This paper presents a discrete vaxiational principle and a method to build first-integrals for finite dimensional Lagrange-Maxwell mechanico-electrical systems with nonconservative forces and a dissipation function. T...This paper presents a discrete vaxiational principle and a method to build first-integrals for finite dimensional Lagrange-Maxwell mechanico-electrical systems with nonconservative forces and a dissipation function. The discrete variational principle and the corresponding Euler-Lagrange equations are derived from a discrete action associated to these systems. The first-integrals are obtained by introducing the infinitesimal transformation with respect to the generalized coordinates and electric quantities of the systems. This work also extends discrete Noether symmetries to mechanico-electrical dynamical systems. A practical example is presented to illustrate the results.展开更多
The method of integrating factors is used to study the conservation laws of the Herglotz type Birkhoffian systems in this paper.Firstly,the definition of the integrating factors of the Herglotz type Birkhoffian system...The method of integrating factors is used to study the conservation laws of the Herglotz type Birkhoffian systems in this paper.Firstly,the definition of the integrating factors of the Herglotz type Birkhoffian systems is given.Secondly,the relationship between the integrating factors and conservation laws is studied,and the conservation theorems of Herglotz type Birkhoff's equations and their inverse theorems are established.Thirdly,two types of generalized Killing equations for calculating integrating factors are given.Finally,as an example,a linear damped oscillator is taken.This example can be transformed into a Herglotz type Birkhoffian system.The resulting conservation theorems are used to find the conserved quantities for this example.展开更多
In this paper, we conduct research on the development of mechanical and electrical integration of system function principle and related technologies. Along with the rapid and continuous development of modem science an...In this paper, we conduct research on the development of mechanical and electrical integration of system function principle and related technologies. Along with the rapid and continuous development of modem science and technology, it ' s for the penetration and cross of different subjects great push, the more important is caused by technological revolution in the field of engineering and mechanical engineering field under the rapid development of computer technology and microelectronic technology and penetration to the mechanical and electrical integration, which is formed by the mechanical industry lead to trigger a particularly large changes in the mechanical industry management system and mode of production, product and technical structure, composition and function, thus result in industrial production from the previous mechanical electrification progressively electromechanical integration which lead the trend of the current technology.展开更多
From the Boltzmann's constitutive law of viscoelastic materials and the linear theory of elastic materials with voids, a constitutive model of generalized force fields for viscoelastic solids with voids was given....From the Boltzmann's constitutive law of viscoelastic materials and the linear theory of elastic materials with voids, a constitutive model of generalized force fields for viscoelastic solids with voids was given. By using the variational integral method, the convolution-type functional was given and the corresponding generalized variational principles and potential energy principle of viscoelastic solids with voids were presented. It can be shown that the variational principles correspond to the differential equations and the initial and boundary conditions of viscoelastic body with voids. As an application, a generalized variational principle of viscoelastic Timoshenko beams with damage was obtained which corresponds to the differential equations of generalized motion and the initial and boundary conditions of beams. The variational principles provide a way for solving problems of viscoelastic solids with voids.展开更多
With the explosion of services in grid environment, it's necessary to develop a mechanism which has the ability of discovering suitable grid services efficiently. This paper attempts to establish a layered resource m...With the explosion of services in grid environment, it's necessary to develop a mechanism which has the ability of discovering suitable grid services efficiently. This paper attempts to establish a layered resource management model based on the locality principle which classifies services into different domains and virtual organizations (VOs) according to their shared purposes. We propose an ontologybased search method applying the ontology theory for characterizing semantic information. In addition, we extend the UD- D1 in querying, storing, and so on. Simulation experiments have shown that our mechanism achieves higher performance in precision, recall and query response time.展开更多
In this paper, based on the theorem of the high-order velocity energy, integration and variation principle, the high-order Hamilton's principle of general holonomic systems is given. Then, three-order Lagrangian equa...In this paper, based on the theorem of the high-order velocity energy, integration and variation principle, the high-order Hamilton's principle of general holonomic systems is given. Then, three-order Lagrangian equations and four-order Lagrangian equations are obtained from the high-order Hamilton's principle. Finally, the Hamilton's principle of high-order Lagrangian function is given.展开更多
A multi-degree-of-freedom device is proposed,which can achieve efficient vibration reduction as the main objective and energy harvesting as the secondary purpose.The device comprises a multiscale nonlinear vibration a...A multi-degree-of-freedom device is proposed,which can achieve efficient vibration reduction as the main objective and energy harvesting as the secondary purpose.The device comprises a multiscale nonlinear vibration absorber(NVA)and piezoelectric components.Energy conversion and energy measurement methods are used to evaluate the device performance from multiple perspectives.Research has shown that this device can efficiently transfer transient energy from the main structure and convert a portion of transient energy into electrical energy.Main resonance and higher-order resonance are the main reasons for efficient energy transfer.The device can maintain high vibration reduction performance even when the excitation amplitude changes over a large range.Compared with the single structures with and without precompression,the multiscale NVA-piezoelectric device offers significant vibration reduction advantages.In addition,there are significant differences in the parameter settings of the two substructures for vibration reduction and energy harvesting.展开更多
The generalized variational principles of isothermal quasi-static fluid full-filled elastic solids are established by using Variational Integral Method. Then by introducing constraints, several kinds of variational pr...The generalized variational principles of isothermal quasi-static fluid full-filled elastic solids are established by using Variational Integral Method. Then by introducing constraints, several kinds of variational principles are worked out, including five-field variable, four-field variable, three-field variable and two-field variable formulations. Some new variational principles are presented besides the principles noted in the previous works. Based on variational principles, finite element models can be set up.展开更多
It has been shown that the first principle of thermodynamics follows from the conservation laws for energy and linear momentum. And the second principle of thermodynamics follows from the first principle of thermodyna...It has been shown that the first principle of thermodynamics follows from the conservation laws for energy and linear momentum. And the second principle of thermodynamics follows from the first principle of thermodynamics under realization of the integrating factor (namely, temperature) and is a conservation law. The significance of the first principle of thermodynamics consists in the fact that it specifies the thermodynamic system state, which depends on interaction between conservation laws and is non-equilibrium due to a non-commutativity of conservation laws. The realization of the second principle of thermodynamics points to a transition of the thermodynamic system state into a locally-equilibrium state. Phase transitions are examples of such transitions.展开更多
The integration of Artificial Intelligence(AI)into healthcare research promises unprecedented advancements in medical diagnostics,treatment personalization,and patient care management.However,these innovations also br...The integration of Artificial Intelligence(AI)into healthcare research promises unprecedented advancements in medical diagnostics,treatment personalization,and patient care management.However,these innovations also bring forth significant ethical challenges that must be addressed to maintain public trust,ensure patient safety,and uphold data integrity.This article sets out to introduce a detailed framework designed to steer governance and offer a systematic method for assuring that AI applications in healthcare research are developed and executed with integrity and adherence to medical research ethics.展开更多
基金Project supported by State Key Laboratory of Scientific and Engineering Computing, Chinese Academy of Sciences and the National Natural Science Foundation of China (Grant Nos 10672143 and 10471145) and the Natural Science Foundation of Henan Province Government, China (Grant Nos 0311011400 and 0511022200).
文摘This paper presents a discrete vaxiational principle and a method to build first-integrals for finite dimensional Lagrange-Maxwell mechanico-electrical systems with nonconservative forces and a dissipation function. The discrete variational principle and the corresponding Euler-Lagrange equations are derived from a discrete action associated to these systems. The first-integrals are obtained by introducing the infinitesimal transformation with respect to the generalized coordinates and electric quantities of the systems. This work also extends discrete Noether symmetries to mechanico-electrical dynamical systems. A practical example is presented to illustrate the results.
基金Supported by the National Natural Science Foundation of China(12272248)。
文摘The method of integrating factors is used to study the conservation laws of the Herglotz type Birkhoffian systems in this paper.Firstly,the definition of the integrating factors of the Herglotz type Birkhoffian systems is given.Secondly,the relationship between the integrating factors and conservation laws is studied,and the conservation theorems of Herglotz type Birkhoff's equations and their inverse theorems are established.Thirdly,two types of generalized Killing equations for calculating integrating factors are given.Finally,as an example,a linear damped oscillator is taken.This example can be transformed into a Herglotz type Birkhoffian system.The resulting conservation theorems are used to find the conserved quantities for this example.
文摘In this paper, we conduct research on the development of mechanical and electrical integration of system function principle and related technologies. Along with the rapid and continuous development of modem science and technology, it ' s for the penetration and cross of different subjects great push, the more important is caused by technological revolution in the field of engineering and mechanical engineering field under the rapid development of computer technology and microelectronic technology and penetration to the mechanical and electrical integration, which is formed by the mechanical industry lead to trigger a particularly large changes in the mechanical industry management system and mode of production, product and technical structure, composition and function, thus result in industrial production from the previous mechanical electrification progressively electromechanical integration which lead the trend of the current technology.
文摘From the Boltzmann's constitutive law of viscoelastic materials and the linear theory of elastic materials with voids, a constitutive model of generalized force fields for viscoelastic solids with voids was given. By using the variational integral method, the convolution-type functional was given and the corresponding generalized variational principles and potential energy principle of viscoelastic solids with voids were presented. It can be shown that the variational principles correspond to the differential equations and the initial and boundary conditions of viscoelastic body with voids. As an application, a generalized variational principle of viscoelastic Timoshenko beams with damage was obtained which corresponds to the differential equations of generalized motion and the initial and boundary conditions of beams. The variational principles provide a way for solving problems of viscoelastic solids with voids.
基金Supported by the High Technology Research andDevelopment Program of China (2003AA414210) and the NationalNatural Science Foundation of China (60173051)
文摘With the explosion of services in grid environment, it's necessary to develop a mechanism which has the ability of discovering suitable grid services efficiently. This paper attempts to establish a layered resource management model based on the locality principle which classifies services into different domains and virtual organizations (VOs) according to their shared purposes. We propose an ontologybased search method applying the ontology theory for characterizing semantic information. In addition, we extend the UD- D1 in querying, storing, and so on. Simulation experiments have shown that our mechanism achieves higher performance in precision, recall and query response time.
基金the Natural Science Foundation of Jiangxi Provincethe Foundation of Education Department of Jiangxi Province under Grant No.[2007]136
文摘In this paper, based on the theorem of the high-order velocity energy, integration and variation principle, the high-order Hamilton's principle of general holonomic systems is given. Then, three-order Lagrangian equations and four-order Lagrangian equations are obtained from the high-order Hamilton's principle. Finally, the Hamilton's principle of high-order Lagrangian function is given.
基金Project supported by the National Natural Science Foundation of China(Nos.11972050 and 12332001)。
文摘A multi-degree-of-freedom device is proposed,which can achieve efficient vibration reduction as the main objective and energy harvesting as the secondary purpose.The device comprises a multiscale nonlinear vibration absorber(NVA)and piezoelectric components.Energy conversion and energy measurement methods are used to evaluate the device performance from multiple perspectives.Research has shown that this device can efficiently transfer transient energy from the main structure and convert a portion of transient energy into electrical energy.Main resonance and higher-order resonance are the main reasons for efficient energy transfer.The device can maintain high vibration reduction performance even when the excitation amplitude changes over a large range.Compared with the single structures with and without precompression,the multiscale NVA-piezoelectric device offers significant vibration reduction advantages.In addition,there are significant differences in the parameter settings of the two substructures for vibration reduction and energy harvesting.
文摘The generalized variational principles of isothermal quasi-static fluid full-filled elastic solids are established by using Variational Integral Method. Then by introducing constraints, several kinds of variational principles are worked out, including five-field variable, four-field variable, three-field variable and two-field variable formulations. Some new variational principles are presented besides the principles noted in the previous works. Based on variational principles, finite element models can be set up.
文摘It has been shown that the first principle of thermodynamics follows from the conservation laws for energy and linear momentum. And the second principle of thermodynamics follows from the first principle of thermodynamics under realization of the integrating factor (namely, temperature) and is a conservation law. The significance of the first principle of thermodynamics consists in the fact that it specifies the thermodynamic system state, which depends on interaction between conservation laws and is non-equilibrium due to a non-commutativity of conservation laws. The realization of the second principle of thermodynamics points to a transition of the thermodynamic system state into a locally-equilibrium state. Phase transitions are examples of such transitions.
文摘The integration of Artificial Intelligence(AI)into healthcare research promises unprecedented advancements in medical diagnostics,treatment personalization,and patient care management.However,these innovations also bring forth significant ethical challenges that must be addressed to maintain public trust,ensure patient safety,and uphold data integrity.This article sets out to introduce a detailed framework designed to steer governance and offer a systematic method for assuring that AI applications in healthcare research are developed and executed with integrity and adherence to medical research ethics.