期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Adaptive adjustment of iterative learning control gain matrix in harsh noise environment 被引量:3
1
作者 Bingqiang Li Hui Lin Hualing Xing 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2013年第1期128-134,共7页
For the robustness problem of open-loop P-type iterative learning control under the influence of measurement noise which is inevitable in actual systems, an adaptive adjustment algorithm of iterative learning nonlinea... For the robustness problem of open-loop P-type iterative learning control under the influence of measurement noise which is inevitable in actual systems, an adaptive adjustment algorithm of iterative learning nonlinear gain matrix based on error amplitude is proposed and two nonlinear gain functions are given. Then with the help of Bellman-Gronwall lemma, the robustness proof is derived. At last, an example is simulated and analyzed. The results show that when there exists measurement noise, the proposed learning law adjusts the learning gain matrix on line based on error amplitude, thus can make a compromise between learning convergence rate and convergence accuracy to some extent: the fast convergence rate is achieved with high gain in initial learning stage, the strong robustness and high convergence accuracy are achieved at the same time with small gain in the end learning stage, thus better learning results are obtained. 展开更多
关键词 iterative learning control open-loop P-type learninglaw nonlinear gain measurement noise robustness.
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部