A novel algorithm for source location by utilizing the time difference of arrival (TDOA) measurements of a signal received at spatially separated sensors is proposed. The algorithm is based on quadratic constraint tot...A novel algorithm for source location by utilizing the time difference of arrival (TDOA) measurements of a signal received at spatially separated sensors is proposed. The algorithm is based on quadratic constraint total least-squares (QC-TLS) method and gives an explicit solution. The total least-squares method is a generalized data fitting method that is appropriate for cases when the system model contains error or is not known exactly, and quadratic constraint, which could be realized via Lagrange multipliers technique, could constrain the solution to the location equations to improve location accuracy. Comparisons of performance with ordinary least-squares are made, and Monte Carlo simulations are performed. Simulation results indicate that the proposed algorithm has high location accuracy and achieves accuracy close to the Cramer-Rao lower bound (CRLB) near the small TDOA measurement error region.展开更多
Order-recursive least-squares(ORLS)algorithms are applied to the prob-lems of estimation and identification of FIR or ARMA system parameters where a fixedset of input signal samples is available and the desired order ...Order-recursive least-squares(ORLS)algorithms are applied to the prob-lems of estimation and identification of FIR or ARMA system parameters where a fixedset of input signal samples is available and the desired order of the underlying model isunknown.On the basis of several universal formulae for updating nonsymmetric projec-tion operators,this paper presents three kinds of LS algorithms,called nonsymmetric,symmetric and square root normalized fast ORLS algorithms,respectively.As to the au-thors’ knowledge,the first and the third have not been so far provided,and the second isone of those which have the lowest computational requirement.Several simplified versionsof the algorithms are also considered.展开更多
This paper focuses on the problem of adaptive blind source separation (BSS). First, a recursive least-squares (RLS) whitening algorithm is proposed. By combining it with a natural gradient-based RLS algorithm for nonl...This paper focuses on the problem of adaptive blind source separation (BSS). First, a recursive least-squares (RLS) whitening algorithm is proposed. By combining it with a natural gradient-based RLS algorithm for nonlinear principle component analysis (PCA), and using reasonable approximations, a novel RLS algorithm which can achieve BSS without additional pre-whitening of the observed mixtures is obtained. Analyses of the equilibrium points show that both of the RLS whitening algorithm and the natural gradient-based RLS algorithm for BSS have the desired convergence properties. It is also proved that the combined new RLS algorithm for BSS is equivariant and has the property of keeping the separating matrix from becoming singular. Finally, the effectiveness of the proposed algorithm is verified by extensive simulation results.展开更多
Mixed-weight least-squares (MWLS) predictive control algorithm, compared with quadratic programming (QP) method, has the advantages of reducing the computer burden, quick calculation speed and dealing with the case in...Mixed-weight least-squares (MWLS) predictive control algorithm, compared with quadratic programming (QP) method, has the advantages of reducing the computer burden, quick calculation speed and dealing with the case in which the optimization is infeasible. But it can only deal with soft constraints. In order to deal with hard constraints and guarantee feasibility, an improved algorithm is proposed by recalculating the setpoint according to the hard constraints before calculating the manipulated variable and MWLS algorithm is used to satisfy the requirement of soft constraints for the system with the input constraints and output constraints. The algorithm can not only guarantee stability of the system and zero steady state error, but also satisfy the hard constraints of input and output variables. The simulation results show the improved algorithm is feasible and effective.展开更多
The numerical dispersion phenomenon in the finite-difference forward modeling simulations of the wave equation significantly affects the imaging accuracy in acoustic reflection logging.This issue is particularly prono...The numerical dispersion phenomenon in the finite-difference forward modeling simulations of the wave equation significantly affects the imaging accuracy in acoustic reflection logging.This issue is particularly pronounced in the reverse time migration(RTM)method used for shear-wave(S-wave)logging imaging.This not only affects imaging accuracy but also introduces ambiguities in the interpretation of logging results.To address this challenge,this study proposes the use of a least-squares difference coefficient optimization algorithm aiming to suppress the numerical dispersion phenomenon in the RTM of S-wave reflection imaging logging.By optimizing the difference coefficients,the high-precision finite-difference algorithm serves as an effective operator for both forward and backward RTM processes.This approach is instrumental in eliminating migration illusions,which are often caused by numerical dispersion.The effectiveness of this optimized algorithm is demonstrated through numerical results,which indicate that it can achieve more accurate forward imaging results across various conditions,including high-and low-velocity strata,and is effective in both large and small spatial grids.The results of processing real data demonstrate that numerical dispersion optimization effectively reduces migration artifacts and diminishes ambiguities in logging interpretations.This optimization offers crucial technical support to the RTM method,enhancing its capability for accurately modeling and imaging S-wave reflections.展开更多
This paper presents a new highly parallel algorithm for computing the minimum-norm least-squares solution of inconsistent linear equations Ax = b(A∈Rm×n,b∈R (A)). By this algorithm the solution x = A + b is obt...This paper presents a new highly parallel algorithm for computing the minimum-norm least-squares solution of inconsistent linear equations Ax = b(A∈Rm×n,b∈R (A)). By this algorithm the solution x = A + b is obtained in T = n(log2m + log2(n - r + 1) + 5) + log2m + 1 steps with P=mn processors when m × 2(n - 1) and with P = 2n(n - 1) processors otherwise.展开更多
This study explored the application value of iterative decomposition of water and fatwith echo asymmetry and least-squares estimation(IDEAL-IQ)technology in the early diagnosis of ageing osteoporosis(OP).172 participa...This study explored the application value of iterative decomposition of water and fatwith echo asymmetry and least-squares estimation(IDEAL-IQ)technology in the early diagnosis of ageing osteoporosis(OP).172 participants were enrolled and underwentmagnetic resonance imaging(MRI)examinations on a 3.0T scanner.100 cases were included in the normal group(50 males and 50 females;mean age:45 years;age range:20e84 years).33 cases were included in the osteopenia group(17 males and 16 females;mean age:55 years;age range:43e83 years).39 caseswere includedintheOP group(19males and20females;meanage:58years;age range:48 e82 years).Conventional T1WI and T2WI were first obtained,followed by 3D-IDEAL-IQ-acqui-sition.Fat fraction(FF)and apparent transverse relaxation rate(R2*)resultswere automatically calculated from IDEAL-IQ-images on the console.Based on T1Wand T2W-images,300 ROIs for each participantweremanually delineated in L1-L5 vertebral bodies of five middle slices.In each age group of all normal subjects,each parameter was significantly correlated with gender.In male participants from the normal,osteopenia,and OP groups,statistical analysis revealed F values of 11319.292 and 180.130 for comparisons involving FF and R2*values,respectively(all p<0.0001).The sensitivity and specificity of FF values were 0.906 and 0.950,0.994 and 0.997,0.865 and 0.820,respectively.For R2*,they were 0.665 and 0.616,0.563 and 0.519,0.571 and 0.368,respectively.In female participants from the normal,osteopenia,and OP-groups,statis-tical analysis revealed F values of 12461.658 and 548.274 for comparisons involving FF and R2*values,respectively(all p<0.0001).The sensitivity and specificity of FF values were 0.985 and 0.991,0.996 and 0.996,0.581 and 0.678,respectively.For R2*,they were 0.698 and 0.730,0.603 and 0.665,0.622 and 0.525,respectively.Significant differences were indicated in the quanti-tative values among the three groups.FF value had good performance,while R2*value had poor performance indiscriminatingosteopenia andOP-groups.Overall,the IDEAL-IQ techniqueoffers specific reference indices that enable noninvasive and quantitative assessment of lumbar vertebrae bone metabolism,thereby providing diagnostic information for OP.展开更多
Tensor canonical decomposition (shorted as CANDECOMP/PARAFAC or CP) decomposes a tensor as a sum of rank-one tensors, which finds numerous applications in signal processing, hypergraph analysis, data analysis, etc. ...Tensor canonical decomposition (shorted as CANDECOMP/PARAFAC or CP) decomposes a tensor as a sum of rank-one tensors, which finds numerous applications in signal processing, hypergraph analysis, data analysis, etc. Alternating least-squares (ALS) is one of the most popular numerical algorithms for solving it. While there have been lots of efforts for enhancing its efficiency, in general its convergence can not been guaranteed. In this paper, we cooperate the ALS and the trust-region technique from optimization field to generate a trust-region-based alternating least-squares (TRALS) method for CP. Under mild assumptions, we prove that the whole iterative sequence generated by TRALS converges to a stationary point of CP. This thus provides a reasonable way to alleviate the swamps, the notorious phenomena of ALS that slow down the speed of the algorithm. Moreover, the trust region itself, in contrast to the regularization alternating least-squares (RALS) method, provides a self-adaptive way in choosing the parameter, which is essential for the efficiency of the algorithm. Our theoretical result is thus stronger than that of RALS in [26], which only proved the cluster point of the iterative sequence generated by RALS is a stationary point. In order to accelerate the new algorithm, we adopt an extrapolation scheme. We apply our algorithm to the amino acid fluorescence data decomposition from chemometrics, BCM decomposition and rank-(Lr, Lr, 1) decomposition arising from signal processing, and compare it with ALS and RALS. The numerical results show that TRALS is superior to ALS and RALS, both from the number of iterations and CPU time perspectives.展开更多
Simultaneous-source acquisition has been recog- nized as an economic and efficient acquisition method, but the direct imaging of the simultaneous-source data produces migration artifacts because of the interference of...Simultaneous-source acquisition has been recog- nized as an economic and efficient acquisition method, but the direct imaging of the simultaneous-source data produces migration artifacts because of the interference of adjacent sources. To overcome this problem, we propose the regularized least-squares reverse time migration method (RLSRTM) using the singular spectrum analysis technique that imposes sparseness constraints on the inverted model. Additionally, the difference spectrum theory of singular values is presented so that RLSRTM can be implemented adaptively to eliminate the migration artifacts. With numerical tests on a fiat layer model and a Marmousi model, we validate the superior imaging quality, efficiency and convergence of RLSRTM compared with LSRTM when dealing with simultaneoussource data, incomplete data and noisy data.展开更多
We present a method based on least-squares reverse time migration with plane-wave encoding (P-LSRTM) for rugged topography. Instead of modifying the wave field before migration, we modify the plane-wave encoding fun...We present a method based on least-squares reverse time migration with plane-wave encoding (P-LSRTM) for rugged topography. Instead of modifying the wave field before migration, we modify the plane-wave encoding function and fill constant velocity to the area above rugged topography in the model so that P-LSRTM can be directly performed from rugged surface in the way same to shot domain reverse time migration. In order to improve efficiency and reduce I/O (input/output) cost, the dynamic en- coding strategy and hybrid encoding strategy are implemented. Numerical test on SEG rugged topography model show that P-LSRTM can suppress migration artifacts in the migration image, and compensate am- plitude in the middle-deep part efficiently. Without data correction, P-LSRTM can produce a satisfying image of near-surface if we could get an accurate near-surface velocity model. Moreover, the pre-stack P- LSRTM is more robust than conventional RTM in the presence of migration velocity errors.展开更多
To obtain higher accurate position estimates, the stochastic model is estimated by using residual of observations, hence, the stochastic model describes the noise and bias in measurements more realistically. By using ...To obtain higher accurate position estimates, the stochastic model is estimated by using residual of observations, hence, the stochastic model describes the noise and bias in measurements more realistically. By using GPS data and broadcast ephemeris, the numerical results indicating the accurate position estimates at sub-meter level are obtainable.展开更多
A linear-correction least-squares(LCLS) estimation procedure is proposed for geolocation using frequency difference of arrival (FDOA) measurements only. We first analyze the measurements of FDOA, and further deriv...A linear-correction least-squares(LCLS) estimation procedure is proposed for geolocation using frequency difference of arrival (FDOA) measurements only. We first analyze the measurements of FDOA, and further derive the Cramer-Rao lower bound (CRLB) of geoloeation using FDOA measurements. For the localization model is a nonlinear least squares(LS) estimator with a nonlinear constrained, a linearizing method is used to convert the model to a linear least squares estimator with a nonlinear con- strained. The Gauss-Newton iteration method is developed to conquer the source localization problem. From the analysis of solving Lagrange multiplier, the algorithm is a generalization of linear-correction least squares estimation procedure under the condition of geolocation using FDOA measurements only. The algorithm is compared with common least squares estimation. Comparisons of their estimation accuracy and the CRLB are made, and the proposed method attains the CRLB. Simulation re- sults are included to corroborate the theoretical development.展开更多
The technology of simultaneous-source acquisition of seismic data excited by several sources can significantly improve the data collection efficiency. However, direct imaging of simultaneous-source data or blended dat...The technology of simultaneous-source acquisition of seismic data excited by several sources can significantly improve the data collection efficiency. However, direct imaging of simultaneous-source data or blended data may introduce crosstalk noise and affect the imaging quality. To address this problem, we introduce a structure-oriented filtering operator as preconditioner into the multisource least-squares reverse-time migration (LSRTM). The structure-oriented filtering operator is a nonstationary filter along structural trends that suppresses crosstalk noise while maintaining structural information. The proposed method uses the conjugate-gradient method to minimize the mismatch between predicted and observed data, while effectively attenuating the interference noise caused by exciting several sources simultaneously. Numerical experiments using synthetic data suggest that the proposed method can suppress the crosstalk noise and produce highly accurate images.展开更多
The full-spectrum least-squares(FSLS) method is introduced to perform quantitative energy-dispersive X-ray fluorescence analysis for unknown solid samples.Based on the conventional least-squares principle, this spectr...The full-spectrum least-squares(FSLS) method is introduced to perform quantitative energy-dispersive X-ray fluorescence analysis for unknown solid samples.Based on the conventional least-squares principle, this spectrum evaluation method is able to obtain the background-corrected and interference-free net peaks, which is significant for quantization analyses. A variety of analytical parameters and functions to describe the features of the fluorescence spectra of pure elements are used and established, such as the mass absorption coefficient, the Gi factor, and fundamental fluorescence formulas. The FSLS iterative program was compiled in the C language. The content of each component should reach the convergence criterion at the end of the calculations. After a basic theory analysis and experimental preparation, 13 national standard soil samples were detected using a spectrometer to test the feasibility of using the algorithm. The results show that the calculated contents of Ti, Fe, Ni, Cu, and Zn have the same changing tendency as the corresponding standard content in the 13 reference samples. Accuracies of 0.35% and 14.03% are obtained, respectively, for Fe and Ti, whose standard concentrations are 8.82% and 0.578%, respectively. However, the calculated results of trace elements (only tens of lg/g) deviate from the standard values. This may be because of measurement accuracy and mutual effects between the elements.展开更多
The main purpose of reverse engineering is to convert discrete data pointsinto piecewise smooth, continuous surface models. Before carrying out model reconstruction it issignificant to extract geometric features becau...The main purpose of reverse engineering is to convert discrete data pointsinto piecewise smooth, continuous surface models. Before carrying out model reconstruction it issignificant to extract geometric features because the quality of modeling greatly depends on therepresentation of features. Some fitting techniques of natural quadric surfaces with least-squaresmethod are described. And these techniques can be directly used to extract quadric surfaces featuresduring the process of segmentation for point cloud.展开更多
It is well known that the Two-step Weighted Least-Squares(TWLS) is a widely used method for source localization and sensor position refinement. For this reason, we propose a unified framework of the TWLS method for jo...It is well known that the Two-step Weighted Least-Squares(TWLS) is a widely used method for source localization and sensor position refinement. For this reason, we propose a unified framework of the TWLS method for joint estimation of multiple disjoint sources and sensor locations in this paper. Unlike some existing works, the presented method is based on more general measurement model, and therefore it can be applied to many different localization scenarios.Besides, it does not have the initialization and local convergence problem. The closed-form expression for the covariance matrix of the proposed TWLS estimator is also derived by exploiting the first-order perturbation analysis. Moreover, the estimation accuracy of the TWLS method is shown analytically to achieve the Cramér-Rao Bound(CRB) before the threshold effect takes place. The theoretical analysis is also performed in a common mathematical framework, rather than aiming at some specific signal metrics. Finally, two numerical experiments are performed to support the theoretical development in this paper.展开更多
A least-squares finite-element method (LSFEM) for the non-conservative shallow-water equations is presented. The model is capable of handling complex topography, steady and unsteady flows, subcritical and supercriti...A least-squares finite-element method (LSFEM) for the non-conservative shallow-water equations is presented. The model is capable of handling complex topography, steady and unsteady flows, subcritical and supercritical flows, and flows with smooth and sharp gradient changes. Advantages of the model include: (1) sources terms, such as the bottom slope, surface stresses and bed frictions, can be treated easily without any special treatment; (2) upwind scheme is no needed; (3) a single approximating space can be used for all variables, and its choice of approximating space is not subject to the Ladyzhenskaya-Babuska-Brezzi (LBB) condition; and (4) the resulting system of equations is symmetric and positive-definite (SPD) which can be solved efficiently with the preconditioned conjugate gradient method. The model is verified with flow over a bump, tide induced flow, and dam-break. Computed results are compared with analytic solutions or other numerical results, and show the model is conservative and accurate. The model is then used to simulate flow past a circular cylinder. Important flow charac-teristics, such as variation of water surface around the cylinder and vortex shedding behind the cylinder are investigated. Computed results compare well with experiment data and other numerical results.展开更多
By utilizing the time difference of arrival (TDOA) and frequency difference of arrival (FDOA) measurements of signals received at a number of receivers, a constrained least-square (CLS) algorithm for estimating ...By utilizing the time difference of arrival (TDOA) and frequency difference of arrival (FDOA) measurements of signals received at a number of receivers, a constrained least-square (CLS) algorithm for estimating the position and velocity of a moving source is proposed. By utilizing the Lagrange multipliers technique, the known relation between the intermediate variables and the source location coordinates could be exploited to constrain the solution. And without requiring apriori knowledge of TDOA and FDOA measurement noises, the proposed algorithm can satisfy the demand of practical applications. Additionally, on basis of con- volute and polynomial rooting operations, the Lagrange multipliers can be obtained efficiently and robustly allowing real-time imple- mentation and global convergence. Simulation results show that the proposed estimator achieves remarkably better performance than the two-step weighted least square (WLS) approach especially for higher measurement noise level.展开更多
Numerical solution of shallow-water equations (SWE) has been a challenging task because of its nonlinear hyperbolic nature, admitting discontinuous solution, and the need to satisfy the C-property. The presence of s...Numerical solution of shallow-water equations (SWE) has been a challenging task because of its nonlinear hyperbolic nature, admitting discontinuous solution, and the need to satisfy the C-property. The presence of source terms in momentum equations, such as the bottom slope and friction of bed, compounds the difficulties further. In this paper, a least-squares finite-element method for the space discretization and θ-method for the time integration is developed for the 2D non-conservative SWE including the source terms. Advantages of the method include: the source terms can be approximated easily with interpolation functions, no upwind scheme is needed, as well as the resulting system equations is symmetric and positive-definite, therefore, can be solved efficiently with the conjugate gradient method. The method is applied to steady and unsteady flows, subcritical and transcritical flow over a bump, 1D and 2D circular dam-break, wave past a circular cylinder, as well as wave past a hump. Computed results show good C-property, conservation property and compare well with exact solutions and other numerical results for flows with weak and mild gradient changes, but lead to inaccurate predictions for flows with strong gradient changes and discontinuities.展开更多
文摘A novel algorithm for source location by utilizing the time difference of arrival (TDOA) measurements of a signal received at spatially separated sensors is proposed. The algorithm is based on quadratic constraint total least-squares (QC-TLS) method and gives an explicit solution. The total least-squares method is a generalized data fitting method that is appropriate for cases when the system model contains error or is not known exactly, and quadratic constraint, which could be realized via Lagrange multipliers technique, could constrain the solution to the location equations to improve location accuracy. Comparisons of performance with ordinary least-squares are made, and Monte Carlo simulations are performed. Simulation results indicate that the proposed algorithm has high location accuracy and achieves accuracy close to the Cramer-Rao lower bound (CRLB) near the small TDOA measurement error region.
文摘Order-recursive least-squares(ORLS)algorithms are applied to the prob-lems of estimation and identification of FIR or ARMA system parameters where a fixedset of input signal samples is available and the desired order of the underlying model isunknown.On the basis of several universal formulae for updating nonsymmetric projec-tion operators,this paper presents three kinds of LS algorithms,called nonsymmetric,symmetric and square root normalized fast ORLS algorithms,respectively.As to the au-thors’ knowledge,the first and the third have not been so far provided,and the second isone of those which have the lowest computational requirement.Several simplified versionsof the algorithms are also considered.
文摘This paper focuses on the problem of adaptive blind source separation (BSS). First, a recursive least-squares (RLS) whitening algorithm is proposed. By combining it with a natural gradient-based RLS algorithm for nonlinear principle component analysis (PCA), and using reasonable approximations, a novel RLS algorithm which can achieve BSS without additional pre-whitening of the observed mixtures is obtained. Analyses of the equilibrium points show that both of the RLS whitening algorithm and the natural gradient-based RLS algorithm for BSS have the desired convergence properties. It is also proved that the combined new RLS algorithm for BSS is equivariant and has the property of keeping the separating matrix from becoming singular. Finally, the effectiveness of the proposed algorithm is verified by extensive simulation results.
基金National Key Basic Research and Development(No.2002CB312200)
文摘Mixed-weight least-squares (MWLS) predictive control algorithm, compared with quadratic programming (QP) method, has the advantages of reducing the computer burden, quick calculation speed and dealing with the case in which the optimization is infeasible. But it can only deal with soft constraints. In order to deal with hard constraints and guarantee feasibility, an improved algorithm is proposed by recalculating the setpoint according to the hard constraints before calculating the manipulated variable and MWLS algorithm is used to satisfy the requirement of soft constraints for the system with the input constraints and output constraints. The algorithm can not only guarantee stability of the system and zero steady state error, but also satisfy the hard constraints of input and output variables. The simulation results show the improved algorithm is feasible and effective.
基金supported by Scientific Research and Technology Development Project of CNPC(2021DJ4002,2022DJ3908).
文摘The numerical dispersion phenomenon in the finite-difference forward modeling simulations of the wave equation significantly affects the imaging accuracy in acoustic reflection logging.This issue is particularly pronounced in the reverse time migration(RTM)method used for shear-wave(S-wave)logging imaging.This not only affects imaging accuracy but also introduces ambiguities in the interpretation of logging results.To address this challenge,this study proposes the use of a least-squares difference coefficient optimization algorithm aiming to suppress the numerical dispersion phenomenon in the RTM of S-wave reflection imaging logging.By optimizing the difference coefficients,the high-precision finite-difference algorithm serves as an effective operator for both forward and backward RTM processes.This approach is instrumental in eliminating migration illusions,which are often caused by numerical dispersion.The effectiveness of this optimized algorithm is demonstrated through numerical results,which indicate that it can achieve more accurate forward imaging results across various conditions,including high-and low-velocity strata,and is effective in both large and small spatial grids.The results of processing real data demonstrate that numerical dispersion optimization effectively reduces migration artifacts and diminishes ambiguities in logging interpretations.This optimization offers crucial technical support to the RTM method,enhancing its capability for accurately modeling and imaging S-wave reflections.
基金This project is supported by the National Natural Science Foundation of China
文摘This paper presents a new highly parallel algorithm for computing the minimum-norm least-squares solution of inconsistent linear equations Ax = b(A∈Rm×n,b∈R (A)). By this algorithm the solution x = A + b is obtained in T = n(log2m + log2(n - r + 1) + 5) + log2m + 1 steps with P=mn processors when m × 2(n - 1) and with P = 2n(n - 1) processors otherwise.
基金supported by the Planned Project Grant(Grant No.3502Z20199064)from the Science and Technology Bureau of Xiamen(CN)the training project(Grant No.2020GGB067)of the youth and middle-aged talents of Fujian Provincial Health Commission(CN).
文摘This study explored the application value of iterative decomposition of water and fatwith echo asymmetry and least-squares estimation(IDEAL-IQ)technology in the early diagnosis of ageing osteoporosis(OP).172 participants were enrolled and underwentmagnetic resonance imaging(MRI)examinations on a 3.0T scanner.100 cases were included in the normal group(50 males and 50 females;mean age:45 years;age range:20e84 years).33 cases were included in the osteopenia group(17 males and 16 females;mean age:55 years;age range:43e83 years).39 caseswere includedintheOP group(19males and20females;meanage:58years;age range:48 e82 years).Conventional T1WI and T2WI were first obtained,followed by 3D-IDEAL-IQ-acqui-sition.Fat fraction(FF)and apparent transverse relaxation rate(R2*)resultswere automatically calculated from IDEAL-IQ-images on the console.Based on T1Wand T2W-images,300 ROIs for each participantweremanually delineated in L1-L5 vertebral bodies of five middle slices.In each age group of all normal subjects,each parameter was significantly correlated with gender.In male participants from the normal,osteopenia,and OP groups,statistical analysis revealed F values of 11319.292 and 180.130 for comparisons involving FF and R2*values,respectively(all p<0.0001).The sensitivity and specificity of FF values were 0.906 and 0.950,0.994 and 0.997,0.865 and 0.820,respectively.For R2*,they were 0.665 and 0.616,0.563 and 0.519,0.571 and 0.368,respectively.In female participants from the normal,osteopenia,and OP-groups,statis-tical analysis revealed F values of 12461.658 and 548.274 for comparisons involving FF and R2*values,respectively(all p<0.0001).The sensitivity and specificity of FF values were 0.985 and 0.991,0.996 and 0.996,0.581 and 0.678,respectively.For R2*,they were 0.698 and 0.730,0.603 and 0.665,0.622 and 0.525,respectively.Significant differences were indicated in the quanti-tative values among the three groups.FF value had good performance,while R2*value had poor performance indiscriminatingosteopenia andOP-groups.Overall,the IDEAL-IQ techniqueoffers specific reference indices that enable noninvasive and quantitative assessment of lumbar vertebrae bone metabolism,thereby providing diagnostic information for OP.
文摘Tensor canonical decomposition (shorted as CANDECOMP/PARAFAC or CP) decomposes a tensor as a sum of rank-one tensors, which finds numerous applications in signal processing, hypergraph analysis, data analysis, etc. Alternating least-squares (ALS) is one of the most popular numerical algorithms for solving it. While there have been lots of efforts for enhancing its efficiency, in general its convergence can not been guaranteed. In this paper, we cooperate the ALS and the trust-region technique from optimization field to generate a trust-region-based alternating least-squares (TRALS) method for CP. Under mild assumptions, we prove that the whole iterative sequence generated by TRALS converges to a stationary point of CP. This thus provides a reasonable way to alleviate the swamps, the notorious phenomena of ALS that slow down the speed of the algorithm. Moreover, the trust region itself, in contrast to the regularization alternating least-squares (RALS) method, provides a self-adaptive way in choosing the parameter, which is essential for the efficiency of the algorithm. Our theoretical result is thus stronger than that of RALS in [26], which only proved the cluster point of the iterative sequence generated by RALS is a stationary point. In order to accelerate the new algorithm, we adopt an extrapolation scheme. We apply our algorithm to the amino acid fluorescence data decomposition from chemometrics, BCM decomposition and rank-(Lr, Lr, 1) decomposition arising from signal processing, and compare it with ALS and RALS. The numerical results show that TRALS is superior to ALS and RALS, both from the number of iterations and CPU time perspectives.
基金financial support from the National Natural Science Foundation of China (Grant Nos. 41104069, 41274124)National Key Basic Research Program of China (973 Program) (Grant No. 2014CB239006)+2 种基金National Science and Technology Major Project (Grant No. 2011ZX05014-001-008)the Open Foundation of SINOPEC Key Laboratory of Geophysics (Grant No. 33550006-15-FW2099-0033)the Fundamental Research Funds for the Central Universities (Grant No. 16CX06046A)
文摘Simultaneous-source acquisition has been recog- nized as an economic and efficient acquisition method, but the direct imaging of the simultaneous-source data produces migration artifacts because of the interference of adjacent sources. To overcome this problem, we propose the regularized least-squares reverse time migration method (RLSRTM) using the singular spectrum analysis technique that imposes sparseness constraints on the inverted model. Additionally, the difference spectrum theory of singular values is presented so that RLSRTM can be implemented adaptively to eliminate the migration artifacts. With numerical tests on a fiat layer model and a Marmousi model, we validate the superior imaging quality, efficiency and convergence of RLSRTM compared with LSRTM when dealing with simultaneoussource data, incomplete data and noisy data.
基金jointly financial support of the National 973 Project of China(Nos.2014CB239006,2011CB202402)the National Natural Science Foundation of China(Nos.41104069,41274124)+1 种基金the Shandong Natural Science Foundation of China(No.ZR2011DQ016)the Fundamental Research Funds for the Central Universities of China(No.R1401005A)
文摘We present a method based on least-squares reverse time migration with plane-wave encoding (P-LSRTM) for rugged topography. Instead of modifying the wave field before migration, we modify the plane-wave encoding function and fill constant velocity to the area above rugged topography in the model so that P-LSRTM can be directly performed from rugged surface in the way same to shot domain reverse time migration. In order to improve efficiency and reduce I/O (input/output) cost, the dynamic en- coding strategy and hybrid encoding strategy are implemented. Numerical test on SEG rugged topography model show that P-LSRTM can suppress migration artifacts in the migration image, and compensate am- plitude in the middle-deep part efficiently. Without data correction, P-LSRTM can produce a satisfying image of near-surface if we could get an accurate near-surface velocity model. Moreover, the pre-stack P- LSRTM is more robust than conventional RTM in the presence of migration velocity errors.
基金Supported by the National 863 Program of China (No.2006AA12Z325) and the National Natural Science Foundation of China (No.40274005).
文摘To obtain higher accurate position estimates, the stochastic model is estimated by using residual of observations, hence, the stochastic model describes the noise and bias in measurements more realistically. By using GPS data and broadcast ephemeris, the numerical results indicating the accurate position estimates at sub-meter level are obtainable.
基金National High-tech Research and Development Program of China (2011AA7072043)National Defense Key Laboratory Foundation of China (9140C860304)Innovation Fund of Graduate School of NUDT (B120406)
文摘A linear-correction least-squares(LCLS) estimation procedure is proposed for geolocation using frequency difference of arrival (FDOA) measurements only. We first analyze the measurements of FDOA, and further derive the Cramer-Rao lower bound (CRLB) of geoloeation using FDOA measurements. For the localization model is a nonlinear least squares(LS) estimator with a nonlinear constrained, a linearizing method is used to convert the model to a linear least squares estimator with a nonlinear con- strained. The Gauss-Newton iteration method is developed to conquer the source localization problem. From the analysis of solving Lagrange multiplier, the algorithm is a generalization of linear-correction least squares estimation procedure under the condition of geolocation using FDOA measurements only. The algorithm is compared with common least squares estimation. Comparisons of their estimation accuracy and the CRLB are made, and the proposed method attains the CRLB. Simulation re- sults are included to corroborate the theoretical development.
基金supported by the National Natural Science Foundation of China(Nos.41374122 and 41504100)
文摘The technology of simultaneous-source acquisition of seismic data excited by several sources can significantly improve the data collection efficiency. However, direct imaging of simultaneous-source data or blended data may introduce crosstalk noise and affect the imaging quality. To address this problem, we introduce a structure-oriented filtering operator as preconditioner into the multisource least-squares reverse-time migration (LSRTM). The structure-oriented filtering operator is a nonstationary filter along structural trends that suppresses crosstalk noise while maintaining structural information. The proposed method uses the conjugate-gradient method to minimize the mismatch between predicted and observed data, while effectively attenuating the interference noise caused by exciting several sources simultaneously. Numerical experiments using synthetic data suggest that the proposed method can suppress the crosstalk noise and produce highly accurate images.
基金supported by the National Key R&D Project of China(No.2017YFC0602100)the National Natural Science Foundation of China(No.41774147)Sichuan Science and Technology Support Program(No.2015GZ0272)
文摘The full-spectrum least-squares(FSLS) method is introduced to perform quantitative energy-dispersive X-ray fluorescence analysis for unknown solid samples.Based on the conventional least-squares principle, this spectrum evaluation method is able to obtain the background-corrected and interference-free net peaks, which is significant for quantization analyses. A variety of analytical parameters and functions to describe the features of the fluorescence spectra of pure elements are used and established, such as the mass absorption coefficient, the Gi factor, and fundamental fluorescence formulas. The FSLS iterative program was compiled in the C language. The content of each component should reach the convergence criterion at the end of the calculations. After a basic theory analysis and experimental preparation, 13 national standard soil samples were detected using a spectrometer to test the feasibility of using the algorithm. The results show that the calculated contents of Ti, Fe, Ni, Cu, and Zn have the same changing tendency as the corresponding standard content in the 13 reference samples. Accuracies of 0.35% and 14.03% are obtained, respectively, for Fe and Ti, whose standard concentrations are 8.82% and 0.578%, respectively. However, the calculated results of trace elements (only tens of lg/g) deviate from the standard values. This may be because of measurement accuracy and mutual effects between the elements.
基金This project is supported by Research Foundation for Doctoral Program of Higher Education, China (No.98033532)
文摘The main purpose of reverse engineering is to convert discrete data pointsinto piecewise smooth, continuous surface models. Before carrying out model reconstruction it issignificant to extract geometric features because the quality of modeling greatly depends on therepresentation of features. Some fitting techniques of natural quadric surfaces with least-squaresmethod are described. And these techniques can be directly used to extract quadric surfaces featuresduring the process of segmentation for point cloud.
基金co-supported by the National Natural Science Foundation of China (Nos. 61201381, 61401513 and 61772548)the China Postdoctoral Science Foundation (No. 2016M592989)+1 种基金the Self-Topic Foundation of Information Engineering University, China (No. 2016600701)the Outstanding Youth Foundation of Information Engineering University, China (No. 2016603201)
文摘It is well known that the Two-step Weighted Least-Squares(TWLS) is a widely used method for source localization and sensor position refinement. For this reason, we propose a unified framework of the TWLS method for joint estimation of multiple disjoint sources and sensor locations in this paper. Unlike some existing works, the presented method is based on more general measurement model, and therefore it can be applied to many different localization scenarios.Besides, it does not have the initialization and local convergence problem. The closed-form expression for the covariance matrix of the proposed TWLS estimator is also derived by exploiting the first-order perturbation analysis. Moreover, the estimation accuracy of the TWLS method is shown analytically to achieve the Cramér-Rao Bound(CRB) before the threshold effect takes place. The theoretical analysis is also performed in a common mathematical framework, rather than aiming at some specific signal metrics. Finally, two numerical experiments are performed to support the theoretical development in this paper.
基金the National Science Council ot Taiwan,China for funding this research(Project no.:NSC 94-2218-E-035-011)
文摘A least-squares finite-element method (LSFEM) for the non-conservative shallow-water equations is presented. The model is capable of handling complex topography, steady and unsteady flows, subcritical and supercritical flows, and flows with smooth and sharp gradient changes. Advantages of the model include: (1) sources terms, such as the bottom slope, surface stresses and bed frictions, can be treated easily without any special treatment; (2) upwind scheme is no needed; (3) a single approximating space can be used for all variables, and its choice of approximating space is not subject to the Ladyzhenskaya-Babuska-Brezzi (LBB) condition; and (4) the resulting system of equations is symmetric and positive-definite (SPD) which can be solved efficiently with the preconditioned conjugate gradient method. The model is verified with flow over a bump, tide induced flow, and dam-break. Computed results are compared with analytic solutions or other numerical results, and show the model is conservative and accurate. The model is then used to simulate flow past a circular cylinder. Important flow charac-teristics, such as variation of water surface around the cylinder and vortex shedding behind the cylinder are investigated. Computed results compare well with experiment data and other numerical results.
基金supported by the National High Technology Research and Development Program of China (863 Program) (2010AA7010422 2011AA7014061)
文摘By utilizing the time difference of arrival (TDOA) and frequency difference of arrival (FDOA) measurements of signals received at a number of receivers, a constrained least-square (CLS) algorithm for estimating the position and velocity of a moving source is proposed. By utilizing the Lagrange multipliers technique, the known relation between the intermediate variables and the source location coordinates could be exploited to constrain the solution. And without requiring apriori knowledge of TDOA and FDOA measurement noises, the proposed algorithm can satisfy the demand of practical applications. Additionally, on basis of con- volute and polynomial rooting operations, the Lagrange multipliers can be obtained efficiently and robustly allowing real-time imple- mentation and global convergence. Simulation results show that the proposed estimator achieves remarkably better performance than the two-step weighted least square (WLS) approach especially for higher measurement noise level.
基金the National Science Council of Taiwan for funding this research (NSC 96-2221-E-019-061).
文摘Numerical solution of shallow-water equations (SWE) has been a challenging task because of its nonlinear hyperbolic nature, admitting discontinuous solution, and the need to satisfy the C-property. The presence of source terms in momentum equations, such as the bottom slope and friction of bed, compounds the difficulties further. In this paper, a least-squares finite-element method for the space discretization and θ-method for the time integration is developed for the 2D non-conservative SWE including the source terms. Advantages of the method include: the source terms can be approximated easily with interpolation functions, no upwind scheme is needed, as well as the resulting system equations is symmetric and positive-definite, therefore, can be solved efficiently with the conjugate gradient method. The method is applied to steady and unsteady flows, subcritical and transcritical flow over a bump, 1D and 2D circular dam-break, wave past a circular cylinder, as well as wave past a hump. Computed results show good C-property, conservation property and compare well with exact solutions and other numerical results for flows with weak and mild gradient changes, but lead to inaccurate predictions for flows with strong gradient changes and discontinuities.