs 16.0 kg and can perform jumps when it encounters obstacles.The prototype can jump up to a stage with a maximum height of 1.0 m using electric power,which is approximately 1.5 times the height of its stretched legs.
基金the National Natural Science Foundation of China(No.51475284)
文摘A force-aided lever with a preload spring is not only force-saving but also energy-saving. Therefore, it has great potential to be applied to dry clutch actuations. However, the negative stiffness of the clutch diaphragm spring introduces unstable dynamics which becomes more intensive due to the preload spring. In order to explore the intensified unstability, this paper builds dynamic models for the rotating lever coupling a negative stiffness diaphragm spring and a preload spring. The stability analysis using the Routh-Huiwitz criterion shows that the open-loop system can never be stable due to the negative stiffness. Even if the diaphragm spring stiffness is positive, the system is still unstable when the preload of the spring exceeds an upper limit. A proportionalintegral-derivative(PID) closed-loop scheme addressing this problem is designed to stabilize the system. The stability analysis for the closed-loop system shows that stable region emerges in spite of the negative stiffness; the more the negative stiffness is, the less the allowed preload is. Further, the influences of the dimensions and PID parameters on the stability condition are investigated. Finally, the transient dynamic responses of the system subjected to disturbance are compared between the unstable open-loop and stabilized closed-loop systems.
基金Supported by National Natural Science Foundation of China(Grant Nos.51975544,51675495).
文摘Current research of automatic transmission(AT)mainly focuses on the improvement of driving performance,and configuration innovation is one of the main research directions.However,finding new configurations of ATs is one of the main limitations of configuration innovation.In the present study,epicyclic gear trains(EGTs)are applied to investigate mechanisms of 9-speed ATs.Then four kinematic configurations are proposed for automatic transitions.In order to evaluate the performance of proposed mechanisms,the lever analogy method is applied to conduct kinematic and mechanical analyses.The power flow analysis is conducted,and then transmission efficiencies are calculated based on the torque method.The comparative analysis between the proposed and existing mechanisms is carried out where obtained results show that proposed mechanisms have reasonable performance and can be used in ATs.The prototype of an AT is manufactured and the speed test is conducted,which proves the accuracy of analysis and the feasibility of proposed mechanisms.
基金supported by the National Natural Science Foundation of China(Grant No.41202258)STS Project(Grant No.KFJ-EW-STS-094)+1 种基金Research Plan Project of China Railway Eryuan Engineering Group Co.,Ltd.(Grant No.13164196(13-15))the State Key Laboratory Project Fund of Geohazard Prevention and Geoenvironment Protection(Grant No.SKLGP2013K012)
文摘Failure of loose gully deposits under the effect of rainfall contributes to the potential risk of debris flow.In the past decades, researches on hydraulic mechanism and time-dependent characteristics of loosedeposits failure are frequently reported, however adequate measures for reducing debris flow are notavailable practically. In this context, a time-dependent model was established to determine the changesof water table of loose deposits using hydraulic and topographic theories. In addition, the variation inwater table with elapsed time was analyzed. The formulas for calculating hydrodynamic and hydrostaticpressures on each strip and block unit of deposit were proposed, and the slope stability and failure risk ofthe loose deposits were assessed based on the time-dependent hydraulic characteristics of establishedmodel. Finally, the failure mechanism of deposits based on infinite slope theory was illustrated, with anexample, to calculate sliding force, anti-sliding force and residual sliding force applied to each slice. Theresults indicate that failure of gully deposits under the effect of rainfall is the result of continuouslyincreasing hydraulic pressure and water table. The time-dependent characteristics of loose depositfailure are determined by the factors of hydraulic properties, drainage area of interest, rainfall pattern,rainfall duration and intensity.
基金Project(41374018)supported by the National Natural Science Foundation of ChinaProject(J13LN74)supported by the Shandong Province Higher Educational Science and Technology Program,China
文摘In inertial navigation system(INS) and global positioning system(GPS) integrated system, GPS antennas are usually not located at the same location as the inertial measurement unit(IMU) of the INS, so the lever arm effect exists, which makes the observation equation highly nonlinear. The INS/GPS integration with constant lever arm effect is studied. The position relation of IMU and GPS's antenna is represented in the earth centered earth fixed frame, while the velocity relation of these two systems is represented in local horizontal frame. Due to the small integration time interval of INS, i.e. 0.1 s in this work, the nonlinearity in the INS error equation is trivial, so the linear INS error model is constructed and addressed by Kalman filter's prediction step. On the other hand, the high nonlinearity in the observation equation due to lever arm effect is addressed by unscented Kalman filter's update step to attain higher accuracy and better applicability. Simulation is designed and the performance of the hybrid filter is validated.
基金National Key Research and Development Pragram of China(No.2016YFF0200602)National Natural Science Foundation of China(No.61973233)。
文摘In order to meet the requirements of nondestructive testing of true 3D topography of micro-nano structures,a novel three-dimensional atomic force microscope(3D-AFM)based on flared tip is developed.A high-precision scanning platform is designed to achieve fast servo through moving probe and sample simultaneously,and several combined nanopositioning stages are used to guarantee linearity and orthogonality of displacement.To eliminate the signal deviation caused by AFM-head movement,a traceable optical lever system is designed for cantilever deformation detection.In addition,a method of tailoring the cantilever of commercial probe with flared tip is proposed to reduce the lateral force applied on the tip in measurement.The tailored probe is mounted on the 3D-AFM,and 3D imaging experiments are conducted on different samples by use of adaptive-angle scanning strategy.The results show the roob-mean-square value of the vertical displacement noise(RMS)of the prototype is less than 0.1 nm and the high/width measurement repeatability(peak-to-peak)is less than 2.5 nm.