This paper proposes a new signal noise level estimation approach by local regions. The estimated noise variance is applied as the threshold for an improved empirical mode decomposition(EMD) based signal denoising me...This paper proposes a new signal noise level estimation approach by local regions. The estimated noise variance is applied as the threshold for an improved empirical mode decomposition(EMD) based signal denoising method. The proposed estimation method can effectively extract the candidate regions for the noise level estimation by measuring the correlation coefficient between noisy signal and a Gaussian filtered signal. For the improved EMD based method, the situation of decomposed intrinsic mode function(IMFs) which contains noise and signal simultaneously are taken into account. Experimental results from two simulated signals and an X-ray pulsar signal demonstrate that the proposed method can achieve better performance than the conventional EMD and wavelet transform(WT) based denoising methods.展开更多
Low visibility conditions,particularly those caused by fog,significantly affect road safety and reduce drivers’ability to see ahead clearly.The conventional approaches used to address this problem primarily rely on i...Low visibility conditions,particularly those caused by fog,significantly affect road safety and reduce drivers’ability to see ahead clearly.The conventional approaches used to address this problem primarily rely on instrument-based and fixed-threshold-based theoretical frameworks,which face challenges in adaptability and demonstrate lower performance under varying environmental conditions.To overcome these challenges,we propose a real-time visibility estimation model that leverages roadside CCTV cameras to monitor and identify visibility levels under different weather conditions.The proposedmethod begins by identifying specific regions of interest(ROI)in the CCTVimages and focuses on extracting specific features such as the number of lines and contours detected within these regions.These features are then provided as an input to the proposed hierarchical clusteringmodel,which classifies them into different visibility levels without the need for predefined rules and threshold values.In the proposed approach,we used two different distance similaritymetrics,namely dynamic time warping(DTW)and Euclidean distance,alongside the proposed hierarchical clustering model and noted its performance in terms of numerous evaluation measures.The proposed model achieved an average accuracy of 97.81%,precision of 91.31%,recall of 91.25%,and F1-score of 91.27% using theDTWdistancemetric.We also conducted experiments for other deep learning(DL)-based models used in the literature and compared their performances with the proposed model.The experimental results demonstrate that the proposedmodel ismore adaptable and consistent compared to themethods used in the literature.The proposedmethod provides drivers real-time and accurate visibility information and enhances road safety during low visibility conditions.展开更多
An improved method using kernel density estimation (KDE) and confidence level is presented for model validation with small samples. Decision making is a challenging problem because of input uncertainty and only smal...An improved method using kernel density estimation (KDE) and confidence level is presented for model validation with small samples. Decision making is a challenging problem because of input uncertainty and only small samples can be used due to the high costs of experimental measurements. However, model validation provides more confidence for decision makers when improving prediction accuracy at the same time. The confidence level method is introduced and the optimum sample variance is determined using a new method in kernel density estimation to increase the credibility of model validation. As a numerical example, the static frame model validation challenge problem presented by Sandia National Laboratories has been chosen. The optimum bandwidth is selected in kernel density estimation in order to build the probability model based on the calibration data. The model assessment is achieved using validation and accreditation experimental data respectively based on the probability model. Finally, the target structure prediction is performed using validated model, which are consistent with the results obtained by other researchers. The results demonstrate that the method using the improved confidence level and kernel density estimation is an effective approach to solve the model validation problem with small samples.展开更多
基金supported by the China Aerospace Science and Technology Corporation’s Aerospace Science and Technology Innovation Fund Project(casc2013086)CAST Innovation Fund Project(cast2012028)
文摘This paper proposes a new signal noise level estimation approach by local regions. The estimated noise variance is applied as the threshold for an improved empirical mode decomposition(EMD) based signal denoising method. The proposed estimation method can effectively extract the candidate regions for the noise level estimation by measuring the correlation coefficient between noisy signal and a Gaussian filtered signal. For the improved EMD based method, the situation of decomposed intrinsic mode function(IMFs) which contains noise and signal simultaneously are taken into account. Experimental results from two simulated signals and an X-ray pulsar signal demonstrate that the proposed method can achieve better performance than the conventional EMD and wavelet transform(WT) based denoising methods.
文摘Low visibility conditions,particularly those caused by fog,significantly affect road safety and reduce drivers’ability to see ahead clearly.The conventional approaches used to address this problem primarily rely on instrument-based and fixed-threshold-based theoretical frameworks,which face challenges in adaptability and demonstrate lower performance under varying environmental conditions.To overcome these challenges,we propose a real-time visibility estimation model that leverages roadside CCTV cameras to monitor and identify visibility levels under different weather conditions.The proposedmethod begins by identifying specific regions of interest(ROI)in the CCTVimages and focuses on extracting specific features such as the number of lines and contours detected within these regions.These features are then provided as an input to the proposed hierarchical clusteringmodel,which classifies them into different visibility levels without the need for predefined rules and threshold values.In the proposed approach,we used two different distance similaritymetrics,namely dynamic time warping(DTW)and Euclidean distance,alongside the proposed hierarchical clustering model and noted its performance in terms of numerous evaluation measures.The proposed model achieved an average accuracy of 97.81%,precision of 91.31%,recall of 91.25%,and F1-score of 91.27% using theDTWdistancemetric.We also conducted experiments for other deep learning(DL)-based models used in the literature and compared their performances with the proposed model.The experimental results demonstrate that the proposedmodel ismore adaptable and consistent compared to themethods used in the literature.The proposedmethod provides drivers real-time and accurate visibility information and enhances road safety during low visibility conditions.
基金Funding of Jiangsu Innovation Program for Graduate Education (CXZZ11_0193)NUAA Research Funding (NJ2010009)
文摘An improved method using kernel density estimation (KDE) and confidence level is presented for model validation with small samples. Decision making is a challenging problem because of input uncertainty and only small samples can be used due to the high costs of experimental measurements. However, model validation provides more confidence for decision makers when improving prediction accuracy at the same time. The confidence level method is introduced and the optimum sample variance is determined using a new method in kernel density estimation to increase the credibility of model validation. As a numerical example, the static frame model validation challenge problem presented by Sandia National Laboratories has been chosen. The optimum bandwidth is selected in kernel density estimation in order to build the probability model based on the calibration data. The model assessment is achieved using validation and accreditation experimental data respectively based on the probability model. Finally, the target structure prediction is performed using validated model, which are consistent with the results obtained by other researchers. The results demonstrate that the method using the improved confidence level and kernel density estimation is an effective approach to solve the model validation problem with small samples.