期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于智能计算的多FACTS协调配置 被引量:10
1
作者 黄柳强 郭剑波 +2 位作者 孙华东 易俊 刘敏 《电网技术》 EI CSCD 北大核心 2013年第4期942-946,共5页
灵活交流输电(flexibleAC transmission system,FACTS)装置在电力系统中应用广泛,但通常各台FACTS设备都是针对本地量和各自目标进行参数整定。为了更大程度地发挥FACTS效用,消除潜在的不利交互影响,有必要对多FACTS进行参数的协调配置... 灵活交流输电(flexibleAC transmission system,FACTS)装置在电力系统中应用广泛,但通常各台FACTS设备都是针对本地量和各自目标进行参数整定。为了更大程度地发挥FACTS效用,消除潜在的不利交互影响,有必要对多FACTS进行参数的协调配置。文中首先采用小波变换分析了协调配置的必要性,结合改进的多目标量子遗传算法和极限学习机提出了多FACTS协调配置算法,最后在装设有TCSC和SVC的算例中进行仿真,验证了所提算法的有效性。 展开更多
关键词 灵活交流输电系统 量子遗传算法 极限学习机 多目标 协调 优化
原文传递
Distributed Byzantine-Resilient Learning of Multi-UAV Systems via Filter-Based Centerpoint Aggregation Rules
2
作者 Yukang Cui Linzhen Cheng +1 位作者 Michael Basin Zongze Wu 《IEEE/CAA Journal of Automatica Sinica》 2025年第5期1056-1058,共3页
Dear Editor,Through distributed machine learning,multi-UAV systems can achieve global optimization goals without a centralized server,such as optimal target tracking,by leveraging local calculation and communication w... Dear Editor,Through distributed machine learning,multi-UAV systems can achieve global optimization goals without a centralized server,such as optimal target tracking,by leveraging local calculation and communication with neighbors.In this work,we implement the stochastic gradient descent algorithm(SGD)distributedly to optimize tracking errors based on local state and aggregation of the neighbors'estimation.However,Byzantine agents can mislead neighbors,causing deviations from optimal tracking.We prove that the swarm achieves resilient convergence if aggregated results lie within the normal neighbors'convex hull,which can be guaranteed by the introduced centerpoint-based aggregation rule.In the given simulated scenarios,distributed learning using average,geometric median(GM),and coordinate-wise median(CM)based aggregation rules fail to track the target.Compared to solely using the centerpoint aggregation method,our approach,which combines a pre-filter with the centroid aggregation rule,significantly enhances resilience against Byzantine attacks,achieving faster convergence and smaller tracking errors. 展开更多
关键词 global optimization goals multi UAV systems filter based centerpoint aggregation distributed learning optimal target trackingby stochastic gradient descent algorithm sgd distributedly optimize tracking distributed machine learningmulti uav
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部