The meshless weighted least-square (MWLS) method was developed based on the weighted least-square method. The method possesses several advantages, such as high accuracy, high stability and high e?ciency. Moreover, t...The meshless weighted least-square (MWLS) method was developed based on the weighted least-square method. The method possesses several advantages, such as high accuracy, high stability and high e?ciency. Moreover, the coe?cient matrix obtained is symmetric and semi- positive de?nite. In this paper, the method is further examined critically. The e?ects of several parameters on the results of MWLS are investigated systematically by using a cantilever beam and an in?nite plate with a central circular hole. The numerical results are compared with those obtained by using the collocation-based meshless method (CBMM) and Galerkin-based meshless method (GBMM). The investigated parameters include the type of approximations, the type of weight functions, the number of neighbors of an evaluation point, as well as the manner in which the neighbors of an evaluation point are determined. This study shows that the displacement accuracy and convergence rate obtained by MWLS is comparable to that of the GBMM while the stress accuracy and convergence rate yielded by MWLS is even higher than that of GBMM. Furthermore, MWLS is much more e?cient than GBMM. This study also shows that the instability of CBMM is mainly due to the neglect of the equi- librium residuals at boundary nodes. In MWLS, the residuals of all the governing equations are minimized in a weighted least-square sense.展开更多
The numerical dispersion phenomenon in the finite-difference forward modeling simulations of the wave equation significantly affects the imaging accuracy in acoustic reflection logging.This issue is particularly prono...The numerical dispersion phenomenon in the finite-difference forward modeling simulations of the wave equation significantly affects the imaging accuracy in acoustic reflection logging.This issue is particularly pronounced in the reverse time migration(RTM)method used for shear-wave(S-wave)logging imaging.This not only affects imaging accuracy but also introduces ambiguities in the interpretation of logging results.To address this challenge,this study proposes the use of a least-squares difference coefficient optimization algorithm aiming to suppress the numerical dispersion phenomenon in the RTM of S-wave reflection imaging logging.By optimizing the difference coefficients,the high-precision finite-difference algorithm serves as an effective operator for both forward and backward RTM processes.This approach is instrumental in eliminating migration illusions,which are often caused by numerical dispersion.The effectiveness of this optimized algorithm is demonstrated through numerical results,which indicate that it can achieve more accurate forward imaging results across various conditions,including high-and low-velocity strata,and is effective in both large and small spatial grids.The results of processing real data demonstrate that numerical dispersion optimization effectively reduces migration artifacts and diminishes ambiguities in logging interpretations.This optimization offers crucial technical support to the RTM method,enhancing its capability for accurately modeling and imaging S-wave reflections.展开更多
The main purpose of reverse engineering is to convert discrete data pointsinto piecewise smooth, continuous surface models. Before carrying out model reconstruction it issignificant to extract geometric features becau...The main purpose of reverse engineering is to convert discrete data pointsinto piecewise smooth, continuous surface models. Before carrying out model reconstruction it issignificant to extract geometric features because the quality of modeling greatly depends on therepresentation of features. Some fitting techniques of natural quadric surfaces with least-squaresmethod are described. And these techniques can be directly used to extract quadric surfaces featuresduring the process of segmentation for point cloud.展开更多
A least-squares finite-element method (LSFEM) for the non-conservative shallow-water equations is presented. The model is capable of handling complex topography, steady and unsteady flows, subcritical and supercriti...A least-squares finite-element method (LSFEM) for the non-conservative shallow-water equations is presented. The model is capable of handling complex topography, steady and unsteady flows, subcritical and supercritical flows, and flows with smooth and sharp gradient changes. Advantages of the model include: (1) sources terms, such as the bottom slope, surface stresses and bed frictions, can be treated easily without any special treatment; (2) upwind scheme is no needed; (3) a single approximating space can be used for all variables, and its choice of approximating space is not subject to the Ladyzhenskaya-Babuska-Brezzi (LBB) condition; and (4) the resulting system of equations is symmetric and positive-definite (SPD) which can be solved efficiently with the preconditioned conjugate gradient method. The model is verified with flow over a bump, tide induced flow, and dam-break. Computed results are compared with analytic solutions or other numerical results, and show the model is conservative and accurate. The model is then used to simulate flow past a circular cylinder. Important flow charac-teristics, such as variation of water surface around the cylinder and vortex shedding behind the cylinder are investigated. Computed results compare well with experiment data and other numerical results.展开更多
Numerical solution of shallow-water equations (SWE) has been a challenging task because of its nonlinear hyperbolic nature, admitting discontinuous solution, and the need to satisfy the C-property. The presence of s...Numerical solution of shallow-water equations (SWE) has been a challenging task because of its nonlinear hyperbolic nature, admitting discontinuous solution, and the need to satisfy the C-property. The presence of source terms in momentum equations, such as the bottom slope and friction of bed, compounds the difficulties further. In this paper, a least-squares finite-element method for the space discretization and θ-method for the time integration is developed for the 2D non-conservative SWE including the source terms. Advantages of the method include: the source terms can be approximated easily with interpolation functions, no upwind scheme is needed, as well as the resulting system equations is symmetric and positive-definite, therefore, can be solved efficiently with the conjugate gradient method. The method is applied to steady and unsteady flows, subcritical and transcritical flow over a bump, 1D and 2D circular dam-break, wave past a circular cylinder, as well as wave past a hump. Computed results show good C-property, conservation property and compare well with exact solutions and other numerical results for flows with weak and mild gradient changes, but lead to inaccurate predictions for flows with strong gradient changes and discontinuities.展开更多
The purpose of this article is to develop and analyze least-squares approximations for the incompressible magnetohydrodynamic equations. The major advantage of the least-squares finite element method is that it is not...The purpose of this article is to develop and analyze least-squares approximations for the incompressible magnetohydrodynamic equations. The major advantage of the least-squares finite element method is that it is not subjected to the so-called Ladyzhenskaya-Babuska-Brezzi (LBB) condition. The authors employ least-squares functionals which involve a discrete inner product which is related to the inner product in H^-1(Ω).展开更多
The Galerkin and least-squares methods are two classes of the most popular Krylov subspace methOds for solving large linear systems of equations. Unfortunately, both the methods may suffer from serious breakdowns of t...The Galerkin and least-squares methods are two classes of the most popular Krylov subspace methOds for solving large linear systems of equations. Unfortunately, both the methods may suffer from serious breakdowns of the same type: In a breakdown situation the Galerkin method is unable to calculate an approximate solution, while the least-squares method, although does not really break down, is unsucessful in reducing the norm of its residual. In this paper we first establish a unified theorem which gives a relationship between breakdowns in the two methods. We further illustrate theoretically and experimentally that if the coefficient matrix of a lienar system is of high defectiveness with the associated eigenvalues less than 1, then the restarted Galerkin and least-squares methods will be in great risks of complete breakdowns. It appears that our findings may help to understand phenomena observed practically and to derive treatments for breakdowns of this type.展开更多
For the second-order finite volume method,implicit schemes and reconstruction methods are two main algorithms which influence the robustness and efficiency of the numerical simulations of compressible turbulent flows....For the second-order finite volume method,implicit schemes and reconstruction methods are two main algorithms which influence the robustness and efficiency of the numerical simulations of compressible turbulent flows.In this paper,a compact least-squares reconstruction method is proposed to calculate the gradients for the distribution of flow field variables approximation.The compactness of the new reconstruction method is reflected in the gradient calculation process.The geometries of the face-neighboring elements are no longer utilized,and the weighted average values at the centroid of the interfaces are used to calculate the gradients instead of the values at the centroid of the face-neighboring elements.Meanwhile,an exact Jacobian solving strategy is developed for implicit temporal discretization.The accurate processing of Jacobian matrix can extensively improve the invertibility of the Jacobian matrix and avoid introducing extra numerical errors.In addition,a modified Venkatakrishnan limiter is applied to deal with the shock which may appear in transonic flows and the applicability of the mentioned methods is enhanced further.The combination of the proposed methods makes the numerical simulations of turbulent flow converge rapidly and steadily with an adaptive increasing CFL number.The numerical results of several benchmarks indicate that the proposed methods perform well in terms of robustness,efficiency and accuracy,and have good application potential in turbulent flow simulations of complex configurations.展开更多
With the development of computational power, there has been an increased focus on data-fitting related seismic inversion techniques for high fidelity seismic velocity model and image, such as full-waveform inversion a...With the development of computational power, there has been an increased focus on data-fitting related seismic inversion techniques for high fidelity seismic velocity model and image, such as full-waveform inversion and least squares migration. However, though more advanced than conventional methods, these data fitting methods can be very expensive in terms of computational cost. Recently, various techniques to optimize these data-fitting seismic inversion problems have been implemented to cater for the industrial need for much improved efficiency. In this study, we propose a general stochastic conjugate gradient method for these data-fitting related inverse problems. We first prescribe the basic theory of our method and then give synthetic examples. Our numerical experiments illustrate the potential of this method for large-size seismic inversion application.展开更多
It is well known that the Two-step Weighted Least-Squares(TWLS) is a widely used method for source localization and sensor position refinement. For this reason, we propose a unified framework of the TWLS method for jo...It is well known that the Two-step Weighted Least-Squares(TWLS) is a widely used method for source localization and sensor position refinement. For this reason, we propose a unified framework of the TWLS method for joint estimation of multiple disjoint sources and sensor locations in this paper. Unlike some existing works, the presented method is based on more general measurement model, and therefore it can be applied to many different localization scenarios.Besides, it does not have the initialization and local convergence problem. The closed-form expression for the covariance matrix of the proposed TWLS estimator is also derived by exploiting the first-order perturbation analysis. Moreover, the estimation accuracy of the TWLS method is shown analytically to achieve the Cramér-Rao Bound(CRB) before the threshold effect takes place. The theoretical analysis is also performed in a common mathematical framework, rather than aiming at some specific signal metrics. Finally, two numerical experiments are performed to support the theoretical development in this paper.展开更多
In this paper,we present a novel initial costates solver for initializing time-optimal trajectory problems in relative motion with continuous low thrust.The proposed solver consists of two primary components:training ...In this paper,we present a novel initial costates solver for initializing time-optimal trajectory problems in relative motion with continuous low thrust.The proposed solver consists of two primary components:training a Multilayer Perceptron(MLP)for generating reference sequence and Time of Flight(TOF)to the target,and deriving a system of linear algebraic equations for obtaining the initial costates.To overcome the challenge of generating training samples for the MLP,the backward generation method is proposed to obtain five different training databases.The training database and sample form are determined by analyzing the input and output correlation using the Pearson correlation coefficient.The best-performing MLP is obtained by analyzing the training results with various hyper-parameter combinations.A reference sequence starting from the initial states is obtained by integrating forward with the near-optimal control vector from the output of MLP.Finally,a system of linear algebraic equations for estimating the initial costates is derived using the reference sequence and the necessary conditions for optimality.Simulation results demonstrate that the proposed initial costates solver improves the convergence ratio and reduce the function calls of the shooting function.Furthermore,Monte-Carlo simulation illustrates that the initial costates solver is applicable to different initial velocities,demonstrating excellent generalization ability.展开更多
Background:This article investigates the Least-Squares Monte Carlo Method by using different polynomial basis in American Asian Options pricing.The standard approach in the option pricing literature is to choose the b...Background:This article investigates the Least-Squares Monte Carlo Method by using different polynomial basis in American Asian Options pricing.The standard approach in the option pricing literature is to choose the basis arbitrarily.By comparing four different polynomial basis we show that the choice of basis interferes in the option's price.Methods:We assess Least-Squares Method performance in pricing four different American Asian Options by using four polynomial basis:Power,Laguerre,Legendre and Hermite A.To every American Asian Option priced,three sets of parameters are used in order to evaluate it properly.Results:We show that the choice of the basis interferes in the option's price by showing that one of them converges to the option's value faster than any other by using fewer simulated paths.In the case of an Amerasian call option,for example,we find that the preferable polynomial basis is Hermite A.For an Amerasian put option,the Power polynomial basis is recommended.Such empirical outcome is theoretically unpredictable,since in principle all basis can be indistinctly used when pricing the derivative.Conclusion:In this article The Least-Squares Monte Carlo Method performance is assessed in pricing four different types of American Asian Options by using four different polynomial basis through three different sets of parameters.Our results suggest that one polynomial basis is best suited to perform the method when pricing an American Asian option.Theoretically all basis can be indistinctly used when pricing the derivative.However,our results does not confirm these.We find that when pricing an American Asian put option,Power A is better than the other basis we have studied here whereas when pricing an American Asian call,Hermite A is better.展开更多
A least-squares mixed finite element (LSMFE) method for the numerical solution of fourth order parabolic problems analyzed and developed in this paper. The Ciarlet-Raviart mixed finite element space is used to approxi...A least-squares mixed finite element (LSMFE) method for the numerical solution of fourth order parabolic problems analyzed and developed in this paper. The Ciarlet-Raviart mixed finite element space is used to approximate. The a posteriori error estimator which is needed in the adaptive refinement algorithm is proposed. The local evaluation of the least-squares functional serves as a posteriori error estimator. The posteriori errors are effectively estimated. The convergence of the adaptive least-squares mixed finite element method is proved.展开更多
A least-squares mixed finite element method was formulated for a class of Stokes equations in two dimensional domains. The steady state and the time-dependent Stokes' equations were considered. For the stationary ...A least-squares mixed finite element method was formulated for a class of Stokes equations in two dimensional domains. The steady state and the time-dependent Stokes' equations were considered. For the stationary equation, optimal H-t and L-2-error estimates are derived under the standard regularity assumption on the finite element partition ( the LBB-condition is not required). Far the evolutionary equation, optimal L-2 estimates are derived under the conventional Raviart-Thomas spaces.展开更多
Scientific forecasting water yield of mine is of great significance to the safety production of mine and the colligated using of water resources. The paper established the forecasting model for water yield of mine, co...Scientific forecasting water yield of mine is of great significance to the safety production of mine and the colligated using of water resources. The paper established the forecasting model for water yield of mine, combining neural network with the partial least square method. Dealt with independent variables by the partial least square method, it can not only solve the relationship between independent variables but also reduce the input dimensions in neural network model, and then use the neural network which can solve the non-linear problem better. The result of an example shows that the prediction has higher precision in forecasting and fitting.展开更多
In this paper, a least-squares finite element method for the upper-convected Maxell (UCM) fluid is proposed. We first linearize the constitutive and momentum equations and then apply a least-squares method to the line...In this paper, a least-squares finite element method for the upper-convected Maxell (UCM) fluid is proposed. We first linearize the constitutive and momentum equations and then apply a least-squares method to the linearized version of the viscoelastic UCM model. The L2 least-squares functional involves the residuals of each equation multiplied by proper weights. The corresponding homogeneous functional is equivalent to a natural norm. The error estimates of the finite element solution are analyzed when the conforming piecewise polynomial elements are used for the unknowns.展开更多
Least-squares reverse time migration(LSRTM)can eliminate imaging artifacts in an iterative way based on the concept of inversion,and it can restore imaging amplitude step by step.LSRTM can provide a high-resolution mi...Least-squares reverse time migration(LSRTM)can eliminate imaging artifacts in an iterative way based on the concept of inversion,and it can restore imaging amplitude step by step.LSRTM can provide a high-resolution migration section and can be applied to irregular and poor-quality seismic data and achieve good results.Steeply dipping refl ectors and complex faults are imaged by using wavefi eld extrapolation based on a two-way wave equation.However,the high computational cost limits the method’s application in practice.A fast approach to realize LSRTM in the imaging domain is provided in this paper to reduce the computational cost signifi cantly and enhance its computational effi ciency.The method uses the Kronecker decomposition algorithm to estimate the Hessian matrix.A low-rank matrix can be used to calculate the Kronecker factor,which involves the calculation of Green’s function at the source and receiver point.The approach also avoids the direct construction of the whole Hessian matrix.Factorization-based LSRTM calculates the production of low-rank matrices instead of repeatedly calculating migration and demigration.Unlike traditional LSRTM,factorization-based LSRTM can reduce calculation costs considerably while maintaining comparable imaging quality.While having the same imaging eff ect,factorization-based LSRTM consumes half the running time of conventional LSRTM.In this regard,the application of factorization-based LSRTM has a promising advantage in reducing the computational cost.Ambient noise caused by this method can be removed by applying a commonly used fi ltering method without signifi cantly degrading the imaging quality.展开更多
This study explored the application value of iterative decomposition of water and fatwith echo asymmetry and least-squares estimation(IDEAL-IQ)technology in the early diagnosis of ageing osteoporosis(OP).172 participa...This study explored the application value of iterative decomposition of water and fatwith echo asymmetry and least-squares estimation(IDEAL-IQ)technology in the early diagnosis of ageing osteoporosis(OP).172 participants were enrolled and underwentmagnetic resonance imaging(MRI)examinations on a 3.0T scanner.100 cases were included in the normal group(50 males and 50 females;mean age:45 years;age range:20e84 years).33 cases were included in the osteopenia group(17 males and 16 females;mean age:55 years;age range:43e83 years).39 caseswere includedintheOP group(19males and20females;meanage:58years;age range:48 e82 years).Conventional T1WI and T2WI were first obtained,followed by 3D-IDEAL-IQ-acqui-sition.Fat fraction(FF)and apparent transverse relaxation rate(R2*)resultswere automatically calculated from IDEAL-IQ-images on the console.Based on T1Wand T2W-images,300 ROIs for each participantweremanually delineated in L1-L5 vertebral bodies of five middle slices.In each age group of all normal subjects,each parameter was significantly correlated with gender.In male participants from the normal,osteopenia,and OP groups,statistical analysis revealed F values of 11319.292 and 180.130 for comparisons involving FF and R2*values,respectively(all p<0.0001).The sensitivity and specificity of FF values were 0.906 and 0.950,0.994 and 0.997,0.865 and 0.820,respectively.For R2*,they were 0.665 and 0.616,0.563 and 0.519,0.571 and 0.368,respectively.In female participants from the normal,osteopenia,and OP-groups,statis-tical analysis revealed F values of 12461.658 and 548.274 for comparisons involving FF and R2*values,respectively(all p<0.0001).The sensitivity and specificity of FF values were 0.985 and 0.991,0.996 and 0.996,0.581 and 0.678,respectively.For R2*,they were 0.698 and 0.730,0.603 and 0.665,0.622 and 0.525,respectively.Significant differences were indicated in the quanti-tative values among the three groups.FF value had good performance,while R2*value had poor performance indiscriminatingosteopenia andOP-groups.Overall,the IDEAL-IQ techniqueoffers specific reference indices that enable noninvasive and quantitative assessment of lumbar vertebrae bone metabolism,thereby providing diagnostic information for OP.展开更多
The authors proposed a symplectic stereo-modeling method(SSM)in the Birkhoffian dynam-ics and apply it to the visco-acoustic least-squares reverse time migration(LSRTM).The SSM adopts ste-reo-modeling operator in spac...The authors proposed a symplectic stereo-modeling method(SSM)in the Birkhoffian dynam-ics and apply it to the visco-acoustic least-squares reverse time migration(LSRTM).The SSM adopts ste-reo-modeling operator in space and symplectic Runge-Kutta scheme in time,resulting in great ability in suppressing numerical dispersion and long-time computing.These advantages are further confirmed by numerical dispersion analysis,long-time computation test and computational efficiency comparison.After these theoretical analyses and experiments,acoustic and visco-acoustic LSRTM are tested and compared between SSM method and the conventional symplectic method(CSM)using the fault and marmousi models.Meanwhile,dynamic source encoding and exponential decay moving average gradients method are adopted to reduce the computation cost and improve the convergence rate.The imaging results show that LSRTM based on visco-acoustic wave equations effectively takes into account the influence of viscosity can therefore compensate for the amplitude attenuation.Besides,SSM method not only has high numerical accuracy and computational efficiency,but also performs effectively in LSRTM.展开更多
In this paper,we consider the maximal positive definite solution of the nonlinear matrix equation.By using the idea of Algorithm 2.1 in ZHANG(2013),a new inversion-free method with a stepsize parameter is proposed to ...In this paper,we consider the maximal positive definite solution of the nonlinear matrix equation.By using the idea of Algorithm 2.1 in ZHANG(2013),a new inversion-free method with a stepsize parameter is proposed to obtain the maximal positive definite solution of nonlinear matrix equation X+A^(*)X|^(-α)A=Q with the case 0<α≤1.Based on this method,a new iterative algorithm is developed,and its convergence proof is given.Finally,two numerical examples are provided to show the effectiveness of the proposed method.展开更多
基金Project supported by the National Natural Science Foundation of China (No.10172052).
文摘The meshless weighted least-square (MWLS) method was developed based on the weighted least-square method. The method possesses several advantages, such as high accuracy, high stability and high e?ciency. Moreover, the coe?cient matrix obtained is symmetric and semi- positive de?nite. In this paper, the method is further examined critically. The e?ects of several parameters on the results of MWLS are investigated systematically by using a cantilever beam and an in?nite plate with a central circular hole. The numerical results are compared with those obtained by using the collocation-based meshless method (CBMM) and Galerkin-based meshless method (GBMM). The investigated parameters include the type of approximations, the type of weight functions, the number of neighbors of an evaluation point, as well as the manner in which the neighbors of an evaluation point are determined. This study shows that the displacement accuracy and convergence rate obtained by MWLS is comparable to that of the GBMM while the stress accuracy and convergence rate yielded by MWLS is even higher than that of GBMM. Furthermore, MWLS is much more e?cient than GBMM. This study also shows that the instability of CBMM is mainly due to the neglect of the equi- librium residuals at boundary nodes. In MWLS, the residuals of all the governing equations are minimized in a weighted least-square sense.
基金supported by Scientific Research and Technology Development Project of CNPC(2021DJ4002,2022DJ3908).
文摘The numerical dispersion phenomenon in the finite-difference forward modeling simulations of the wave equation significantly affects the imaging accuracy in acoustic reflection logging.This issue is particularly pronounced in the reverse time migration(RTM)method used for shear-wave(S-wave)logging imaging.This not only affects imaging accuracy but also introduces ambiguities in the interpretation of logging results.To address this challenge,this study proposes the use of a least-squares difference coefficient optimization algorithm aiming to suppress the numerical dispersion phenomenon in the RTM of S-wave reflection imaging logging.By optimizing the difference coefficients,the high-precision finite-difference algorithm serves as an effective operator for both forward and backward RTM processes.This approach is instrumental in eliminating migration illusions,which are often caused by numerical dispersion.The effectiveness of this optimized algorithm is demonstrated through numerical results,which indicate that it can achieve more accurate forward imaging results across various conditions,including high-and low-velocity strata,and is effective in both large and small spatial grids.The results of processing real data demonstrate that numerical dispersion optimization effectively reduces migration artifacts and diminishes ambiguities in logging interpretations.This optimization offers crucial technical support to the RTM method,enhancing its capability for accurately modeling and imaging S-wave reflections.
基金This project is supported by Research Foundation for Doctoral Program of Higher Education, China (No.98033532)
文摘The main purpose of reverse engineering is to convert discrete data pointsinto piecewise smooth, continuous surface models. Before carrying out model reconstruction it issignificant to extract geometric features because the quality of modeling greatly depends on therepresentation of features. Some fitting techniques of natural quadric surfaces with least-squaresmethod are described. And these techniques can be directly used to extract quadric surfaces featuresduring the process of segmentation for point cloud.
基金the National Science Council ot Taiwan,China for funding this research(Project no.:NSC 94-2218-E-035-011)
文摘A least-squares finite-element method (LSFEM) for the non-conservative shallow-water equations is presented. The model is capable of handling complex topography, steady and unsteady flows, subcritical and supercritical flows, and flows with smooth and sharp gradient changes. Advantages of the model include: (1) sources terms, such as the bottom slope, surface stresses and bed frictions, can be treated easily without any special treatment; (2) upwind scheme is no needed; (3) a single approximating space can be used for all variables, and its choice of approximating space is not subject to the Ladyzhenskaya-Babuska-Brezzi (LBB) condition; and (4) the resulting system of equations is symmetric and positive-definite (SPD) which can be solved efficiently with the preconditioned conjugate gradient method. The model is verified with flow over a bump, tide induced flow, and dam-break. Computed results are compared with analytic solutions or other numerical results, and show the model is conservative and accurate. The model is then used to simulate flow past a circular cylinder. Important flow charac-teristics, such as variation of water surface around the cylinder and vortex shedding behind the cylinder are investigated. Computed results compare well with experiment data and other numerical results.
基金the National Science Council of Taiwan for funding this research (NSC 96-2221-E-019-061).
文摘Numerical solution of shallow-water equations (SWE) has been a challenging task because of its nonlinear hyperbolic nature, admitting discontinuous solution, and the need to satisfy the C-property. The presence of source terms in momentum equations, such as the bottom slope and friction of bed, compounds the difficulties further. In this paper, a least-squares finite-element method for the space discretization and θ-method for the time integration is developed for the 2D non-conservative SWE including the source terms. Advantages of the method include: the source terms can be approximated easily with interpolation functions, no upwind scheme is needed, as well as the resulting system equations is symmetric and positive-definite, therefore, can be solved efficiently with the conjugate gradient method. The method is applied to steady and unsteady flows, subcritical and transcritical flow over a bump, 1D and 2D circular dam-break, wave past a circular cylinder, as well as wave past a hump. Computed results show good C-property, conservation property and compare well with exact solutions and other numerical results for flows with weak and mild gradient changes, but lead to inaccurate predictions for flows with strong gradient changes and discontinuities.
基金supported by the National Basic Research Program of China (2005CB321701)NSF of mathematics research special fund of Hebei Province(08M005)
文摘The purpose of this article is to develop and analyze least-squares approximations for the incompressible magnetohydrodynamic equations. The major advantage of the least-squares finite element method is that it is not subjected to the so-called Ladyzhenskaya-Babuska-Brezzi (LBB) condition. The authors employ least-squares functionals which involve a discrete inner product which is related to the inner product in H^-1(Ω).
文摘The Galerkin and least-squares methods are two classes of the most popular Krylov subspace methOds for solving large linear systems of equations. Unfortunately, both the methods may suffer from serious breakdowns of the same type: In a breakdown situation the Galerkin method is unable to calculate an approximate solution, while the least-squares method, although does not really break down, is unsucessful in reducing the norm of its residual. In this paper we first establish a unified theorem which gives a relationship between breakdowns in the two methods. We further illustrate theoretically and experimentally that if the coefficient matrix of a lienar system is of high defectiveness with the associated eigenvalues less than 1, then the restarted Galerkin and least-squares methods will be in great risks of complete breakdowns. It appears that our findings may help to understand phenomena observed practically and to derive treatments for breakdowns of this type.
基金supported by the National Natural Science Foundation of China(Nos.11702329,12102247)the Shanghai Key Lab of Vehicle Aerodynamics and Vehicle Thermal Management Systems,China(No.VATLAB-2021-01)。
文摘For the second-order finite volume method,implicit schemes and reconstruction methods are two main algorithms which influence the robustness and efficiency of the numerical simulations of compressible turbulent flows.In this paper,a compact least-squares reconstruction method is proposed to calculate the gradients for the distribution of flow field variables approximation.The compactness of the new reconstruction method is reflected in the gradient calculation process.The geometries of the face-neighboring elements are no longer utilized,and the weighted average values at the centroid of the interfaces are used to calculate the gradients instead of the values at the centroid of the face-neighboring elements.Meanwhile,an exact Jacobian solving strategy is developed for implicit temporal discretization.The accurate processing of Jacobian matrix can extensively improve the invertibility of the Jacobian matrix and avoid introducing extra numerical errors.In addition,a modified Venkatakrishnan limiter is applied to deal with the shock which may appear in transonic flows and the applicability of the mentioned methods is enhanced further.The combination of the proposed methods makes the numerical simulations of turbulent flow converge rapidly and steadily with an adaptive increasing CFL number.The numerical results of several benchmarks indicate that the proposed methods perform well in terms of robustness,efficiency and accuracy,and have good application potential in turbulent flow simulations of complex configurations.
基金partially supported by the National Natural Science Foundation of China (No.41230318)
文摘With the development of computational power, there has been an increased focus on data-fitting related seismic inversion techniques for high fidelity seismic velocity model and image, such as full-waveform inversion and least squares migration. However, though more advanced than conventional methods, these data fitting methods can be very expensive in terms of computational cost. Recently, various techniques to optimize these data-fitting seismic inversion problems have been implemented to cater for the industrial need for much improved efficiency. In this study, we propose a general stochastic conjugate gradient method for these data-fitting related inverse problems. We first prescribe the basic theory of our method and then give synthetic examples. Our numerical experiments illustrate the potential of this method for large-size seismic inversion application.
基金co-supported by the National Natural Science Foundation of China (Nos. 61201381, 61401513 and 61772548)the China Postdoctoral Science Foundation (No. 2016M592989)+1 种基金the Self-Topic Foundation of Information Engineering University, China (No. 2016600701)the Outstanding Youth Foundation of Information Engineering University, China (No. 2016603201)
文摘It is well known that the Two-step Weighted Least-Squares(TWLS) is a widely used method for source localization and sensor position refinement. For this reason, we propose a unified framework of the TWLS method for joint estimation of multiple disjoint sources and sensor locations in this paper. Unlike some existing works, the presented method is based on more general measurement model, and therefore it can be applied to many different localization scenarios.Besides, it does not have the initialization and local convergence problem. The closed-form expression for the covariance matrix of the proposed TWLS estimator is also derived by exploiting the first-order perturbation analysis. Moreover, the estimation accuracy of the TWLS method is shown analytically to achieve the Cramér-Rao Bound(CRB) before the threshold effect takes place. The theoretical analysis is also performed in a common mathematical framework, rather than aiming at some specific signal metrics. Finally, two numerical experiments are performed to support the theoretical development in this paper.
基金This study was funded by the National Natural Science Foundation of China(Nos.11972077 and 12272039).
文摘In this paper,we present a novel initial costates solver for initializing time-optimal trajectory problems in relative motion with continuous low thrust.The proposed solver consists of two primary components:training a Multilayer Perceptron(MLP)for generating reference sequence and Time of Flight(TOF)to the target,and deriving a system of linear algebraic equations for obtaining the initial costates.To overcome the challenge of generating training samples for the MLP,the backward generation method is proposed to obtain five different training databases.The training database and sample form are determined by analyzing the input and output correlation using the Pearson correlation coefficient.The best-performing MLP is obtained by analyzing the training results with various hyper-parameter combinations.A reference sequence starting from the initial states is obtained by integrating forward with the near-optimal control vector from the output of MLP.Finally,a system of linear algebraic equations for estimating the initial costates is derived using the reference sequence and the necessary conditions for optimality.Simulation results demonstrate that the proposed initial costates solver improves the convergence ratio and reduce the function calls of the shooting function.Furthermore,Monte-Carlo simulation illustrates that the initial costates solver is applicable to different initial velocities,demonstrating excellent generalization ability.
文摘Background:This article investigates the Least-Squares Monte Carlo Method by using different polynomial basis in American Asian Options pricing.The standard approach in the option pricing literature is to choose the basis arbitrarily.By comparing four different polynomial basis we show that the choice of basis interferes in the option's price.Methods:We assess Least-Squares Method performance in pricing four different American Asian Options by using four polynomial basis:Power,Laguerre,Legendre and Hermite A.To every American Asian Option priced,three sets of parameters are used in order to evaluate it properly.Results:We show that the choice of the basis interferes in the option's price by showing that one of them converges to the option's value faster than any other by using fewer simulated paths.In the case of an Amerasian call option,for example,we find that the preferable polynomial basis is Hermite A.For an Amerasian put option,the Power polynomial basis is recommended.Such empirical outcome is theoretically unpredictable,since in principle all basis can be indistinctly used when pricing the derivative.Conclusion:In this article The Least-Squares Monte Carlo Method performance is assessed in pricing four different types of American Asian Options by using four different polynomial basis through three different sets of parameters.Our results suggest that one polynomial basis is best suited to perform the method when pricing an American Asian option.Theoretically all basis can be indistinctly used when pricing the derivative.However,our results does not confirm these.We find that when pricing an American Asian put option,Power A is better than the other basis we have studied here whereas when pricing an American Asian call,Hermite A is better.
文摘A least-squares mixed finite element (LSMFE) method for the numerical solution of fourth order parabolic problems analyzed and developed in this paper. The Ciarlet-Raviart mixed finite element space is used to approximate. The a posteriori error estimator which is needed in the adaptive refinement algorithm is proposed. The local evaluation of the least-squares functional serves as a posteriori error estimator. The posteriori errors are effectively estimated. The convergence of the adaptive least-squares mixed finite element method is proved.
文摘A least-squares mixed finite element method was formulated for a class of Stokes equations in two dimensional domains. The steady state and the time-dependent Stokes' equations were considered. For the stationary equation, optimal H-t and L-2-error estimates are derived under the standard regularity assumption on the finite element partition ( the LBB-condition is not required). Far the evolutionary equation, optimal L-2 estimates are derived under the conventional Raviart-Thomas spaces.
基金Supported by "863" Program of P. R. China(2002AA2Z4291)
文摘Scientific forecasting water yield of mine is of great significance to the safety production of mine and the colligated using of water resources. The paper established the forecasting model for water yield of mine, combining neural network with the partial least square method. Dealt with independent variables by the partial least square method, it can not only solve the relationship between independent variables but also reduce the input dimensions in neural network model, and then use the neural network which can solve the non-linear problem better. The result of an example shows that the prediction has higher precision in forecasting and fitting.
文摘In this paper, a least-squares finite element method for the upper-convected Maxell (UCM) fluid is proposed. We first linearize the constitutive and momentum equations and then apply a least-squares method to the linearized version of the viscoelastic UCM model. The L2 least-squares functional involves the residuals of each equation multiplied by proper weights. The corresponding homogeneous functional is equivalent to a natural norm. The error estimates of the finite element solution are analyzed when the conforming piecewise polynomial elements are used for the unknowns.
基金funded by the National Natural Science Foundation of China (No.41574098&41630964)the Fundamental Research Funds for the Central Universities (No.18CX02059A)+3 种基金the Development Fund of Key Laboratory of Deep Oil&Gas (No. 20CX02111A)SINOPEC Key Laboratory of Geophysics open fund (No. wtyjy-wx2018-01-07)Shandong Natural Science Foundation of China(No. ZR2020MD048)the Major Scientific and Technological Projects of CNPC (No. ZD2019-183-003)
文摘Least-squares reverse time migration(LSRTM)can eliminate imaging artifacts in an iterative way based on the concept of inversion,and it can restore imaging amplitude step by step.LSRTM can provide a high-resolution migration section and can be applied to irregular and poor-quality seismic data and achieve good results.Steeply dipping refl ectors and complex faults are imaged by using wavefi eld extrapolation based on a two-way wave equation.However,the high computational cost limits the method’s application in practice.A fast approach to realize LSRTM in the imaging domain is provided in this paper to reduce the computational cost signifi cantly and enhance its computational effi ciency.The method uses the Kronecker decomposition algorithm to estimate the Hessian matrix.A low-rank matrix can be used to calculate the Kronecker factor,which involves the calculation of Green’s function at the source and receiver point.The approach also avoids the direct construction of the whole Hessian matrix.Factorization-based LSRTM calculates the production of low-rank matrices instead of repeatedly calculating migration and demigration.Unlike traditional LSRTM,factorization-based LSRTM can reduce calculation costs considerably while maintaining comparable imaging quality.While having the same imaging eff ect,factorization-based LSRTM consumes half the running time of conventional LSRTM.In this regard,the application of factorization-based LSRTM has a promising advantage in reducing the computational cost.Ambient noise caused by this method can be removed by applying a commonly used fi ltering method without signifi cantly degrading the imaging quality.
基金supported by the Planned Project Grant(Grant No.3502Z20199064)from the Science and Technology Bureau of Xiamen(CN)the training project(Grant No.2020GGB067)of the youth and middle-aged talents of Fujian Provincial Health Commission(CN).
文摘This study explored the application value of iterative decomposition of water and fatwith echo asymmetry and least-squares estimation(IDEAL-IQ)technology in the early diagnosis of ageing osteoporosis(OP).172 participants were enrolled and underwentmagnetic resonance imaging(MRI)examinations on a 3.0T scanner.100 cases were included in the normal group(50 males and 50 females;mean age:45 years;age range:20e84 years).33 cases were included in the osteopenia group(17 males and 16 females;mean age:55 years;age range:43e83 years).39 caseswere includedintheOP group(19males and20females;meanage:58years;age range:48 e82 years).Conventional T1WI and T2WI were first obtained,followed by 3D-IDEAL-IQ-acqui-sition.Fat fraction(FF)and apparent transverse relaxation rate(R2*)resultswere automatically calculated from IDEAL-IQ-images on the console.Based on T1Wand T2W-images,300 ROIs for each participantweremanually delineated in L1-L5 vertebral bodies of five middle slices.In each age group of all normal subjects,each parameter was significantly correlated with gender.In male participants from the normal,osteopenia,and OP groups,statistical analysis revealed F values of 11319.292 and 180.130 for comparisons involving FF and R2*values,respectively(all p<0.0001).The sensitivity and specificity of FF values were 0.906 and 0.950,0.994 and 0.997,0.865 and 0.820,respectively.For R2*,they were 0.665 and 0.616,0.563 and 0.519,0.571 and 0.368,respectively.In female participants from the normal,osteopenia,and OP-groups,statis-tical analysis revealed F values of 12461.658 and 548.274 for comparisons involving FF and R2*values,respectively(all p<0.0001).The sensitivity and specificity of FF values were 0.985 and 0.991,0.996 and 0.996,0.581 and 0.678,respectively.For R2*,they were 0.698 and 0.730,0.603 and 0.665,0.622 and 0.525,respectively.Significant differences were indicated in the quanti-tative values among the three groups.FF value had good performance,while R2*value had poor performance indiscriminatingosteopenia andOP-groups.Overall,the IDEAL-IQ techniqueoffers specific reference indices that enable noninvasive and quantitative assessment of lumbar vertebrae bone metabolism,thereby providing diagnostic information for OP.
基金Supported by projects of National Natural Science Foundation of China(Nos.41604105,41974114)Fundamental Research Funds for Central Universities(No.2020YQLX01).
文摘The authors proposed a symplectic stereo-modeling method(SSM)in the Birkhoffian dynam-ics and apply it to the visco-acoustic least-squares reverse time migration(LSRTM).The SSM adopts ste-reo-modeling operator in space and symplectic Runge-Kutta scheme in time,resulting in great ability in suppressing numerical dispersion and long-time computing.These advantages are further confirmed by numerical dispersion analysis,long-time computation test and computational efficiency comparison.After these theoretical analyses and experiments,acoustic and visco-acoustic LSRTM are tested and compared between SSM method and the conventional symplectic method(CSM)using the fault and marmousi models.Meanwhile,dynamic source encoding and exponential decay moving average gradients method are adopted to reduce the computation cost and improve the convergence rate.The imaging results show that LSRTM based on visco-acoustic wave equations effectively takes into account the influence of viscosity can therefore compensate for the amplitude attenuation.Besides,SSM method not only has high numerical accuracy and computational efficiency,but also performs effectively in LSRTM.
基金Supported in part by Natural Science Foundation of Guangxi(2023GXNSFAA026246)in part by the Central Government's Guide to Local Science and Technology Development Fund(GuikeZY23055044)in part by the National Natural Science Foundation of China(62363003)。
文摘In this paper,we consider the maximal positive definite solution of the nonlinear matrix equation.By using the idea of Algorithm 2.1 in ZHANG(2013),a new inversion-free method with a stepsize parameter is proposed to obtain the maximal positive definite solution of nonlinear matrix equation X+A^(*)X|^(-α)A=Q with the case 0<α≤1.Based on this method,a new iterative algorithm is developed,and its convergence proof is given.Finally,two numerical examples are provided to show the effectiveness of the proposed method.