By utilizing the time difference of arrival (TDOA) and frequency difference of arrival (FDOA) measurements of signals received at a number of receivers, a constrained least-square (CLS) algorithm for estimating ...By utilizing the time difference of arrival (TDOA) and frequency difference of arrival (FDOA) measurements of signals received at a number of receivers, a constrained least-square (CLS) algorithm for estimating the position and velocity of a moving source is proposed. By utilizing the Lagrange multipliers technique, the known relation between the intermediate variables and the source location coordinates could be exploited to constrain the solution. And without requiring apriori knowledge of TDOA and FDOA measurement noises, the proposed algorithm can satisfy the demand of practical applications. Additionally, on basis of con- volute and polynomial rooting operations, the Lagrange multipliers can be obtained efficiently and robustly allowing real-time imple- mentation and global convergence. Simulation results show that the proposed estimator achieves remarkably better performance than the two-step weighted least square (WLS) approach especially for higher measurement noise level.展开更多
This study explored the application value of iterative decomposition of water and fatwith echo asymmetry and least-squares estimation(IDEAL-IQ)technology in the early diagnosis of ageing osteoporosis(OP).172 participa...This study explored the application value of iterative decomposition of water and fatwith echo asymmetry and least-squares estimation(IDEAL-IQ)technology in the early diagnosis of ageing osteoporosis(OP).172 participants were enrolled and underwentmagnetic resonance imaging(MRI)examinations on a 3.0T scanner.100 cases were included in the normal group(50 males and 50 females;mean age:45 years;age range:20e84 years).33 cases were included in the osteopenia group(17 males and 16 females;mean age:55 years;age range:43e83 years).39 caseswere includedintheOP group(19males and20females;meanage:58years;age range:48 e82 years).Conventional T1WI and T2WI were first obtained,followed by 3D-IDEAL-IQ-acqui-sition.Fat fraction(FF)and apparent transverse relaxation rate(R2*)resultswere automatically calculated from IDEAL-IQ-images on the console.Based on T1Wand T2W-images,300 ROIs for each participantweremanually delineated in L1-L5 vertebral bodies of five middle slices.In each age group of all normal subjects,each parameter was significantly correlated with gender.In male participants from the normal,osteopenia,and OP groups,statistical analysis revealed F values of 11319.292 and 180.130 for comparisons involving FF and R2*values,respectively(all p<0.0001).The sensitivity and specificity of FF values were 0.906 and 0.950,0.994 and 0.997,0.865 and 0.820,respectively.For R2*,they were 0.665 and 0.616,0.563 and 0.519,0.571 and 0.368,respectively.In female participants from the normal,osteopenia,and OP-groups,statis-tical analysis revealed F values of 12461.658 and 548.274 for comparisons involving FF and R2*values,respectively(all p<0.0001).The sensitivity and specificity of FF values were 0.985 and 0.991,0.996 and 0.996,0.581 and 0.678,respectively.For R2*,they were 0.698 and 0.730,0.603 and 0.665,0.622 and 0.525,respectively.Significant differences were indicated in the quanti-tative values among the three groups.FF value had good performance,while R2*value had poor performance indiscriminatingosteopenia andOP-groups.Overall,the IDEAL-IQ techniqueoffers specific reference indices that enable noninvasive and quantitative assessment of lumbar vertebrae bone metabolism,thereby providing diagnostic information for OP.展开更多
Mixed-weight least-squares (MWLS) predictive control algorithm, compared with quadratic programming (QP) method, has the advantages of reducing the computer burden, quick calculation speed and dealing with the case in...Mixed-weight least-squares (MWLS) predictive control algorithm, compared with quadratic programming (QP) method, has the advantages of reducing the computer burden, quick calculation speed and dealing with the case in which the optimization is infeasible. But it can only deal with soft constraints. In order to deal with hard constraints and guarantee feasibility, an improved algorithm is proposed by recalculating the setpoint according to the hard constraints before calculating the manipulated variable and MWLS algorithm is used to satisfy the requirement of soft constraints for the system with the input constraints and output constraints. The algorithm can not only guarantee stability of the system and zero steady state error, but also satisfy the hard constraints of input and output variables. The simulation results show the improved algorithm is feasible and effective.展开更多
In this paper,we present a novel initial costates solver for initializing time-optimal trajectory problems in relative motion with continuous low thrust.The proposed solver consists of two primary components:training ...In this paper,we present a novel initial costates solver for initializing time-optimal trajectory problems in relative motion with continuous low thrust.The proposed solver consists of two primary components:training a Multilayer Perceptron(MLP)for generating reference sequence and Time of Flight(TOF)to the target,and deriving a system of linear algebraic equations for obtaining the initial costates.To overcome the challenge of generating training samples for the MLP,the backward generation method is proposed to obtain five different training databases.The training database and sample form are determined by analyzing the input and output correlation using the Pearson correlation coefficient.The best-performing MLP is obtained by analyzing the training results with various hyper-parameter combinations.A reference sequence starting from the initial states is obtained by integrating forward with the near-optimal control vector from the output of MLP.Finally,a system of linear algebraic equations for estimating the initial costates is derived using the reference sequence and the necessary conditions for optimality.Simulation results demonstrate that the proposed initial costates solver improves the convergence ratio and reduce the function calls of the shooting function.Furthermore,Monte-Carlo simulation illustrates that the initial costates solver is applicable to different initial velocities,demonstrating excellent generalization ability.展开更多
A novel algorithm for source location by utilizing the time difference of arrival (TDOA) measurements of a signal received at spatially separated sensors is proposed. The algorithm is based on quadratic constraint tot...A novel algorithm for source location by utilizing the time difference of arrival (TDOA) measurements of a signal received at spatially separated sensors is proposed. The algorithm is based on quadratic constraint total least-squares (QC-TLS) method and gives an explicit solution. The total least-squares method is a generalized data fitting method that is appropriate for cases when the system model contains error or is not known exactly, and quadratic constraint, which could be realized via Lagrange multipliers technique, could constrain the solution to the location equations to improve location accuracy. Comparisons of performance with ordinary least-squares are made, and Monte Carlo simulations are performed. Simulation results indicate that the proposed algorithm has high location accuracy and achieves accuracy close to the Cramer-Rao lower bound (CRLB) near the small TDOA measurement error region.展开更多
Precisely estimating the state of health(SOH)of lithium-ion batteries is essential for battery management systems(BMS),as it plays a key role in ensuring the safe and reliable operation of battery systems.However,curr...Precisely estimating the state of health(SOH)of lithium-ion batteries is essential for battery management systems(BMS),as it plays a key role in ensuring the safe and reliable operation of battery systems.However,current SOH estimation methods often overlook the valuable temperature information that can effectively characterize battery aging during capacity degradation.Additionally,the Elman neural network,which is commonly employed for SOH estimation,exhibits several drawbacks,including slow training speed,a tendency to become trapped in local minima,and the initialization of weights and thresholds using pseudo-random numbers,leading to unstable model performance.To address these issues,this study addresses the challenge of precise and effective SOH detection by proposing a method for estimating the SOH of lithium-ion batteries based on differential thermal voltammetry(DTV)and an SSA-Elman neural network.Firstly,two health features(HFs)considering temperature factors and battery voltage are extracted fromthe differential thermal voltammetry curves and incremental capacity curves.Next,the Sparrow Search Algorithm(SSA)is employed to optimize the initial weights and thresholds of the Elman neural network,forming the SSA-Elman neural network model.To validate the performance,various neural networks,including the proposed SSA-Elman network,are tested using the Oxford battery aging dataset.The experimental results demonstrate that the method developed in this study achieves superior accuracy and robustness,with a mean absolute error(MAE)of less than 0.9%and a rootmean square error(RMSE)below 1.4%.展开更多
Complex network models are frequently employed for simulating and studyingdiverse real-world complex systems.Among these models,scale-free networks typically exhibit greater fragility to malicious attacks.Consequently...Complex network models are frequently employed for simulating and studyingdiverse real-world complex systems.Among these models,scale-free networks typically exhibit greater fragility to malicious attacks.Consequently,enhancing the robustness of scale-free networks has become a pressing issue.To address this problem,this paper proposes a Multi-Granularity Integration Algorithm(MGIA),which aims to improve the robustness of scale-free networks while keeping the initial degree of each node unchanged,ensuring network connectivity and avoiding the generation of multiple edges.The algorithm generates a multi-granularity structure from the initial network to be optimized,then uses different optimization strategies to optimize the networks at various granular layers in this structure,and finally realizes the information exchange between different granular layers,thereby further enhancing the optimization effect.We propose new network refresh,crossover,and mutation operators to ensure that the optimized network satisfies the given constraints.Meanwhile,we propose new network similarity and network dissimilarity evaluation metrics to improve the effectiveness of the optimization operators in the algorithm.In the experiments,the MGIA enhances the robustness of the scale-free network by 67.6%.This improvement is approximately 17.2%higher than the optimization effects achieved by eight currently existing complex network robustness optimization algorithms.展开更多
Accurate short-term wind power forecast technique plays a crucial role in maintaining the safety and economic efficiency of smart grids.Although numerous studies have employed various methods to forecast wind power,th...Accurate short-term wind power forecast technique plays a crucial role in maintaining the safety and economic efficiency of smart grids.Although numerous studies have employed various methods to forecast wind power,there remains a research gap in leveraging swarm intelligence algorithms to optimize the hyperparameters of the Transformer model for wind power prediction.To improve the accuracy of short-term wind power forecast,this paper proposes a hybrid short-term wind power forecast approach named STL-IAOA-iTransformer,which is based on seasonal and trend decomposition using LOESS(STL)and iTransformer model optimized by improved arithmetic optimization algorithm(IAOA).First,to fully extract the power data features,STL is used to decompose the original data into components with less redundant information.The extracted components as well as the weather data are then input into iTransformer for short-term wind power forecast.The final predicted short-term wind power curve is obtained by combining the predicted components.To improve the model accuracy,IAOA is employed to optimize the hyperparameters of iTransformer.The proposed approach is validated using real-generation data from different seasons and different power stations inNorthwest China,and ablation experiments have been conducted.Furthermore,to validate the superiority of the proposed approach under different wind characteristics,real power generation data fromsouthwestChina are utilized for experiments.Thecomparative results with the other six state-of-the-art prediction models in experiments show that the proposed model well fits the true value of generation series and achieves high prediction accuracy.展开更多
This paper presents a new highly parallel algorithm for computing the minimum-norm least-squares solution of inconsistent linear equations Ax = b(A∈Rm×n,b∈R (A)). By this algorithm the solution x = A + b is obt...This paper presents a new highly parallel algorithm for computing the minimum-norm least-squares solution of inconsistent linear equations Ax = b(A∈Rm×n,b∈R (A)). By this algorithm the solution x = A + b is obtained in T = n(log2m + log2(n - r + 1) + 5) + log2m + 1 steps with P=mn processors when m × 2(n - 1) and with P = 2n(n - 1) processors otherwise.展开更多
Order-recursive least-squares(ORLS)algorithms are applied to the prob-lems of estimation and identification of FIR or ARMA system parameters where a fixedset of input signal samples is available and the desired order ...Order-recursive least-squares(ORLS)algorithms are applied to the prob-lems of estimation and identification of FIR or ARMA system parameters where a fixedset of input signal samples is available and the desired order of the underlying model isunknown.On the basis of several universal formulae for updating nonsymmetric projec-tion operators,this paper presents three kinds of LS algorithms,called nonsymmetric,symmetric and square root normalized fast ORLS algorithms,respectively.As to the au-thors’ knowledge,the first and the third have not been so far provided,and the second isone of those which have the lowest computational requirement.Several simplified versionsof the algorithms are also considered.展开更多
In disaster relief operations,multiple UAVs can be used to search for trapped people.In recent years,many researchers have proposed machine le arning-based algorithms,sampling-based algorithms,and heuristic algorithms...In disaster relief operations,multiple UAVs can be used to search for trapped people.In recent years,many researchers have proposed machine le arning-based algorithms,sampling-based algorithms,and heuristic algorithms to solve the problem of multi-UAV path planning.The Dung Beetle Optimization(DBO)algorithm has been widely applied due to its diverse search patterns in the above algorithms.However,the update strategies for the rolling and thieving dung beetles of the DBO algorithm are overly simplistic,potentially leading to an inability to fully explore the search space and a tendency to converge to local optima,thereby not guaranteeing the discovery of the optimal path.To address these issues,we propose an improved DBO algorithm guided by the Landmark Operator(LODBO).Specifically,we first use tent mapping to update the population strategy,which enables the algorithm to generate initial solutions with enhanced diversity within the search space.Second,we expand the search range of the rolling ball dung beetle by using the landmark factor.Finally,by using the adaptive factor that changes with the number of iterations.,we improve the global search ability of the stealing dung beetle,making it more likely to escape from local optima.To verify the effectiveness of the proposed method,extensive simulation experiments are conducted,and the result shows that the LODBO algorithm can obtain the optimal path using the shortest time compared with the Genetic Algorithm(GA),the Gray Wolf Optimizer(GWO),the Whale Optimization Algorithm(WOA)and the original DBO algorithm in the disaster search and rescue task set.展开更多
In this paper,we prove that Euclid's algorithm,Bezout's equation and Divi-sion algorithm are equivalent to each other.Our result shows that Euclid has preliminarily established the theory of divisibility and t...In this paper,we prove that Euclid's algorithm,Bezout's equation and Divi-sion algorithm are equivalent to each other.Our result shows that Euclid has preliminarily established the theory of divisibility and the greatest common divisor.We further provided several suggestions for teaching.展开更多
Previous studies have shown that deep learning is very effective in detecting known attacks.However,when facing unknown attacks,models such as Deep Neural Networks(DNN)combined with Long Short-Term Memory(LSTM),Convol...Previous studies have shown that deep learning is very effective in detecting known attacks.However,when facing unknown attacks,models such as Deep Neural Networks(DNN)combined with Long Short-Term Memory(LSTM),Convolutional Neural Networks(CNN)combined with LSTM,and so on are built by simple stacking,which has the problems of feature loss,low efficiency,and low accuracy.Therefore,this paper proposes an autonomous detectionmodel for Distributed Denial of Service attacks,Multi-Scale Convolutional Neural Network-Bidirectional Gated Recurrent Units-Single Headed Attention(MSCNN-BiGRU-SHA),which is based on a Multistrategy Integrated Zebra Optimization Algorithm(MI-ZOA).The model undergoes training and testing with the CICDDoS2019 dataset,and its performance is evaluated on a new GINKS2023 dataset.The hyperparameters for Conv_filter and GRU_unit are optimized using the Multi-strategy Integrated Zebra Optimization Algorithm(MIZOA).The experimental results show that the test accuracy of the MSCNN-BiGRU-SHA model based on the MIZOA proposed in this paper is as high as 0.9971 in the CICDDoS 2019 dataset.The evaluation accuracy of the new dataset GINKS2023 created in this paper is 0.9386.Compared to the MSCNN-BiGRU-SHA model based on the Zebra Optimization Algorithm(ZOA),the detection accuracy on the GINKS2023 dataset has improved by 5.81%,precisionhas increasedby 1.35%,the recallhas improvedby 9%,and theF1scorehas increasedby 5.55%.Compared to the MSCNN-BiGRU-SHA models developed using Grid Search,Random Search,and Bayesian Optimization,the MSCNN-BiGRU-SHA model optimized with the MI-ZOA exhibits better performance in terms of accuracy,precision,recall,and F1 score.展开更多
Open caissons are widely used in foundation engineering because of their load-bearing efficiency and adaptability in diverse soil conditions.However,accurately predicting their undrained bearing capacity in layered so...Open caissons are widely used in foundation engineering because of their load-bearing efficiency and adaptability in diverse soil conditions.However,accurately predicting their undrained bearing capacity in layered soils remains a complex challenge.This study presents a novel application of five ensemble machine(ML)algorithms-random forest(RF),gradient boosting machine(GBM),extreme gradient boosting(XGBoost),adaptive boosting(AdaBoost),and categorical boosting(CatBoost)-to predict the undrained bearing capacity factor(Nc)of circular open caissons embedded in two-layered clay on the basis of results from finite element limit analysis(FELA).The input dataset consists of 1188 numerical simulations using the Tresca failure criterion,varying in geometrical and soil parameters.The FELA was performed via OptumG2 software with adaptive meshing techniques and verified against existing benchmark studies.The ML models were trained on 70% of the dataset and tested on the remaining 30%.Their performance was evaluated using six statistical metrics:coefficient of determination(R²),mean absolute error(MAE),root mean squared error(RMSE),index of scatter(IOS),RMSE-to-standard deviation ratio(RSR),and variance explained factor(VAF).The results indicate that all the models achieved high accuracy,with R²values exceeding 97.6%and RMSE values below 0.02.Among them,AdaBoost and CatBoost consistently outperformed the other methods across both the training and testing datasets,demonstrating superior generalizability and robustness.The proposed ML framework offers an efficient,accurate,and data-driven alternative to traditional methods for estimating caisson capacity in stratified soils.This approach can aid in reducing computational costs while improving reliability in the early stages of foundation design.展开更多
To improve the efficiency and accuracy of path planning for fan inspection tasks in thermal power plants,this paper proposes an intelligent inspection robot path planning scheme based on an improved A^(*)algorithm.The...To improve the efficiency and accuracy of path planning for fan inspection tasks in thermal power plants,this paper proposes an intelligent inspection robot path planning scheme based on an improved A^(*)algorithm.The inspection robot utilizes multiple sensors to monitor key parameters of the fans,such as vibration,noise,and bearing temperature,and upload the data to the monitoring center.The robot’s inspection path employs the improved A^(*)algorithm,incorporating obstacle penalty terms,path reconstruction,and smoothing optimization techniques,thereby achieving optimal path planning for the inspection robot in complex environments.Simulation results demonstrate that the improved A^(*)algorithm significantly outperforms the traditional A^(*)algorithm in terms of total path distance,smoothness,and detour rate,effectively improving the execution efficiency of inspection tasks.展开更多
In order to improve the efficiency of cloud-based web services,an improved plant growth simulation algorithm scheduling model.This model first used mathematical methods to describe the relationships between cloud-base...In order to improve the efficiency of cloud-based web services,an improved plant growth simulation algorithm scheduling model.This model first used mathematical methods to describe the relationships between cloud-based web services and the constraints of system resources.Then,a light-induced plant growth simulation algorithm was established.The performance of the algorithm was compared through several plant types,and the best plant model was selected as the setting for the system.Experimental results show that when the number of test cloud-based web services reaches 2048,the model being 2.14 times faster than PSO,2.8 times faster than the ant colony algorithm,2.9 times faster than the bee colony algorithm,and a remarkable 8.38 times faster than the genetic algorithm.展开更多
A new method based on the iterative adaptive algorithm(IAA)and blocking matrix preprocessing(BMP)is proposed to study the suppression of multi-mainlobe interference.The algorithm is applied to precisely estimate the s...A new method based on the iterative adaptive algorithm(IAA)and blocking matrix preprocessing(BMP)is proposed to study the suppression of multi-mainlobe interference.The algorithm is applied to precisely estimate the spatial spectrum and the directions of arrival(DOA)of interferences to overcome the drawbacks associated with conventional adaptive beamforming(ABF)methods.The mainlobe interferences are identified by calculating the correlation coefficients between direction steering vectors(SVs)and rejected by the BMP pretreatment.Then,IAA is subsequently employed to reconstruct a sidelobe interference-plus-noise covariance matrix for the preferable ABF and residual interference suppression.Simulation results demonstrate the excellence of the proposed method over normal methods based on BMP and eigen-projection matrix perprocessing(EMP)under both uncorrelated and coherent circumstances.展开更多
The problem of collision avoidance for non-cooperative targets has received significant attention from researchers in recent years.Non-cooperative targets exhibit uncertain states and unpredictable behaviors,making co...The problem of collision avoidance for non-cooperative targets has received significant attention from researchers in recent years.Non-cooperative targets exhibit uncertain states and unpredictable behaviors,making collision avoidance significantly more challenging than that for space debris.Much existing research focuses on the continuous thrust model,whereas the impulsive maneuver model is more appropriate for long-duration and long-distance avoidance missions.Additionally,it is important to minimize the impact on the original mission while avoiding noncooperative targets.On the other hand,the existing avoidance algorithms are computationally complex and time-consuming especially with the limited computing capability of the on-board computer,posing challenges for practical engineering applications.To conquer these difficulties,this paper makes the following key contributions:(A)a turn-based(sequential decision-making)limited-area impulsive collision avoidance model considering the time delay of precision orbit determination is established for the first time;(B)a novel Selection Probability Learning Adaptive Search-depth Search Tree(SPL-ASST)algorithm is proposed for non-cooperative target avoidance,which improves the decision-making efficiency by introducing an adaptive-search-depth mechanism and a neural network into the traditional Monte Carlo Tree Search(MCTS).Numerical simulations confirm the effectiveness and efficiency of the proposed method.展开更多
In this paper,we established a class of parallel algorithm for solving low-rank tensor completion problem.The main idea is that N singular value decompositions are implemented in N different processors for each slice ...In this paper,we established a class of parallel algorithm for solving low-rank tensor completion problem.The main idea is that N singular value decompositions are implemented in N different processors for each slice matrix under unfold operator,and then the fold operator is used to form the next iteration tensor such that the computing time can be decreased.In theory,we analyze the global convergence of the algorithm.In numerical experiment,the simulation data and real image inpainting are carried out.Experiment results show the parallel algorithm outperform its original algorithm in CPU times under the same precision.展开更多
The distributed permutation flow shop scheduling problem(DPFSP)has received increasing attention in recent years.The iterated greedy algorithm(IGA)serves as a powerful optimizer for addressing such a problem because o...The distributed permutation flow shop scheduling problem(DPFSP)has received increasing attention in recent years.The iterated greedy algorithm(IGA)serves as a powerful optimizer for addressing such a problem because of its straightforward,single-solution evolution framework.However,a potential draw-back of IGA is the lack of utilization of historical information,which could lead to an imbalance between exploration and exploitation,especially in large-scale DPFSPs.As a consequence,this paper develops an IGA with memory and learning mechanisms(MLIGA)to efficiently solve the DPFSP targeted at the mini-malmakespan.InMLIGA,we incorporate a memory mechanism to make a more informed selection of the initial solution at each stage of the search,by extending,reconstructing,and reinforcing the information from previous solutions.In addition,we design a twolayer cooperative reinforcement learning approach to intelligently determine the key parameters of IGA and the operations of the memory mechanism.Meanwhile,to ensure that the experience generated by each perturbation operator is fully learned and to reduce the prior parameters of MLIGA,a probability curve-based acceptance criterion is proposed by combining a cube root function with custom rules.At last,a discrete adaptive learning rate is employed to enhance the stability of the memory and learningmechanisms.Complete ablation experiments are utilized to verify the effectiveness of the memory mechanism,and the results show that this mechanism is capable of improving the performance of IGA to a large extent.Furthermore,through comparative experiments involving MLIGA and five state-of-the-art algorithms on 720 benchmarks,we have discovered that MLI-GA demonstrates significant potential for solving large-scale DPFSPs.This indicates that MLIGA is well-suited for real-world distributed flow shop scheduling.展开更多
基金supported by the National High Technology Research and Development Program of China (863 Program) (2010AA7010422 2011AA7014061)
文摘By utilizing the time difference of arrival (TDOA) and frequency difference of arrival (FDOA) measurements of signals received at a number of receivers, a constrained least-square (CLS) algorithm for estimating the position and velocity of a moving source is proposed. By utilizing the Lagrange multipliers technique, the known relation between the intermediate variables and the source location coordinates could be exploited to constrain the solution. And without requiring apriori knowledge of TDOA and FDOA measurement noises, the proposed algorithm can satisfy the demand of practical applications. Additionally, on basis of con- volute and polynomial rooting operations, the Lagrange multipliers can be obtained efficiently and robustly allowing real-time imple- mentation and global convergence. Simulation results show that the proposed estimator achieves remarkably better performance than the two-step weighted least square (WLS) approach especially for higher measurement noise level.
基金supported by the Planned Project Grant(Grant No.3502Z20199064)from the Science and Technology Bureau of Xiamen(CN)the training project(Grant No.2020GGB067)of the youth and middle-aged talents of Fujian Provincial Health Commission(CN).
文摘This study explored the application value of iterative decomposition of water and fatwith echo asymmetry and least-squares estimation(IDEAL-IQ)technology in the early diagnosis of ageing osteoporosis(OP).172 participants were enrolled and underwentmagnetic resonance imaging(MRI)examinations on a 3.0T scanner.100 cases were included in the normal group(50 males and 50 females;mean age:45 years;age range:20e84 years).33 cases were included in the osteopenia group(17 males and 16 females;mean age:55 years;age range:43e83 years).39 caseswere includedintheOP group(19males and20females;meanage:58years;age range:48 e82 years).Conventional T1WI and T2WI were first obtained,followed by 3D-IDEAL-IQ-acqui-sition.Fat fraction(FF)and apparent transverse relaxation rate(R2*)resultswere automatically calculated from IDEAL-IQ-images on the console.Based on T1Wand T2W-images,300 ROIs for each participantweremanually delineated in L1-L5 vertebral bodies of five middle slices.In each age group of all normal subjects,each parameter was significantly correlated with gender.In male participants from the normal,osteopenia,and OP groups,statistical analysis revealed F values of 11319.292 and 180.130 for comparisons involving FF and R2*values,respectively(all p<0.0001).The sensitivity and specificity of FF values were 0.906 and 0.950,0.994 and 0.997,0.865 and 0.820,respectively.For R2*,they were 0.665 and 0.616,0.563 and 0.519,0.571 and 0.368,respectively.In female participants from the normal,osteopenia,and OP-groups,statis-tical analysis revealed F values of 12461.658 and 548.274 for comparisons involving FF and R2*values,respectively(all p<0.0001).The sensitivity and specificity of FF values were 0.985 and 0.991,0.996 and 0.996,0.581 and 0.678,respectively.For R2*,they were 0.698 and 0.730,0.603 and 0.665,0.622 and 0.525,respectively.Significant differences were indicated in the quanti-tative values among the three groups.FF value had good performance,while R2*value had poor performance indiscriminatingosteopenia andOP-groups.Overall,the IDEAL-IQ techniqueoffers specific reference indices that enable noninvasive and quantitative assessment of lumbar vertebrae bone metabolism,thereby providing diagnostic information for OP.
基金National Key Basic Research and Development(No.2002CB312200)
文摘Mixed-weight least-squares (MWLS) predictive control algorithm, compared with quadratic programming (QP) method, has the advantages of reducing the computer burden, quick calculation speed and dealing with the case in which the optimization is infeasible. But it can only deal with soft constraints. In order to deal with hard constraints and guarantee feasibility, an improved algorithm is proposed by recalculating the setpoint according to the hard constraints before calculating the manipulated variable and MWLS algorithm is used to satisfy the requirement of soft constraints for the system with the input constraints and output constraints. The algorithm can not only guarantee stability of the system and zero steady state error, but also satisfy the hard constraints of input and output variables. The simulation results show the improved algorithm is feasible and effective.
基金This study was funded by the National Natural Science Foundation of China(Nos.11972077 and 12272039).
文摘In this paper,we present a novel initial costates solver for initializing time-optimal trajectory problems in relative motion with continuous low thrust.The proposed solver consists of two primary components:training a Multilayer Perceptron(MLP)for generating reference sequence and Time of Flight(TOF)to the target,and deriving a system of linear algebraic equations for obtaining the initial costates.To overcome the challenge of generating training samples for the MLP,the backward generation method is proposed to obtain five different training databases.The training database and sample form are determined by analyzing the input and output correlation using the Pearson correlation coefficient.The best-performing MLP is obtained by analyzing the training results with various hyper-parameter combinations.A reference sequence starting from the initial states is obtained by integrating forward with the near-optimal control vector from the output of MLP.Finally,a system of linear algebraic equations for estimating the initial costates is derived using the reference sequence and the necessary conditions for optimality.Simulation results demonstrate that the proposed initial costates solver improves the convergence ratio and reduce the function calls of the shooting function.Furthermore,Monte-Carlo simulation illustrates that the initial costates solver is applicable to different initial velocities,demonstrating excellent generalization ability.
文摘A novel algorithm for source location by utilizing the time difference of arrival (TDOA) measurements of a signal received at spatially separated sensors is proposed. The algorithm is based on quadratic constraint total least-squares (QC-TLS) method and gives an explicit solution. The total least-squares method is a generalized data fitting method that is appropriate for cases when the system model contains error or is not known exactly, and quadratic constraint, which could be realized via Lagrange multipliers technique, could constrain the solution to the location equations to improve location accuracy. Comparisons of performance with ordinary least-squares are made, and Monte Carlo simulations are performed. Simulation results indicate that the proposed algorithm has high location accuracy and achieves accuracy close to the Cramer-Rao lower bound (CRLB) near the small TDOA measurement error region.
基金supported by the National Natural Science Foundation of China(NSFC)under Grant(No.51677058).
文摘Precisely estimating the state of health(SOH)of lithium-ion batteries is essential for battery management systems(BMS),as it plays a key role in ensuring the safe and reliable operation of battery systems.However,current SOH estimation methods often overlook the valuable temperature information that can effectively characterize battery aging during capacity degradation.Additionally,the Elman neural network,which is commonly employed for SOH estimation,exhibits several drawbacks,including slow training speed,a tendency to become trapped in local minima,and the initialization of weights and thresholds using pseudo-random numbers,leading to unstable model performance.To address these issues,this study addresses the challenge of precise and effective SOH detection by proposing a method for estimating the SOH of lithium-ion batteries based on differential thermal voltammetry(DTV)and an SSA-Elman neural network.Firstly,two health features(HFs)considering temperature factors and battery voltage are extracted fromthe differential thermal voltammetry curves and incremental capacity curves.Next,the Sparrow Search Algorithm(SSA)is employed to optimize the initial weights and thresholds of the Elman neural network,forming the SSA-Elman neural network model.To validate the performance,various neural networks,including the proposed SSA-Elman network,are tested using the Oxford battery aging dataset.The experimental results demonstrate that the method developed in this study achieves superior accuracy and robustness,with a mean absolute error(MAE)of less than 0.9%and a rootmean square error(RMSE)below 1.4%.
基金National Natural Science Foundation of China(11971211,12171388).
文摘Complex network models are frequently employed for simulating and studyingdiverse real-world complex systems.Among these models,scale-free networks typically exhibit greater fragility to malicious attacks.Consequently,enhancing the robustness of scale-free networks has become a pressing issue.To address this problem,this paper proposes a Multi-Granularity Integration Algorithm(MGIA),which aims to improve the robustness of scale-free networks while keeping the initial degree of each node unchanged,ensuring network connectivity and avoiding the generation of multiple edges.The algorithm generates a multi-granularity structure from the initial network to be optimized,then uses different optimization strategies to optimize the networks at various granular layers in this structure,and finally realizes the information exchange between different granular layers,thereby further enhancing the optimization effect.We propose new network refresh,crossover,and mutation operators to ensure that the optimized network satisfies the given constraints.Meanwhile,we propose new network similarity and network dissimilarity evaluation metrics to improve the effectiveness of the optimization operators in the algorithm.In the experiments,the MGIA enhances the robustness of the scale-free network by 67.6%.This improvement is approximately 17.2%higher than the optimization effects achieved by eight currently existing complex network robustness optimization algorithms.
基金supported by Yunnan Provincial Basic Research Project(202401AT070344,202301AT070443)National Natural Science Foundation of China(62263014,52207105)+1 种基金Yunnan Lancang-Mekong International Electric Power Technology Joint Laboratory(202203AP140001)Major Science and Technology Projects in Yunnan Province(202402AG050006).
文摘Accurate short-term wind power forecast technique plays a crucial role in maintaining the safety and economic efficiency of smart grids.Although numerous studies have employed various methods to forecast wind power,there remains a research gap in leveraging swarm intelligence algorithms to optimize the hyperparameters of the Transformer model for wind power prediction.To improve the accuracy of short-term wind power forecast,this paper proposes a hybrid short-term wind power forecast approach named STL-IAOA-iTransformer,which is based on seasonal and trend decomposition using LOESS(STL)and iTransformer model optimized by improved arithmetic optimization algorithm(IAOA).First,to fully extract the power data features,STL is used to decompose the original data into components with less redundant information.The extracted components as well as the weather data are then input into iTransformer for short-term wind power forecast.The final predicted short-term wind power curve is obtained by combining the predicted components.To improve the model accuracy,IAOA is employed to optimize the hyperparameters of iTransformer.The proposed approach is validated using real-generation data from different seasons and different power stations inNorthwest China,and ablation experiments have been conducted.Furthermore,to validate the superiority of the proposed approach under different wind characteristics,real power generation data fromsouthwestChina are utilized for experiments.Thecomparative results with the other six state-of-the-art prediction models in experiments show that the proposed model well fits the true value of generation series and achieves high prediction accuracy.
基金This project is supported by the National Natural Science Foundation of China
文摘This paper presents a new highly parallel algorithm for computing the minimum-norm least-squares solution of inconsistent linear equations Ax = b(A∈Rm×n,b∈R (A)). By this algorithm the solution x = A + b is obtained in T = n(log2m + log2(n - r + 1) + 5) + log2m + 1 steps with P=mn processors when m × 2(n - 1) and with P = 2n(n - 1) processors otherwise.
文摘Order-recursive least-squares(ORLS)algorithms are applied to the prob-lems of estimation and identification of FIR or ARMA system parameters where a fixedset of input signal samples is available and the desired order of the underlying model isunknown.On the basis of several universal formulae for updating nonsymmetric projec-tion operators,this paper presents three kinds of LS algorithms,called nonsymmetric,symmetric and square root normalized fast ORLS algorithms,respectively.As to the au-thors’ knowledge,the first and the third have not been so far provided,and the second isone of those which have the lowest computational requirement.Several simplified versionsof the algorithms are also considered.
基金supported by the National Natural Science Foundation of China(No.62373027).
文摘In disaster relief operations,multiple UAVs can be used to search for trapped people.In recent years,many researchers have proposed machine le arning-based algorithms,sampling-based algorithms,and heuristic algorithms to solve the problem of multi-UAV path planning.The Dung Beetle Optimization(DBO)algorithm has been widely applied due to its diverse search patterns in the above algorithms.However,the update strategies for the rolling and thieving dung beetles of the DBO algorithm are overly simplistic,potentially leading to an inability to fully explore the search space and a tendency to converge to local optima,thereby not guaranteeing the discovery of the optimal path.To address these issues,we propose an improved DBO algorithm guided by the Landmark Operator(LODBO).Specifically,we first use tent mapping to update the population strategy,which enables the algorithm to generate initial solutions with enhanced diversity within the search space.Second,we expand the search range of the rolling ball dung beetle by using the landmark factor.Finally,by using the adaptive factor that changes with the number of iterations.,we improve the global search ability of the stealing dung beetle,making it more likely to escape from local optima.To verify the effectiveness of the proposed method,extensive simulation experiments are conducted,and the result shows that the LODBO algorithm can obtain the optimal path using the shortest time compared with the Genetic Algorithm(GA),the Gray Wolf Optimizer(GWO),the Whale Optimization Algorithm(WOA)and the original DBO algorithm in the disaster search and rescue task set.
基金Supported by the Natural Science Foundation of Chongqing(General Program,NO.CSTB2022NSCQ-MSX0884)Discipline Teaching Special Project of Yangtze Normal University(csxkjx14)。
文摘In this paper,we prove that Euclid's algorithm,Bezout's equation and Divi-sion algorithm are equivalent to each other.Our result shows that Euclid has preliminarily established the theory of divisibility and the greatest common divisor.We further provided several suggestions for teaching.
基金supported by Science and Technology Innovation Programfor Postgraduate Students in IDP Subsidized by Fundamental Research Funds for the Central Universities(Project No.ZY20240335)support of the Research Project of the Key Technology of Malicious Code Detection Based on Data Mining in APT Attack(Project No.2022IT173)the Research Project of the Big Data Sensitive Information Supervision Technology Based on Convolutional Neural Network(Project No.2022011033).
文摘Previous studies have shown that deep learning is very effective in detecting known attacks.However,when facing unknown attacks,models such as Deep Neural Networks(DNN)combined with Long Short-Term Memory(LSTM),Convolutional Neural Networks(CNN)combined with LSTM,and so on are built by simple stacking,which has the problems of feature loss,low efficiency,and low accuracy.Therefore,this paper proposes an autonomous detectionmodel for Distributed Denial of Service attacks,Multi-Scale Convolutional Neural Network-Bidirectional Gated Recurrent Units-Single Headed Attention(MSCNN-BiGRU-SHA),which is based on a Multistrategy Integrated Zebra Optimization Algorithm(MI-ZOA).The model undergoes training and testing with the CICDDoS2019 dataset,and its performance is evaluated on a new GINKS2023 dataset.The hyperparameters for Conv_filter and GRU_unit are optimized using the Multi-strategy Integrated Zebra Optimization Algorithm(MIZOA).The experimental results show that the test accuracy of the MSCNN-BiGRU-SHA model based on the MIZOA proposed in this paper is as high as 0.9971 in the CICDDoS 2019 dataset.The evaluation accuracy of the new dataset GINKS2023 created in this paper is 0.9386.Compared to the MSCNN-BiGRU-SHA model based on the Zebra Optimization Algorithm(ZOA),the detection accuracy on the GINKS2023 dataset has improved by 5.81%,precisionhas increasedby 1.35%,the recallhas improvedby 9%,and theF1scorehas increasedby 5.55%.Compared to the MSCNN-BiGRU-SHA models developed using Grid Search,Random Search,and Bayesian Optimization,the MSCNN-BiGRU-SHA model optimized with the MI-ZOA exhibits better performance in terms of accuracy,precision,recall,and F1 score.
文摘Open caissons are widely used in foundation engineering because of their load-bearing efficiency and adaptability in diverse soil conditions.However,accurately predicting their undrained bearing capacity in layered soils remains a complex challenge.This study presents a novel application of five ensemble machine(ML)algorithms-random forest(RF),gradient boosting machine(GBM),extreme gradient boosting(XGBoost),adaptive boosting(AdaBoost),and categorical boosting(CatBoost)-to predict the undrained bearing capacity factor(Nc)of circular open caissons embedded in two-layered clay on the basis of results from finite element limit analysis(FELA).The input dataset consists of 1188 numerical simulations using the Tresca failure criterion,varying in geometrical and soil parameters.The FELA was performed via OptumG2 software with adaptive meshing techniques and verified against existing benchmark studies.The ML models were trained on 70% of the dataset and tested on the remaining 30%.Their performance was evaluated using six statistical metrics:coefficient of determination(R²),mean absolute error(MAE),root mean squared error(RMSE),index of scatter(IOS),RMSE-to-standard deviation ratio(RSR),and variance explained factor(VAF).The results indicate that all the models achieved high accuracy,with R²values exceeding 97.6%and RMSE values below 0.02.Among them,AdaBoost and CatBoost consistently outperformed the other methods across both the training and testing datasets,demonstrating superior generalizability and robustness.The proposed ML framework offers an efficient,accurate,and data-driven alternative to traditional methods for estimating caisson capacity in stratified soils.This approach can aid in reducing computational costs while improving reliability in the early stages of foundation design.
文摘To improve the efficiency and accuracy of path planning for fan inspection tasks in thermal power plants,this paper proposes an intelligent inspection robot path planning scheme based on an improved A^(*)algorithm.The inspection robot utilizes multiple sensors to monitor key parameters of the fans,such as vibration,noise,and bearing temperature,and upload the data to the monitoring center.The robot’s inspection path employs the improved A^(*)algorithm,incorporating obstacle penalty terms,path reconstruction,and smoothing optimization techniques,thereby achieving optimal path planning for the inspection robot in complex environments.Simulation results demonstrate that the improved A^(*)algorithm significantly outperforms the traditional A^(*)algorithm in terms of total path distance,smoothness,and detour rate,effectively improving the execution efficiency of inspection tasks.
基金Shanxi Province Higher Education Science and Technology Innovation Fund Project(2022-676)Shanxi Soft Science Program Research Fund Project(2016041008-6)。
文摘In order to improve the efficiency of cloud-based web services,an improved plant growth simulation algorithm scheduling model.This model first used mathematical methods to describe the relationships between cloud-based web services and the constraints of system resources.Then,a light-induced plant growth simulation algorithm was established.The performance of the algorithm was compared through several plant types,and the best plant model was selected as the setting for the system.Experimental results show that when the number of test cloud-based web services reaches 2048,the model being 2.14 times faster than PSO,2.8 times faster than the ant colony algorithm,2.9 times faster than the bee colony algorithm,and a remarkable 8.38 times faster than the genetic algorithm.
基金The National Natural Science Foundation of China(No.U19B2031).
文摘A new method based on the iterative adaptive algorithm(IAA)and blocking matrix preprocessing(BMP)is proposed to study the suppression of multi-mainlobe interference.The algorithm is applied to precisely estimate the spatial spectrum and the directions of arrival(DOA)of interferences to overcome the drawbacks associated with conventional adaptive beamforming(ABF)methods.The mainlobe interferences are identified by calculating the correlation coefficients between direction steering vectors(SVs)and rejected by the BMP pretreatment.Then,IAA is subsequently employed to reconstruct a sidelobe interference-plus-noise covariance matrix for the preferable ABF and residual interference suppression.Simulation results demonstrate the excellence of the proposed method over normal methods based on BMP and eigen-projection matrix perprocessing(EMP)under both uncorrelated and coherent circumstances.
基金co-supported by the Foundation of Shanghai Astronautics Science and Technology Innovation,China(No.SAST2022-114)the National Natural Science Foundation of China(No.62303378),the National Natural Science Foundation of China(Nos.124B2031,12202281)the Foundation of China National Key Laboratory of Science and Technology on Test Physics&Numerical Mathematics,China(No.08-YY-2023-R11)。
文摘The problem of collision avoidance for non-cooperative targets has received significant attention from researchers in recent years.Non-cooperative targets exhibit uncertain states and unpredictable behaviors,making collision avoidance significantly more challenging than that for space debris.Much existing research focuses on the continuous thrust model,whereas the impulsive maneuver model is more appropriate for long-duration and long-distance avoidance missions.Additionally,it is important to minimize the impact on the original mission while avoiding noncooperative targets.On the other hand,the existing avoidance algorithms are computationally complex and time-consuming especially with the limited computing capability of the on-board computer,posing challenges for practical engineering applications.To conquer these difficulties,this paper makes the following key contributions:(A)a turn-based(sequential decision-making)limited-area impulsive collision avoidance model considering the time delay of precision orbit determination is established for the first time;(B)a novel Selection Probability Learning Adaptive Search-depth Search Tree(SPL-ASST)algorithm is proposed for non-cooperative target avoidance,which improves the decision-making efficiency by introducing an adaptive-search-depth mechanism and a neural network into the traditional Monte Carlo Tree Search(MCTS).Numerical simulations confirm the effectiveness and efficiency of the proposed method.
基金Supported by National Nature Science Foundation(12371381)Nature Science Foundation of Shanxi(202403021222270)。
文摘In this paper,we established a class of parallel algorithm for solving low-rank tensor completion problem.The main idea is that N singular value decompositions are implemented in N different processors for each slice matrix under unfold operator,and then the fold operator is used to form the next iteration tensor such that the computing time can be decreased.In theory,we analyze the global convergence of the algorithm.In numerical experiment,the simulation data and real image inpainting are carried out.Experiment results show the parallel algorithm outperform its original algorithm in CPU times under the same precision.
基金supported in part by the National Key Research and Development Program of China under Grant No.2021YFF0901300in part by the National Natural Science Foundation of China under Grant Nos.62173076 and 72271048.
文摘The distributed permutation flow shop scheduling problem(DPFSP)has received increasing attention in recent years.The iterated greedy algorithm(IGA)serves as a powerful optimizer for addressing such a problem because of its straightforward,single-solution evolution framework.However,a potential draw-back of IGA is the lack of utilization of historical information,which could lead to an imbalance between exploration and exploitation,especially in large-scale DPFSPs.As a consequence,this paper develops an IGA with memory and learning mechanisms(MLIGA)to efficiently solve the DPFSP targeted at the mini-malmakespan.InMLIGA,we incorporate a memory mechanism to make a more informed selection of the initial solution at each stage of the search,by extending,reconstructing,and reinforcing the information from previous solutions.In addition,we design a twolayer cooperative reinforcement learning approach to intelligently determine the key parameters of IGA and the operations of the memory mechanism.Meanwhile,to ensure that the experience generated by each perturbation operator is fully learned and to reduce the prior parameters of MLIGA,a probability curve-based acceptance criterion is proposed by combining a cube root function with custom rules.At last,a discrete adaptive learning rate is employed to enhance the stability of the memory and learningmechanisms.Complete ablation experiments are utilized to verify the effectiveness of the memory mechanism,and the results show that this mechanism is capable of improving the performance of IGA to a large extent.Furthermore,through comparative experiments involving MLIGA and five state-of-the-art algorithms on 720 benchmarks,we have discovered that MLI-GA demonstrates significant potential for solving large-scale DPFSPs.This indicates that MLIGA is well-suited for real-world distributed flow shop scheduling.