The GF-3 satellite was launched on August 10,2016 from the Taiyuan Satellite Launch Center and was put into operation at the end of January,2017.It has acquired nearly 100 thousand C-band multi-polarization ocean and ...The GF-3 satellite was launched on August 10,2016 from the Taiyuan Satellite Launch Center and was put into operation at the end of January,2017.It has acquired nearly 100 thousand C-band multi-polarization ocean and land SAR images,providing data support for many departments covering resource survey,typhoon early warning,disaster assessment,crop yield estimation and polar investigation.Recently,the team led by ZHANG Qingjun from展开更多
Recent experiments have demonstrated the realization of the three-dimensional quantum Hall effect in highly anisotropic crystalline materials, such as ZrTe|_5 and BaMnSb_2. Such a system supports chiral surface states...Recent experiments have demonstrated the realization of the three-dimensional quantum Hall effect in highly anisotropic crystalline materials, such as ZrTe|_5 and BaMnSb_2. Such a system supports chiral surface states in the presence of a strong magnetic field, which exhibit a one-dimensional metal-insulator crossover due to suppression of surface diffusion by disorder potential. We study the nontrivial surface states in a lattice model and find a wide crossover of the level-spacing distribution through a semi-Poisson distribution. We also discover a nonmonotonic evolution of the level statistics due to the disorder-induced mixture of surface and bulk states.展开更多
In order to study the migration and transformation mechanism of Hg content and occurrence form in subsurface flow zone of gold mining area in Loess Plateau and its influence on water environment,the field in-situ infi...In order to study the migration and transformation mechanism of Hg content and occurrence form in subsurface flow zone of gold mining area in Loess Plateau and its influence on water environment,the field in-situ infiltration test and laboratory test were carried out in three typical sections of river-side loess,alluvial and proluvial strata in Tongguan gold mining area of Shaanxi Province,and the following results were obtained:(1)The source of Hg in subsurface flow zone is mainly caused by mineral processing activities;(2)the subsurface flow zone in the study area is in alkaline environment,and the residual state,iron and manganese oxidation state,strong organic state and humic acid state of mercury in loess are equally divided in dry and oxidizing environment;mercury in river alluvial or diluvial strata is mainly concentrated in silt,tailings and clayey silt soil layer,and mercury has certain stability,and the form of mercury in loess is easier to transform than the other two media;(3)under the flooding condition,most of mercury is trapped in the silt layer in the undercurrent zone where the sand and silt layers alternate with each other and the river water and groundwater are disjointed,and the migration capacity of mercury is far less than that of loess layer and alluvial layer with close hydraulic connection;(4)infiltration at the flood level accelerates the migration of pollutants to the ground;(5)the soil in the undercurrent zone is overloaded and has seriously exceeded the standard.Although the groundwater monitoring results are safe this time,relevant enterprises or departments should continue to pay attention to improving the gold extraction process,especially vigorously rectify the small workshops for illegal gold extraction and the substandard discharge of the three wastes,and intensify efforts to solve the geological environmental problems of mines left over from history.At present,the occurrence form of mercury in the undercurrent zone is relatively stable,but the water and soil layers have been polluted.The risk of disjointed groundwater pollution can not be ignored while giving priority to the treatment of loess and river alluvial landform areas with close hydraulic links.The research results will provide a scientific basis for water conservancy departments to groundwater prevention and control in water-deficient areas of the Loess Plateau.展开更多
In order to understand the effect of powders ground from reactive sandstone replacing cement on reducing or suppressing alkali-silica reaction(ASR), and to identify the mechanism of suppressing ASR by this powders, ...In order to understand the effect of powders ground from reactive sandstone replacing cement on reducing or suppressing alkali-silica reaction(ASR), and to identify the mechanism of suppressing ASR by this powders, mortar and paste containing reactive sandstone powders of four replacement levels ranging from 10wt% to 40wt% and four specific surfaces areas ranging from 210 m^2/kg to 860 m^2/kg were studied. The experimental results showed that incorporation of 40wt% reactive sandstone powders could suppress ASR effectively except for mortar containing reactive sandstone powders with specific surface area of 610 m^2/kg, which disagreed with the most results reported that the higher reactive powder specific surface area, the smaller ASR expansion. By means of fl ame photometry, Fourier transform infrared spectroscopy(FT-IR) and thermo gravimetric analysis(TG), the mechanism of reactive sandstone powders on reducing or suppressing ASR was soluble alkalis type of reactive sandstone powders and the competition of liberating and bonding alkali of cement paste containing reactive sandstone powders,when the ability of alkali bonding was greater than the ability of alkali liberation, ASR caused by reactive sandstone was supressed effectively.展开更多
Based on the merged satellite altimeter data and in-situ observations, as well as a diagnosis of linear baroclinic Rossby wave solutions, this study analyzed the rapidly rise of sea level/sea surface height (SSH) in...Based on the merged satellite altimeter data and in-situ observations, as well as a diagnosis of linear baroclinic Rossby wave solutions, this study analyzed the rapidly rise of sea level/sea surface height (SSH) in the tropical Pacific and Indian Oceans during recent two decades. Results show that the sea level rise signals in the tropical west Pacific and the southeast Indian Ocean are closely linked to each other through the pathways of oceanic waveguide within the Indonesian Seas in the form of thermocline adjustment. The sea level changes in the southeast Indian Ocean are strongly influenced by the low-frequency westward-propagating waves originated in the tropical Pacific, whereas those in the southwest Indian Ocean respond mainly to the local wind forcing. Analyses of the lead-lag correlation further reveal the different origins of interannual and interdecadal variabilities in the tropical Pacific. The interannual wave signals are dominated by the wind variability along the equatorial Pa- cific, which is associated with the El Nifio-Southern Oscillation; whereas the interdecadal signals are driven mainly by the wind curl off the equatorial Pacific, which is closely related to the Pacific Decadal Oscillation.展开更多
In this study,the truncated octahedral CeO_(2)(CeO_(2)-to)with special morphology was prepared by the solvothermal method with oleic acid(OA)and oleamine(OM)as the morphology-directing agents.High-resolution transmiss...In this study,the truncated octahedral CeO_(2)(CeO_(2)-to)with special morphology was prepared by the solvothermal method with oleic acid(OA)and oleamine(OM)as the morphology-directing agents.High-resolution transmission electron microscopy(HRTEM)results show that CeO_(2)-to exposes composite{100}and{111}facets,while CeO_(2)cubic(CeO_(2)-c)and CeO_(2)octahedral(CeO_(2)-o)only expose single crystal facets of{100}plane and{111}plane,respectively.Interestingly,this CeO_(2)-to photocatalyst exhibits remarkable photooxidation performance of gaseous acetaldehyde(CH_(3)CHO)degradation,in which CO_(2)generation value reaches 1.78 and 7.97-times greater than that of CeO_(2)-c and CeO_(2)-o,respectively.In addition,the active species trapping experiment signifies that superoxide(·O_(2)^(-))and holes(h^(+))are the main reactive substances during the CH_(3)CHO degradation process,and the electron paramagnetic resonance(EPR)spectra indicates that the former is the major contributor.Notably,the electron transfer mechanism between CeO_(2)-to{100}and{111}facets and the surface oxygen adsorption ability are revealed via density functional theory(DFT)calculations.It is also confirmed that{100}facets are more conducive to the absorption of acetaldehyde than{111}facets.Finally,a reasonable mechanism for improved photocatalytic CH_(3)CHO degradation on CeO_(2)-to is proposed based on relevant experiments and DFT calculations.This study demonstrates that the systematic development of surface homojunction structured photocatalysts can efficiently increase the degradation activity for volatile organic compounds(VOCs).It also offers additional direction for optimizing the photocatalytic activity of other ceriumbased photocatalysts.展开更多
文摘The GF-3 satellite was launched on August 10,2016 from the Taiyuan Satellite Launch Center and was put into operation at the end of January,2017.It has acquired nearly 100 thousand C-band multi-polarization ocean and land SAR images,providing data support for many departments covering resource survey,typhoon early warning,disaster assessment,crop yield estimation and polar investigation.Recently,the team led by ZHANG Qingjun from
基金Supported by the National Natural Science Foundation of China (Grant No.11674282)the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No.XDB28000000)。
文摘Recent experiments have demonstrated the realization of the three-dimensional quantum Hall effect in highly anisotropic crystalline materials, such as ZrTe|_5 and BaMnSb_2. Such a system supports chiral surface states in the presence of a strong magnetic field, which exhibit a one-dimensional metal-insulator crossover due to suppression of surface diffusion by disorder potential. We study the nontrivial surface states in a lattice model and find a wide crossover of the level-spacing distribution through a semi-Poisson distribution. We also discover a nonmonotonic evolution of the level statistics due to the disorder-induced mixture of surface and bulk states.
基金This study was funded by the survey projects initiated by the Ministry of Natural Resources of the People’s Republic of China(1212010741003,1212011220224,and 121201011000150022)China Geological Survey(DD20189220,DD20211317)+2 种基金the public welfare scientific research project launched by the Ministry of Natural Resources of the People’s Republic of China(201111020)the project of 2015 Natural Science Basic Research Plan of Shaanxi Province of China(2015JM4129)the project of 2016 Fundamental Research Funds for the Central Universities of China(an open-end fund)(310829161128).
文摘In order to study the migration and transformation mechanism of Hg content and occurrence form in subsurface flow zone of gold mining area in Loess Plateau and its influence on water environment,the field in-situ infiltration test and laboratory test were carried out in three typical sections of river-side loess,alluvial and proluvial strata in Tongguan gold mining area of Shaanxi Province,and the following results were obtained:(1)The source of Hg in subsurface flow zone is mainly caused by mineral processing activities;(2)the subsurface flow zone in the study area is in alkaline environment,and the residual state,iron and manganese oxidation state,strong organic state and humic acid state of mercury in loess are equally divided in dry and oxidizing environment;mercury in river alluvial or diluvial strata is mainly concentrated in silt,tailings and clayey silt soil layer,and mercury has certain stability,and the form of mercury in loess is easier to transform than the other two media;(3)under the flooding condition,most of mercury is trapped in the silt layer in the undercurrent zone where the sand and silt layers alternate with each other and the river water and groundwater are disjointed,and the migration capacity of mercury is far less than that of loess layer and alluvial layer with close hydraulic connection;(4)infiltration at the flood level accelerates the migration of pollutants to the ground;(5)the soil in the undercurrent zone is overloaded and has seriously exceeded the standard.Although the groundwater monitoring results are safe this time,relevant enterprises or departments should continue to pay attention to improving the gold extraction process,especially vigorously rectify the small workshops for illegal gold extraction and the substandard discharge of the three wastes,and intensify efforts to solve the geological environmental problems of mines left over from history.At present,the occurrence form of mercury in the undercurrent zone is relatively stable,but the water and soil layers have been polluted.The risk of disjointed groundwater pollution can not be ignored while giving priority to the treatment of loess and river alluvial landform areas with close hydraulic links.The research results will provide a scientific basis for water conservancy departments to groundwater prevention and control in water-deficient areas of the Loess Plateau.
基金Funded partly by the the National 973 Program of China(No.2013CB035901)the National Natural Science Foundation of China(No.51379163)
文摘In order to understand the effect of powders ground from reactive sandstone replacing cement on reducing or suppressing alkali-silica reaction(ASR), and to identify the mechanism of suppressing ASR by this powders, mortar and paste containing reactive sandstone powders of four replacement levels ranging from 10wt% to 40wt% and four specific surfaces areas ranging from 210 m^2/kg to 860 m^2/kg were studied. The experimental results showed that incorporation of 40wt% reactive sandstone powders could suppress ASR effectively except for mortar containing reactive sandstone powders with specific surface area of 610 m^2/kg, which disagreed with the most results reported that the higher reactive powder specific surface area, the smaller ASR expansion. By means of fl ame photometry, Fourier transform infrared spectroscopy(FT-IR) and thermo gravimetric analysis(TG), the mechanism of reactive sandstone powders on reducing or suppressing ASR was soluble alkalis type of reactive sandstone powders and the competition of liberating and bonding alkali of cement paste containing reactive sandstone powders,when the ability of alkali bonding was greater than the ability of alkali liberation, ASR caused by reactive sandstone was supressed effectively.
基金supported by the "Strategic Priority Research Program" of the Chinese Academy of Sciences (Grant No. XDA11010103)the National Basic Research Program of China (Grant Nos. 2012CB955603, 2010CB950302)+1 种基金National Natural Science Foundation of China (Grant Nos. 41176024, 41176028)supported by the CAS/SAFEA International Partnership Program for Creative Research Teams
文摘Based on the merged satellite altimeter data and in-situ observations, as well as a diagnosis of linear baroclinic Rossby wave solutions, this study analyzed the rapidly rise of sea level/sea surface height (SSH) in the tropical Pacific and Indian Oceans during recent two decades. Results show that the sea level rise signals in the tropical west Pacific and the southeast Indian Ocean are closely linked to each other through the pathways of oceanic waveguide within the Indonesian Seas in the form of thermocline adjustment. The sea level changes in the southeast Indian Ocean are strongly influenced by the low-frequency westward-propagating waves originated in the tropical Pacific, whereas those in the southwest Indian Ocean respond mainly to the local wind forcing. Analyses of the lead-lag correlation further reveal the different origins of interannual and interdecadal variabilities in the tropical Pacific. The interannual wave signals are dominated by the wind variability along the equatorial Pa- cific, which is associated with the El Nifio-Southern Oscillation; whereas the interdecadal signals are driven mainly by the wind curl off the equatorial Pacific, which is closely related to the Pacific Decadal Oscillation.
基金supported by the National Natural Science Foundation of China(Nos.21805191 and 22205084)Project funded by China Postdoctoral Science Foundation(No.2023M741039)+3 种基金Project funded by National&Local Joint Engineering Research Center for Mineral Salt Deep Utilization(SF202303)Project Funded by Yangzhou University(137013308),Guangdong Basic and Applied Basic Research Foundation(No.2020A1515010982)Shenzhen Stable Support Project(No.20200812122947002),the Innovative Science and Technology Platform Project of Cooperation between Yangzhou City and Yangzhou UniversityPostgraduate Research&Practice Innovation Program of Jiangsu Province(Yangzhou University,No.XKYCX20_014)。
文摘In this study,the truncated octahedral CeO_(2)(CeO_(2)-to)with special morphology was prepared by the solvothermal method with oleic acid(OA)and oleamine(OM)as the morphology-directing agents.High-resolution transmission electron microscopy(HRTEM)results show that CeO_(2)-to exposes composite{100}and{111}facets,while CeO_(2)cubic(CeO_(2)-c)and CeO_(2)octahedral(CeO_(2)-o)only expose single crystal facets of{100}plane and{111}plane,respectively.Interestingly,this CeO_(2)-to photocatalyst exhibits remarkable photooxidation performance of gaseous acetaldehyde(CH_(3)CHO)degradation,in which CO_(2)generation value reaches 1.78 and 7.97-times greater than that of CeO_(2)-c and CeO_(2)-o,respectively.In addition,the active species trapping experiment signifies that superoxide(·O_(2)^(-))and holes(h^(+))are the main reactive substances during the CH_(3)CHO degradation process,and the electron paramagnetic resonance(EPR)spectra indicates that the former is the major contributor.Notably,the electron transfer mechanism between CeO_(2)-to{100}and{111}facets and the surface oxygen adsorption ability are revealed via density functional theory(DFT)calculations.It is also confirmed that{100}facets are more conducive to the absorption of acetaldehyde than{111}facets.Finally,a reasonable mechanism for improved photocatalytic CH_(3)CHO degradation on CeO_(2)-to is proposed based on relevant experiments and DFT calculations.This study demonstrates that the systematic development of surface homojunction structured photocatalysts can efficiently increase the degradation activity for volatile organic compounds(VOCs).It also offers additional direction for optimizing the photocatalytic activity of other ceriumbased photocatalysts.