Automatic detection of student engagement levels from videos,which is a spatio-temporal classification problem is crucial for enhancing the quality of online education.This paper addresses this challenge by proposing ...Automatic detection of student engagement levels from videos,which is a spatio-temporal classification problem is crucial for enhancing the quality of online education.This paper addresses this challenge by proposing four novel hybrid end-to-end deep learning models designed for the automatic detection of student engagement levels in e-learning videos.The evaluation of these models utilizes the DAiSEE dataset,a public repository capturing student affective states in e-learning scenarios.The initial model integrates EfficientNetV2-L with Gated Recurrent Unit(GRU)and attains an accuracy of 61.45%.Subsequently,the second model combines EfficientNetV2-L with bidirectional GRU(Bi-GRU),yielding an accuracy of 61.56%.The third and fourth models leverage a fusion of EfficientNetV2-L with Long Short-Term Memory(LSTM)and bidirectional LSTM(Bi-LSTM),achieving accuracies of 62.11%and 61.67%,respectively.Our findings demonstrate the viability of these models in effectively discerning student engagement levels,with the EfficientNetV2-L+LSTM model emerging as the most proficient,reaching an accuracy of 62.11%.This study underscores the potential of hybrid spatio-temporal networks in automating the detection of student engagement,thereby contributing to advancements in online education quality.展开更多
文摘Automatic detection of student engagement levels from videos,which is a spatio-temporal classification problem is crucial for enhancing the quality of online education.This paper addresses this challenge by proposing four novel hybrid end-to-end deep learning models designed for the automatic detection of student engagement levels in e-learning videos.The evaluation of these models utilizes the DAiSEE dataset,a public repository capturing student affective states in e-learning scenarios.The initial model integrates EfficientNetV2-L with Gated Recurrent Unit(GRU)and attains an accuracy of 61.45%.Subsequently,the second model combines EfficientNetV2-L with bidirectional GRU(Bi-GRU),yielding an accuracy of 61.56%.The third and fourth models leverage a fusion of EfficientNetV2-L with Long Short-Term Memory(LSTM)and bidirectional LSTM(Bi-LSTM),achieving accuracies of 62.11%and 61.67%,respectively.Our findings demonstrate the viability of these models in effectively discerning student engagement levels,with the EfficientNetV2-L+LSTM model emerging as the most proficient,reaching an accuracy of 62.11%.This study underscores the potential of hybrid spatio-temporal networks in automating the detection of student engagement,thereby contributing to advancements in online education quality.