Since language is a tool for communication,proficiency in English communication is a fundamental necessity for talent in the 21st century.However,surveys reveal that most college students at private colleges possess i...Since language is a tool for communication,proficiency in English communication is a fundamental necessity for talent in the 21st century.However,surveys reveal that most college students at private colleges possess inadequate oral English skills,and what some have learned is“mute English.”Therefore,developing their English-speaking skills is another challenge faced by students attending private schools.Online diagnostic assessment methods are growing globally with the use of technology.UDig diagnostic assessment system is one of the online English diagnostic assessment platforms currently being widely used in China.Therefore,the present work is conducted to investigate and conduct an oral English learning-oriented assessment model in college English using the online diagnostic assessment.With the research result,it is hoped that the study could provide useful information for improving UDig system and make a better use of it in college oral English learning and teaching.展开更多
Nitrogen(N)and phosphorus(P)are essential nutrients and can significantly impact primary productivity of the ecosystem causing water environmental problems.However,their cycling mechanisms are not well understood in a...Nitrogen(N)and phosphorus(P)are essential nutrients and can significantly impact primary productivity of the ecosystem causing water environmental problems.However,their cycling mechanisms are not well understood in alpine mountains with climate change.Hence,94 samples of river water were collected from 2018 to 2020 in the headwaters of the Shule River Basin to assess the nutrients spatiotemporal distribution and combined ap-proach of water quality index to assess water quality and potential sources.The findings depict that high nutrient concentrations were found to coincide with snowmelt and glacial meltwater and rainfall recharge periods,while total flux peaked from June to September due to increased runoff.Notably,total nitrogen(TN)concentrations were significantly higher near the town,primarily attributed to the replenishment of nitrate(NO_(3)^(‒)-N)from live-stock manure.The high total P(TP)was near the glacier,which was attributed to the transportation of glacial sediments into the river,and pH was another critical factor.N was the primary nutrient limiting factor for the growth of phytoplankton in river water.Although the migration and transport of nutrients have altered with climate change,river water quality is good in alpine mountains based on an overall evaluation.These findings contribute to enriching nutrient datasets and highlight the importance of water resource management and water quality assessment in sensitive and fragile alpine mountains.展开更多
Excessive levels of Fluoride(F−)and Cadmium(Cd)in drinking groundwater may pose health risks.This study assessed the health risks associated with F−and Cd contamination in rural drinking groundwater sources in Wutai C...Excessive levels of Fluoride(F−)and Cadmium(Cd)in drinking groundwater may pose health risks.This study assessed the health risks associated with F−and Cd contamination in rural drinking groundwater sources in Wutai County,Shanxi Province,China,to support population health protection,water resource management,and environmental decision-making.Groundwater samples were collected and analyzed,and a Human Health Risk Model(HHRA)was applied to evaluate groundwater quality.The results showed that both contents of F−and Cd in groundwater exceeded the Class III limits of China's national groundwater quality standard(GB/T 14848—2024).Fluoride levels met the Class V threshold,with enrichment area mainly located in the east part of the study area.Cadmium levels reached Class IV,with elevated concentrations primarily observed in the western and northwestern regions.Correlation analysis revealed that F−showed weak or no correlation with other measured substances,indicating independent sources.Health risk assessment results indicated that F−poses potential health risks to rural residents,while cadmium,due to its relatively low concentrations,does not currently present a significant health risk.Among different demographic groups,the health risk levels of F−exposure followed the order:Infants>children>adult females>adult males.The findings highlight that fluoride is the primary contributor to health risks associated with groundwater consumption in the study area.Strengthened monitoring and prevention of F−contamination are urgently needed.This research provides a scientific basis for the prevention and control of fluoride pollution in groundwater and offers practical guidance for safeguarding drinking water safety in rural China.展开更多
This study compares the environmental sustainability of five alternatives for the remediation of marine sediments of one of the most polluted coastal sites in Europe(Bagnoli-Coroglio bay,Mediterranean Sea),using the L...This study compares the environmental sustainability of five alternatives for the remediation of marine sediments of one of the most polluted coastal sites in Europe(Bagnoli-Coroglio bay,Mediterranean Sea),using the Life Cycle Assessment(LCA)methodology.The treatments are either in-situ or exsitu,the latter requiring an initial dredging to transport the contaminated sediments to the management site.More in detail,four ex-situ remediation technologies based on landfilling,bioremediation,electrokinetic technique and soil washing were identified.These technologies are compared to an in-situ strategy currently under validation for enhancing bioremediation of the polluted sediments of the Bagnoli-Coroglio site.Our results indicate that the disposal in landfilling site is the worst option in most categories(e.g.,650 kg CO_(2) eq./t of treated sediment,considering the nearest landfilling site),followed by the bioremediation,mainly due to the high energy demand.Electrokinetic remediation,soil washing,and innovative in-situ technology represent the most sustainable options.In particular,the new in-situ technology appears to be the least impacting in all categories(e.g.,54 kg CO_(2) eq./t of treated sediment),although it is expected to require longer treatment time(estimated up to 12 months based on its potential efficiency).It can reduce the impact on climate change more than 12 times compared to the disposal and 7 times compared to bioremediation in addition to the possibility to avoid/reduce the dredging operations and the consequent dispersion of pollutants.The results open relevant perspectives towards more eco-sustainable and costly effective actions for the reclamation of contaminated marine sediments.展开更多
Despite the widespread presence and frequent detection of polycyclic aromatic hydrocarbons(PAHs)in various aspects of life,there is limited research on their exposure levels in pregnant women and cumulative exposure f...Despite the widespread presence and frequent detection of polycyclic aromatic hydrocarbons(PAHs)in various aspects of life,there is limited research on their exposure levels in pregnant women and cumulative exposure from the living environment.This study included 1311 women in late pregnancy from the Zunyi birth cohort and measured the urinary concentrations of 10 hydroxylated PAH metabolites(OH-PAHs).Risk assessment was conducted based on the estimated daily intake to calculate the hazard quotient and hazard index(HI).A linear regression model was used to analyze the relationship between creatinine-adjusted OH-PAHs concentrations and living environment and lifestyle factors,while principal component analysis was applied to trace the sources of PAHs exposure.1-OHPYR was detected in all participants’urine,with naphthalene metabolites having the highest concentrations among creatinine-adjusted PAHs.OH-PAHs concentrations were associated with housing type,room number,cooking frequency,household size,exercise frequency,fuel type,distance from main road,and drinking water source.Pregnant women using traditional fuels and living in bungalows had higher health risks than those using clean energy and living in buildings.Those living within 100 m of a main road had higher HI than those farther away.Coal combustion was identified as the primary source of PAHs exposure.The study emphasizes the importance of reducing PAHs exposure,especially for pregnant women living in polluted environments.It recommends public health interventions such as improving indoor ventilation and providing clean energy to reduce related health risks.展开更多
Controlling heavy metal pollution in agricultural soil has been a significant challenge.These heavy metals seriously threaten the surrounding ecological environment and human health.The effective assessment and remedi...Controlling heavy metal pollution in agricultural soil has been a significant challenge.These heavy metals seriously threaten the surrounding ecological environment and human health.The effective assessment and remediation of heavy metals in agricultural soils are crucial.These two aspects support each other,forming a close and complete decisionmaking chain.Therefore,this review systematically summarizes the distribution characteristics of soil heavy metal pollution,the correlation between soil and crop heavy metal contents,the presence pattern and migration and transformation mode of heavy metals in the soil-crop system.The advantages and disadvantages of the risk evaluation tools and models of heavy metal pollution in farmland are further outlined,which provides important guidance for an in-depth understanding of the characteristics of heavymetal pollution in farmland soils and the assessment of the environmental risk.Soil remediation strategies involve multiple physical,chemical,biological and even combined technologies,and this paper compares the potential and effect of the above current remediation technologies in heavy metal polluted farmland soils.Finally,the main problems and possible research directions of future heavy metal risk assessment and remediation technologies in agricultural soils are prospected.This review provides new ideas for effective assessment and selection of remediation technologies based on the characterization of soil heavy metals.展开更多
Na-ion batteries are considered a promising next-generation battery alternative to Li-ion batteries,due to the abundant Na resources and low cost.Most efforts focus on developing new materials to enhance energy densit...Na-ion batteries are considered a promising next-generation battery alternative to Li-ion batteries,due to the abundant Na resources and low cost.Most efforts focus on developing new materials to enhance energy density and electrochemical performance to enable it comparable to Li-ion batteries,without considering thermal hazard of Na-ion batteries and comparison with Li-ion batteries.To address this issue,our work comprehensively compares commercial prismatic lithium iron phosphate(LFP) battery,lithium nickel cobalt manganese oxide(NCM523) battery and Na-ion battery of the same size from thermal hazard perspective using Accelerating Rate Calorimeter.The thermal hazard of the three cells is then qualitatively assessed from thermal stability,early warning and thermal runaway severity perspectives by integrating eight characteristic parameters.The Na-ion cell displays comparable thermal stability with LFP while LFP exhibits the lowest thermal runaway hazard and severity.However,the Na-ion cell displays the lowest safety venting temperature and the longest time interval between safety venting and thermal runaway,allowing the generated gas to be released as early as possible and detected in a timely manner,providing sufficient time for early warning.Finally,a database of thermal runaway characteristic temperature for Li-ion and Na-ion cells is collected and processed to delineate four thermal hazard levels for quantitative assessment.Overall,LFP cells exhibit the lowest thermal hazard,followed by the Na-ion cells and NCM523 cells.This work clarifies the thermal hazard discrepancy between the Na-ion cell and prevalent Li-ion cells,providing crucial guidance for development and application of Na-ion cell.展开更多
Phthalate esters(PAEs),recognized as endocrine disruptors,are released into the environment during usage,thereby exerting adverse ecological effects.This study investigates the occurrence,sources,and risk assessment o...Phthalate esters(PAEs),recognized as endocrine disruptors,are released into the environment during usage,thereby exerting adverse ecological effects.This study investigates the occurrence,sources,and risk assessment of PAEs in surface water obtained from 36 sampling points within the Yellow River and Yangtze River basins.The total concentration of PAEs in the Yellow River spans from124.5 to 836.5 ng/L,with Dimethyl phthalate(DMP)(75.4±102.7 ng/L)and Diisobutyl phthalate(DiBP)(263.4±103.1 ng/L)emerging as the predominant types.Concentrations exhibit a pattern of upstream(512.9±202.1 ng/L)>midstream(344.5±135.3 ng/L)>downstream(177.8±46.7 ng/L).In the Yangtze River,the total concentration ranges from 81.9 to 441.6 ng/L,with DMP(46.1±23.4 ng/L),Diethyl phthalate(DEP)(93.3±45.2 ng/L),and DiBP(174.2±67.6 ng/L)as the primary components.Concentration levels follow a midstream(324.8±107.3 ng/L)>upstream(200.8±51.8 ng/L)>downstream(165.8±71.6 ng/L)pattern.Attention should be directed towards the moderate ecological risks of DiBP in the upstream of HH,and both the upstream and midstream of CJ need consideration for the moderate ecological risks associated with Di-n-octyl phthalate(DNOP).Conversely,in other regions,the associated risk with PAEs is either low or negligible.The main source of PAEs in Yellow River is attributed to the release of construction land,while in the Yangtze River Basin,it stems from the accumulation of pollutants in lakes and forests discharged into the river.These findings are instrumental for pinpointing sources of PAEs pollution and formulating control strategies in the Yellow and Yangtze Rivers,providing valuable insights for global PAEs research in other major rivers.展开更多
Understanding the levels,causes,and sources of fluoride in groundwater is critical for public health,effective water resource management,and sustainable utilization.This study employs multivariate statistical methods,...Understanding the levels,causes,and sources of fluoride in groundwater is critical for public health,effective water resource management,and sustainable utilization.This study employs multivariate statistical methods,hazard quotient assessment,and geochemical analyses,such as mineral saturation index,ionic activities,and Gibbs diagrams,to investigate the hydrochemical characteristics,causes,and noncarcinogenic risks of fluoride in Red bed groundwater and geothermal water in the Guang'an area and neighboring regions.Approximately 9%of the Red bed groundwater samples contain fluoride concentrations exceeding 1 mg·L^(-1).The predominant water types identified are Cl-Na and HCO_(3)-Na,primarily influenced by evapotranspiration.Low-fluoride groundwater and high-fluoride geothermal water exhibit distinct hydrochemical types HCO_(3)-Ca and SO_(4)-Ca,respectively,which are mainly related to the weathering of carbonate,sulfate,and fluorite-containing rocks.Correlation analysis reveals that fluoride content in Red bed groundwater is positively associated with Na^(+),Cl^(-),SO_(4)^(2-),and TDS(r^(2)=0.45-0.64,p<0.01),while in geothermal water,it correlates strongly with pH,K^(+),Ca^(2+),and Mg^(2+)(r^(2)=0.52-0.80,p<0.05).Mineral saturation indices and ionic activities indicate that ion exchange processes and the dissolution of minerals such as carbonatite and fluorite are important sources of fluoride in groundwater.The enrichment of fluorine in the Red bed groundwater is linked to evaporation,cation exchange and dissolution of fluorite,caused by the lithologic characteristics of the red bed in this area.However,it exhibits minimal correlation with the geothermal water in the adjacent area.The noncarcinogenic health risk assessment indicates that 7%(n=5)of Red bed groundwater points exceed the fluoride safety limit for adults,while 12%(n=8)exceed the limit for children.These findings underscore the importance of avoiding highly fluoridated red bed groundwater as a direct drinking source and enhancing groundwater monitoring to mitigate health risks associated with elevated fluoride levels.展开更多
Background There is scarce data about comparisons between geriatric assessment tools in patients with aortic stenosis(AS).We aimed to describe the geriatric profile of patients with AS undergoing transcatheter aortic ...Background There is scarce data about comparisons between geriatric assessment tools in patients with aortic stenosis(AS).We aimed to describe the geriatric profile of patients with AS undergoing transcatheter aortic valve implantation(TAVI)and to analyze the ability of different tools for predicting clinical outcomes in this context.Methods This was a single center retrospective registry including patients with AS undergoing TAVI and surviving to hospital discharge.The primary endpoint was all-cause mortality or need for urgent readmission one year after TAVI.Results A total of 377 patients were included(mean age of 80.4 years).Most patients were independent or mildly dependent,with an optimal cognitive status.The proportion of frailty ranged from 17.6%to 49.8%.A total of 20 patients(5.3%)died and 110/377 patients(29.2%)died or were readmitted during follow up.Overall,most components of the geriatric assessment showed an association with clinical outcomes.Disability for instrumental activities showed a significant association with mortality and a strong association with the rate of mortality or readmission.The association between frailty and clinical outcomes was higher for short physical performance battery(SPPB),essential frailty toolset(EFT)and the frailty index based on comprehensive geriatric assessment(IF-VIG)and lower for Fried criteria and FRAIL scale.Conclusions AS patients from this series presented a good physical performance,optimal cognitive status and a reasonably low prevalence of frailty.The best predictive ability was observed for disability for instrumental activities and frailty as measured by the EFT,SPPB and the IF-VIG.展开更多
To solve problems of poor security guarantee and insufficient training efficiency in the conventional reinforcement learning methods for decision-making,this study proposes a hybrid framework to combine deep reinforce...To solve problems of poor security guarantee and insufficient training efficiency in the conventional reinforcement learning methods for decision-making,this study proposes a hybrid framework to combine deep reinforcement learning with rule-based decision-making methods.A risk assessment model for lane-change maneuvers considering uncertain predictions of surrounding vehicles is established as a safety filter to improve learning efficiency while correcting dangerous actions for safety enhancement.On this basis,a Risk-fused DDQN is constructed utilizing the model-based risk assessment and supervision mechanism.The proposed reinforcement learning algorithm sets up a separate experience buffer for dangerous trials and punishes such actions,which is shown to improve the sampling efficiency and training outcomes.Compared with conventional DDQN methods,the proposed algorithm improves the convergence value of cumulated reward by 7.6%and 2.2%in the two constructed scenarios in the simulation study and reduces the number of training episodes by 52.2%and 66.8%respectively.The success rate of lane change is improved by 57.3%while the time headway is increased at least by 16.5%in real vehicle tests,which confirms the higher training efficiency,scenario adaptability,and security of the proposed Risk-fused DDQN.展开更多
Hurricanes are one of the most destructive natural disasters that can cause catastrophic losses to both communities and infrastructure.Assessment of hurricane risk furnishes a spatial depiction of the interplay among ...Hurricanes are one of the most destructive natural disasters that can cause catastrophic losses to both communities and infrastructure.Assessment of hurricane risk furnishes a spatial depiction of the interplay among hazard,vulnerability,exposure,and mitigation capacity,crucial for understanding and managing the risks hurricanes pose to communities.These assessments aid in gauging the efficacy of existing hurricane mitigation strategies and gauging their resilience across diverse climate change scenarios.A systematic review was conducted,encompassing 94 articles,to scrutinize the structure,data inputs,assumptions,methodologies,perils modelled,and key predictors of hurricane risk.This review identified key research gaps essential for enhancing future risk assessments.The complex interaction between hurricane perils may be disastrous and underestimated in the majority of risk assessments which focus on a single peril,commonly storm surge and flood,resulting in inadequacies in disaster resilience planning.Most risk assessments were based on hurricane frequency rather than hurricane damage,which is more insightful for policymakers.Furthermore,considering secondary indirect impacts stemming from hurricanes,including real estate market and business interruption,could enrich economic impact assessments.Hurricane mitigation measures were the most under-utilised category of predictors leveraged in only 5%of studies.The top six predictive factors for hurricane risk were land use,slope,precipitation,elevation,population density,and soil texture/drainage.Another notable research gap identified was the potential of machine learning techniques in risk assessments,offering advantages over traditional MCDM and numerical models due to their ability to capture complex nonlinear relationships and adaptability to different study regions.Existing machine learning based risk assessments leverage random forest models(42%of studies)followed by neural network models(19%of studies),with further research required to investigate diverse machine learning algorithms such as ensemble models.A further research gap is model validation,in particular assessing transferability to a new study region.Additionally,harnessing simulated data and refining projections related to demographic and built environment dynamics can bolster the sophistication of climate change scenario assessments.By addressing these research gaps,hurricane risk assessments can furnish invaluable insights for national policymakers,facilitating the development of robust hurricane mitigation strategies and the construction of hurricane-resilient communities.To the authors’knowledge,this represents the first literature review specifically dedicated to quantitative hurricane risk assessments,encompassing a comparison of Multi-criteria Decision Making(MCDM),numerical models,and machine learning models.Ultimately,advancements in hurricane risk assessments and modelling stand poised to mitigate potential losses to communities and infrastructure both in the immediate and long-term future.展开更多
Due to their high mechanical compliance and excellent biocompatibility,conductive hydrogels exhibit significant potential for applications in flexible electronics.However,as the demand for high sensitivity,superior me...Due to their high mechanical compliance and excellent biocompatibility,conductive hydrogels exhibit significant potential for applications in flexible electronics.However,as the demand for high sensitivity,superior mechanical properties,and strong adhesion performance continues to grow,many conventional fabrication methods remain complex and costly.Herein,we propose a simple and efficient strategy to construct an entangled network hydrogel through a liquid-metal-induced cross-linking reaction,hydrogel demonstrates outstanding properties,including exceptional stretchability(1643%),high tensile strength(366.54 kPa),toughness(350.2 kJ m^(−3)),and relatively low mechanical hysteresis.The hydrogel exhibits long-term stable reusable adhesion(104 kPa),enabling conformal and stable adhesion to human skin.This capability allows it to effectively capture high-quality epidermal electrophysiological signals with high signal-to-noise ratio(25.2 dB)and low impedance(310 ohms).Furthermore,by integrating advanced machine learning algorithms,achieving an attention classification accuracy of 91.38%,which will significantly impact fields like education,healthcare,and artificial intelligence.展开更多
To quantify the seismic resilience of buildings,a method for evaluating functional loss from the component level to the overall building is proposed,and the dual-parameter seismic resilience assessment method based on...To quantify the seismic resilience of buildings,a method for evaluating functional loss from the component level to the overall building is proposed,and the dual-parameter seismic resilience assessment method based on postearthquake loss and recovery time is improved.A threelevel function tree model is established,which can consider the dynamic changes in weight coefficients of different category of components relative to their functional losses.Bayesian networks are utilized to quantify the impact of weather conditions,construction technology levels,and worker skill levels on component repair time.A method for determining the real-time functional recovery curve of buildings based on the component repair process is proposed.Taking a three-story teaching building as an example,the seismic resilience indices under basic earthquakes and rare earthquakes are calculated.The results show that the seismic resilience grade of the teaching building is comprehensively judged as GradeⅢ,and its resilience grade is more significantly affected by postearthquake loss.The proposed method can be used to predict the seismic resilience of buildings prior to earthquakes,identify weak components within buildings,and provide guidance for taking measures to enhance the seismic resilience of buildings.展开更多
As the development of new power systems accelerates and the impacts of high renewable energy integration and extreme weather intensify,grid-alternative energy storage is garnering increasing attention for its grid-int...As the development of new power systems accelerates and the impacts of high renewable energy integration and extreme weather intensify,grid-alternative energy storage is garnering increasing attention for its grid-interaction benefits and clear business models.Consequently,assessing the value of grid-alternative energy storage in the systemtransition has become critically important.Considering the performance characteristics of storage,we propose a value assessment frame-work for grid-alternative energy storage,quantifying its non-wires-alternative effects from both cost and benefit perspectives.Building on this,we developed a collaborative planning model for energy storage and transmission grids,aimed at maximizing the economic benefits of storage systems while balancing investment and operational costs.The model considers regional grid interconnections and their interactions with system operation.By participating in system operations,grid-alternative energy storage not only maximizes its own economic benefits but also generates social welfare transfer effects.Furthermore,based on multi-regional interconnected planning,grid-alternative energy storage can reduce system costs by approximately 35%,with the most significant changes observed in generation costs.Multi-regional coordinated planning significantly enhances the sys-tem’s flexibility in regulation.However,when the load factor of interconnection lines between regions remains constant,system operational flexibility tends to decrease,leading to a roughly 28.9%increase in storage investment.Additionally,under regional coordinated planning,the greater the disparity in wind power integration across interconnected regions,the more noticeable the reduction in system costs.展开更多
Climate change and rising temperatures are accelerating the rate of deglaciation in the Hindu Kush Karakoram Himalaya(HKH)ranges,leading to the formation of new glacial lakes and the expansion of existing ones.These l...Climate change and rising temperatures are accelerating the rate of deglaciation in the Hindu Kush Karakoram Himalaya(HKH)ranges,leading to the formation of new glacial lakes and the expansion of existing ones.These lakes are often vulnerable to failure,posing a significant threat to downstream communities and infrastructure.Therefore,a comprehensive assessment of Glacier-Lake Outburst Flood(GLOF)hazards and risk assessment is crucial to evaluate flood runout characteristics and identify settlements and infrastructure that are exposed and vulnerable to floods,aiding in the development and implementation of risk reduction strategies.This study aims to simulate a GLOF event induced by the Shisper glacier lake in northern Pakistan,using the HEC-RAS,and to assess its impact on settlements,infrastructure,and agricultural land.For the hydrometeorological analysis of the GLOF event,topographic data from unmanned aerial vehicles(UAVs),stream profiles,discharge data,Manning's roughness coefficient(n),and land use/land cover(LULC)were analyzed using HEC-RAS and geographic information system(GIS).During the GLOF event on May 7,2022,a maximum water depth of 6.3 m and a maximum velocity of 9.5 m/s were recorded.Based on the runout characteristics of this event,vulnerability and risk assessments have been calculated.The physical,social,and environmental vulnerabilities of the at-risk elements were evaluated using the analytical hierarchy process(AHP)and integrated with the hazard data to develop a risk map.The study identified the areas,infrastructure and settlements susceptible to GLOF hazard to support the development and implementation of targeted and evidence-based mitigation and adaptation strategies.展开更多
Abandoned mines,especially pyrite-rich ones,release acid mine drainage(AMD)with high acidity and excessive amounts of heavy metals,threatening regional ecosystems.Six samples of mine drainage,nine samples of surface w...Abandoned mines,especially pyrite-rich ones,release acid mine drainage(AMD)with high acidity and excessive amounts of heavy metals,threatening regional ecosystems.Six samples of mine drainage,nine samples of surface water,and twelve samples of sediment were analyzed in this case study of the Dashu pyrite mine in southwest China.A comprehensive analysis of the pollution levels,pollution sources,and potential hazards of eight metals(Ni,Cd,Cu,Zn,Fe,Al,Pb,and Mn)that exceeded regulatory standardswas conducted bymonitoring 24 conventional and characteristic indicators.Ultimately,this research evaluated the environmental hazards associated with abandonedmine water using the"pressure-response"model,thereby providing valuable insights for the effective protection of the environment in mining regions.The primary pollutants in mine water were determined to be SO_(4)^(2−),Fe,and Mn,with concentrations of 7700,1450,and 6.78mg/L,respectively.A clear"source-sink"dynamic was observed between themine water and the surrounding water system.surface water was primarily polluted by Ni and Mn,while water system sediments were primarily polluted by Cu and Hg.Ion ratio and Pearson correlation analyses indicated heavy metals in surface water and sediments originated from the same AMD source.The"pressureresponse"model was used to assess the environmental hazards of water from abandoned mines.Mines W1,W2,W5,and W6 were classified as high-risk,while W3 and W4 were medium-risk.This study offers a novel approach and valuable reference for identifying and classifying environmental risks in abandoned mines and targeting AMD treatment.展开更多
Objectives This study aimed to develop and preliminarily assess the quality of a Mindfulness Breast Care(MBC)App to reduce body image distress and stigma among breast cancer survivors(BCSs).Methods The development pro...Objectives This study aimed to develop and preliminarily assess the quality of a Mindfulness Breast Care(MBC)App to reduce body image distress and stigma among breast cancer survivors(BCSs).Methods The development process of the MBC App involved:1)establishing a research group;2)determining of the content of the MBC App based on Mindfulness-Based Cognitive Therapy and 3)technical exploitation and maintenance.A mixed-methods study was conducted.We selected ten BCSs by a convenience sampling method.After using the APP for three months,five assessed the quality using the Mobile App Rating Scale:User Version(uMARS)and another five were interviewed for process evaluation.Results The MBC App was developed with three modules:1)Library to provide health education information on body image,stigma,mindfulness,recovery and etc;2)Mindfulness Yoga to offer 12 Hatha yoga videos for daily practice;and 3)Mindfulness Practices to have 12 sessions of mindfulness videoconferences.Based on the uMARS data,the MBC App received high ratings for functionality(4.10±0.34),aesthetics(3.93±0.55),information quality(4.10±0.72),and perceived impact(4.03±0.96),as well as moderate ratings for engagement(3.72±0.94)and subjective quality(3.87±0.77).Participants indicated that the MBC App provided reliable knowledge,information,and emotional support.Recommendations from participants included categorizing knowledge in the Library Module,recording videoconferences of mindfulness practice,and adding discussion sessions in the videoconference.Afterward,we optimized the MBC App to enhance the user experience accordingly.Conclusions The MBC App offers online mindfulness interventions specifically for BCSs in China.The preliminary quality assessment indicates that the MBC App may be a promising tool for delivering mindfulness interventions to BCSs.展开更多
Ubiquitous contamination of the soil environment with volatile organic compounds(VOCs)has raised considerable concerns.However,there is still limited comprehensive surveying of soil VOCs on a national scale.Herein,65 ...Ubiquitous contamination of the soil environment with volatile organic compounds(VOCs)has raised considerable concerns.However,there is still limited comprehensive surveying of soil VOCs on a national scale.Herein,65 species of VOCswere simultaneously determined in surface soil samples collected from 63 chemical industrial parks(CIPs)across China.The results showed that the total VOC concentrations ranged from 7.15 to 1842 ng/g with a mean concentration of 326 ng/g(median:179 ng/g).Benzene homologs and halogenated hydrocarbons were identified as the dominant contaminant groups.Positive correlations between many VOC species indicated that these compounds probably originated from similar sources.Spatially,the hotspots of VOC pollution were located in eastern and southern China.Soils with higher clay content and a higher fraction of total organic carbon(TOC)content were significantly associated with higher soil VOC concentrations.Precipitation reduces the levels of highly water-soluble substances in surface soils.Both positive matrix factorization(PMF)and principal component analysis-multiple linear regression(PCA-MLR)identified a high proportion of industrial sources(PMF:59.2%and PCA-MLR:66.5%)and traffic emission sources(PMF:32.3%and PCA-MLR:33.5%).PMF,which had a higher R^(2) value(0.7892)than PCA-MLR(0.7683),was the preferred model for quantitative source analysis of soil VOCs.The health risk assessment indicated that the non-carcinogenic and carcinogenic risks of VOCs were at acceptable levels.Overall,this study provides valuable data on the occurrence of VOCs in soil from Chinese CIPs,which is essential for a comprehensive understanding of their environmental behavior.展开更多
Bone age assessment(BAA)aims to determine whether a child’s growth and development are normal concerning their chronological age.To predict bone age more accurately based on radiographs,and for the left-hand X-ray im...Bone age assessment(BAA)aims to determine whether a child’s growth and development are normal concerning their chronological age.To predict bone age more accurately based on radiographs,and for the left-hand X-ray images of different races model can have better adaptability,we propose a neural network in parallel with the quantitative features from the left-hand bone measurements for BAA.In this study,a lightweight feature extractor(LFE)is designed to obtain the featuremaps fromradiographs,and amodule called attention erasermodule(AEM)is proposed to capture the fine-grained features.Meanwhile,the dimensional information of the metacarpal parts in the radiographs is measured to enhance the model’s generalization capability across images fromdifferent races.Ourmodel is trained and validated on the RSNA,RHPE,and digital hand atlas datasets,which include images from various racial groups.The model achieves a mean absolute error(MAE)of 4.42 months on the RSNA dataset and 15.98 months on the RHPE dataset.Compared to ResNet50,InceptionV3,and several state-of-the-art methods,our proposed method shows statistically significant improvements(p<0.05),with a reduction in MAE by 0.2±0.02 years across different racial datasets.Furthermore,t-tests on the features also confirm the statistical significance of our approach(p<0.05).展开更多
文摘Since language is a tool for communication,proficiency in English communication is a fundamental necessity for talent in the 21st century.However,surveys reveal that most college students at private colleges possess inadequate oral English skills,and what some have learned is“mute English.”Therefore,developing their English-speaking skills is another challenge faced by students attending private schools.Online diagnostic assessment methods are growing globally with the use of technology.UDig diagnostic assessment system is one of the online English diagnostic assessment platforms currently being widely used in China.Therefore,the present work is conducted to investigate and conduct an oral English learning-oriented assessment model in college English using the online diagnostic assessment.With the research result,it is hoped that the study could provide useful information for improving UDig system and make a better use of it in college oral English learning and teaching.
基金supported by the Second Tibetan Plateau Scientific Expedition and Research Program(STEP)(No.2019QZKK0208)the National Natural Science Foundation of China(Nos.42171148 and 42330512)the Key R&D Project from the Science and Technology Department of Tibet(No.XZ202501ZY0030).
文摘Nitrogen(N)and phosphorus(P)are essential nutrients and can significantly impact primary productivity of the ecosystem causing water environmental problems.However,their cycling mechanisms are not well understood in alpine mountains with climate change.Hence,94 samples of river water were collected from 2018 to 2020 in the headwaters of the Shule River Basin to assess the nutrients spatiotemporal distribution and combined ap-proach of water quality index to assess water quality and potential sources.The findings depict that high nutrient concentrations were found to coincide with snowmelt and glacial meltwater and rainfall recharge periods,while total flux peaked from June to September due to increased runoff.Notably,total nitrogen(TN)concentrations were significantly higher near the town,primarily attributed to the replenishment of nitrate(NO_(3)^(‒)-N)from live-stock manure.The high total P(TP)was near the glacier,which was attributed to the transportation of glacial sediments into the river,and pH was another critical factor.N was the primary nutrient limiting factor for the growth of phytoplankton in river water.Although the migration and transport of nutrients have altered with climate change,river water quality is good in alpine mountains based on an overall evaluation.These findings contribute to enriching nutrient datasets and highlight the importance of water resource management and water quality assessment in sensitive and fragile alpine mountains.
基金supported by the Northeast Geological Science and Technology Innovation Center of China Geological Survey(Grant NO.QCJJ2022-43)the Natural Resources Comprehensive Survey Project(Grant Nos.DD20230470,DD20230508)the National Groundwater Monitoring Network Operation and Maintenance Program(Grant No.DD20251300109).
文摘Excessive levels of Fluoride(F−)and Cadmium(Cd)in drinking groundwater may pose health risks.This study assessed the health risks associated with F−and Cd contamination in rural drinking groundwater sources in Wutai County,Shanxi Province,China,to support population health protection,water resource management,and environmental decision-making.Groundwater samples were collected and analyzed,and a Human Health Risk Model(HHRA)was applied to evaluate groundwater quality.The results showed that both contents of F−and Cd in groundwater exceeded the Class III limits of China's national groundwater quality standard(GB/T 14848—2024).Fluoride levels met the Class V threshold,with enrichment area mainly located in the east part of the study area.Cadmium levels reached Class IV,with elevated concentrations primarily observed in the western and northwestern regions.Correlation analysis revealed that F−showed weak or no correlation with other measured substances,indicating independent sources.Health risk assessment results indicated that F−poses potential health risks to rural residents,while cadmium,due to its relatively low concentrations,does not currently present a significant health risk.Among different demographic groups,the health risk levels of F−exposure followed the order:Infants>children>adult females>adult males.The findings highlight that fluoride is the primary contributor to health risks associated with groundwater consumption in the study area.Strengthened monitoring and prevention of F−contamination are urgently needed.This research provides a scientific basis for the prevention and control of fluoride pollution in groundwater and offers practical guidance for safeguarding drinking water safety in rural China.
基金support in the literature analysis.This study has been carried out in the framework of the project funded by EU entitled“Bioremediation of contaminated sediments in coastal areas of exindustrial sites-LIFE SEDREMED”(No.LIFE20 ENV/IT/000572).
文摘This study compares the environmental sustainability of five alternatives for the remediation of marine sediments of one of the most polluted coastal sites in Europe(Bagnoli-Coroglio bay,Mediterranean Sea),using the Life Cycle Assessment(LCA)methodology.The treatments are either in-situ or exsitu,the latter requiring an initial dredging to transport the contaminated sediments to the management site.More in detail,four ex-situ remediation technologies based on landfilling,bioremediation,electrokinetic technique and soil washing were identified.These technologies are compared to an in-situ strategy currently under validation for enhancing bioremediation of the polluted sediments of the Bagnoli-Coroglio site.Our results indicate that the disposal in landfilling site is the worst option in most categories(e.g.,650 kg CO_(2) eq./t of treated sediment,considering the nearest landfilling site),followed by the bioremediation,mainly due to the high energy demand.Electrokinetic remediation,soil washing,and innovative in-situ technology represent the most sustainable options.In particular,the new in-situ technology appears to be the least impacting in all categories(e.g.,54 kg CO_(2) eq./t of treated sediment),although it is expected to require longer treatment time(estimated up to 12 months based on its potential efficiency).It can reduce the impact on climate change more than 12 times compared to the disposal and 7 times compared to bioremediation in addition to the possibility to avoid/reduce the dredging operations and the consequent dispersion of pollutants.The results open relevant perspectives towards more eco-sustainable and costly effective actions for the reclamation of contaminated marine sediments.
基金supported by the National Key R&D Program of China(Nos.2018YFC1004300 and 2018YFC1004302)the Science&Technology Program of Guizhou Province(Nos.QKHHBZ[2020]3002,QKHPTRC-GCC[2022]039-1 and QKHPTRCCXTD[2022]014)the Scientific Research Program of Guizhou Provincial Department of Education(No.QJJ[2023]019).
文摘Despite the widespread presence and frequent detection of polycyclic aromatic hydrocarbons(PAHs)in various aspects of life,there is limited research on their exposure levels in pregnant women and cumulative exposure from the living environment.This study included 1311 women in late pregnancy from the Zunyi birth cohort and measured the urinary concentrations of 10 hydroxylated PAH metabolites(OH-PAHs).Risk assessment was conducted based on the estimated daily intake to calculate the hazard quotient and hazard index(HI).A linear regression model was used to analyze the relationship between creatinine-adjusted OH-PAHs concentrations and living environment and lifestyle factors,while principal component analysis was applied to trace the sources of PAHs exposure.1-OHPYR was detected in all participants’urine,with naphthalene metabolites having the highest concentrations among creatinine-adjusted PAHs.OH-PAHs concentrations were associated with housing type,room number,cooking frequency,household size,exercise frequency,fuel type,distance from main road,and drinking water source.Pregnant women using traditional fuels and living in bungalows had higher health risks than those using clean energy and living in buildings.Those living within 100 m of a main road had higher HI than those farther away.Coal combustion was identified as the primary source of PAHs exposure.The study emphasizes the importance of reducing PAHs exposure,especially for pregnant women living in polluted environments.It recommends public health interventions such as improving indoor ventilation and providing clean energy to reduce related health risks.
基金supported by the National Natural Science Foundation of China(Nos.52100184,and U22A20617).
文摘Controlling heavy metal pollution in agricultural soil has been a significant challenge.These heavy metals seriously threaten the surrounding ecological environment and human health.The effective assessment and remediation of heavy metals in agricultural soils are crucial.These two aspects support each other,forming a close and complete decisionmaking chain.Therefore,this review systematically summarizes the distribution characteristics of soil heavy metal pollution,the correlation between soil and crop heavy metal contents,the presence pattern and migration and transformation mode of heavy metals in the soil-crop system.The advantages and disadvantages of the risk evaluation tools and models of heavy metal pollution in farmland are further outlined,which provides important guidance for an in-depth understanding of the characteristics of heavymetal pollution in farmland soils and the assessment of the environmental risk.Soil remediation strategies involve multiple physical,chemical,biological and even combined technologies,and this paper compares the potential and effect of the above current remediation technologies in heavy metal polluted farmland soils.Finally,the main problems and possible research directions of future heavy metal risk assessment and remediation technologies in agricultural soils are prospected.This review provides new ideas for effective assessment and selection of remediation technologies based on the characterization of soil heavy metals.
基金supported by the National Key R&D Program of China(No.2022YFE0207400)supported by the Xiaomi Young Talents Programsupported by the Youth Innovation Promotion Association CAS(No.Y201768)。
文摘Na-ion batteries are considered a promising next-generation battery alternative to Li-ion batteries,due to the abundant Na resources and low cost.Most efforts focus on developing new materials to enhance energy density and electrochemical performance to enable it comparable to Li-ion batteries,without considering thermal hazard of Na-ion batteries and comparison with Li-ion batteries.To address this issue,our work comprehensively compares commercial prismatic lithium iron phosphate(LFP) battery,lithium nickel cobalt manganese oxide(NCM523) battery and Na-ion battery of the same size from thermal hazard perspective using Accelerating Rate Calorimeter.The thermal hazard of the three cells is then qualitatively assessed from thermal stability,early warning and thermal runaway severity perspectives by integrating eight characteristic parameters.The Na-ion cell displays comparable thermal stability with LFP while LFP exhibits the lowest thermal runaway hazard and severity.However,the Na-ion cell displays the lowest safety venting temperature and the longest time interval between safety venting and thermal runaway,allowing the generated gas to be released as early as possible and detected in a timely manner,providing sufficient time for early warning.Finally,a database of thermal runaway characteristic temperature for Li-ion and Na-ion cells is collected and processed to delineate four thermal hazard levels for quantitative assessment.Overall,LFP cells exhibit the lowest thermal hazard,followed by the Na-ion cells and NCM523 cells.This work clarifies the thermal hazard discrepancy between the Na-ion cell and prevalent Li-ion cells,providing crucial guidance for development and application of Na-ion cell.
基金supported by the Ministry of Science and Technology of China(Nos.2021YFC3200904 and 2022YFC3203705)the National Natural Science Foundation of China(Nos.52270012 and 52070184).
文摘Phthalate esters(PAEs),recognized as endocrine disruptors,are released into the environment during usage,thereby exerting adverse ecological effects.This study investigates the occurrence,sources,and risk assessment of PAEs in surface water obtained from 36 sampling points within the Yellow River and Yangtze River basins.The total concentration of PAEs in the Yellow River spans from124.5 to 836.5 ng/L,with Dimethyl phthalate(DMP)(75.4±102.7 ng/L)and Diisobutyl phthalate(DiBP)(263.4±103.1 ng/L)emerging as the predominant types.Concentrations exhibit a pattern of upstream(512.9±202.1 ng/L)>midstream(344.5±135.3 ng/L)>downstream(177.8±46.7 ng/L).In the Yangtze River,the total concentration ranges from 81.9 to 441.6 ng/L,with DMP(46.1±23.4 ng/L),Diethyl phthalate(DEP)(93.3±45.2 ng/L),and DiBP(174.2±67.6 ng/L)as the primary components.Concentration levels follow a midstream(324.8±107.3 ng/L)>upstream(200.8±51.8 ng/L)>downstream(165.8±71.6 ng/L)pattern.Attention should be directed towards the moderate ecological risks of DiBP in the upstream of HH,and both the upstream and midstream of CJ need consideration for the moderate ecological risks associated with Di-n-octyl phthalate(DNOP).Conversely,in other regions,the associated risk with PAEs is either low or negligible.The main source of PAEs in Yellow River is attributed to the release of construction land,while in the Yangtze River Basin,it stems from the accumulation of pollutants in lakes and forests discharged into the river.These findings are instrumental for pinpointing sources of PAEs pollution and formulating control strategies in the Yellow and Yangtze Rivers,providing valuable insights for global PAEs research in other major rivers.
基金supported by the China Geological Survey Project(Nos.DD20220864 and DD20243077).
文摘Understanding the levels,causes,and sources of fluoride in groundwater is critical for public health,effective water resource management,and sustainable utilization.This study employs multivariate statistical methods,hazard quotient assessment,and geochemical analyses,such as mineral saturation index,ionic activities,and Gibbs diagrams,to investigate the hydrochemical characteristics,causes,and noncarcinogenic risks of fluoride in Red bed groundwater and geothermal water in the Guang'an area and neighboring regions.Approximately 9%of the Red bed groundwater samples contain fluoride concentrations exceeding 1 mg·L^(-1).The predominant water types identified are Cl-Na and HCO_(3)-Na,primarily influenced by evapotranspiration.Low-fluoride groundwater and high-fluoride geothermal water exhibit distinct hydrochemical types HCO_(3)-Ca and SO_(4)-Ca,respectively,which are mainly related to the weathering of carbonate,sulfate,and fluorite-containing rocks.Correlation analysis reveals that fluoride content in Red bed groundwater is positively associated with Na^(+),Cl^(-),SO_(4)^(2-),and TDS(r^(2)=0.45-0.64,p<0.01),while in geothermal water,it correlates strongly with pH,K^(+),Ca^(2+),and Mg^(2+)(r^(2)=0.52-0.80,p<0.05).Mineral saturation indices and ionic activities indicate that ion exchange processes and the dissolution of minerals such as carbonatite and fluorite are important sources of fluoride in groundwater.The enrichment of fluorine in the Red bed groundwater is linked to evaporation,cation exchange and dissolution of fluorite,caused by the lithologic characteristics of the red bed in this area.However,it exhibits minimal correlation with the geothermal water in the adjacent area.The noncarcinogenic health risk assessment indicates that 7%(n=5)of Red bed groundwater points exceed the fluoride safety limit for adults,while 12%(n=8)exceed the limit for children.These findings underscore the importance of avoiding highly fluoridated red bed groundwater as a direct drinking source and enhancing groundwater monitoring to mitigate health risks associated with elevated fluoride levels.
文摘Background There is scarce data about comparisons between geriatric assessment tools in patients with aortic stenosis(AS).We aimed to describe the geriatric profile of patients with AS undergoing transcatheter aortic valve implantation(TAVI)and to analyze the ability of different tools for predicting clinical outcomes in this context.Methods This was a single center retrospective registry including patients with AS undergoing TAVI and surviving to hospital discharge.The primary endpoint was all-cause mortality or need for urgent readmission one year after TAVI.Results A total of 377 patients were included(mean age of 80.4 years).Most patients were independent or mildly dependent,with an optimal cognitive status.The proportion of frailty ranged from 17.6%to 49.8%.A total of 20 patients(5.3%)died and 110/377 patients(29.2%)died or were readmitted during follow up.Overall,most components of the geriatric assessment showed an association with clinical outcomes.Disability for instrumental activities showed a significant association with mortality and a strong association with the rate of mortality or readmission.The association between frailty and clinical outcomes was higher for short physical performance battery(SPPB),essential frailty toolset(EFT)and the frailty index based on comprehensive geriatric assessment(IF-VIG)and lower for Fried criteria and FRAIL scale.Conclusions AS patients from this series presented a good physical performance,optimal cognitive status and a reasonably low prevalence of frailty.The best predictive ability was observed for disability for instrumental activities and frailty as measured by the EFT,SPPB and the IF-VIG.
基金Supported by National Key Research and Development Program of China(Grant No.2022YFE0117100)National Science Foundation of China(Grant No.52102468,52325212)Fundamental Research Funds for the Central Universities。
文摘To solve problems of poor security guarantee and insufficient training efficiency in the conventional reinforcement learning methods for decision-making,this study proposes a hybrid framework to combine deep reinforcement learning with rule-based decision-making methods.A risk assessment model for lane-change maneuvers considering uncertain predictions of surrounding vehicles is established as a safety filter to improve learning efficiency while correcting dangerous actions for safety enhancement.On this basis,a Risk-fused DDQN is constructed utilizing the model-based risk assessment and supervision mechanism.The proposed reinforcement learning algorithm sets up a separate experience buffer for dangerous trials and punishes such actions,which is shown to improve the sampling efficiency and training outcomes.Compared with conventional DDQN methods,the proposed algorithm improves the convergence value of cumulated reward by 7.6%and 2.2%in the two constructed scenarios in the simulation study and reduces the number of training episodes by 52.2%and 66.8%respectively.The success rate of lane change is improved by 57.3%while the time headway is increased at least by 16.5%in real vehicle tests,which confirms the higher training efficiency,scenario adaptability,and security of the proposed Risk-fused DDQN.
基金supported by the Centre for Advanced Modelling and Geospatial Information Systems(CAMGIS),University of Technology Sydney(UTS),Australia and was supported by the Research Training Program(RTP)of the Australian Government.
文摘Hurricanes are one of the most destructive natural disasters that can cause catastrophic losses to both communities and infrastructure.Assessment of hurricane risk furnishes a spatial depiction of the interplay among hazard,vulnerability,exposure,and mitigation capacity,crucial for understanding and managing the risks hurricanes pose to communities.These assessments aid in gauging the efficacy of existing hurricane mitigation strategies and gauging their resilience across diverse climate change scenarios.A systematic review was conducted,encompassing 94 articles,to scrutinize the structure,data inputs,assumptions,methodologies,perils modelled,and key predictors of hurricane risk.This review identified key research gaps essential for enhancing future risk assessments.The complex interaction between hurricane perils may be disastrous and underestimated in the majority of risk assessments which focus on a single peril,commonly storm surge and flood,resulting in inadequacies in disaster resilience planning.Most risk assessments were based on hurricane frequency rather than hurricane damage,which is more insightful for policymakers.Furthermore,considering secondary indirect impacts stemming from hurricanes,including real estate market and business interruption,could enrich economic impact assessments.Hurricane mitigation measures were the most under-utilised category of predictors leveraged in only 5%of studies.The top six predictive factors for hurricane risk were land use,slope,precipitation,elevation,population density,and soil texture/drainage.Another notable research gap identified was the potential of machine learning techniques in risk assessments,offering advantages over traditional MCDM and numerical models due to their ability to capture complex nonlinear relationships and adaptability to different study regions.Existing machine learning based risk assessments leverage random forest models(42%of studies)followed by neural network models(19%of studies),with further research required to investigate diverse machine learning algorithms such as ensemble models.A further research gap is model validation,in particular assessing transferability to a new study region.Additionally,harnessing simulated data and refining projections related to demographic and built environment dynamics can bolster the sophistication of climate change scenario assessments.By addressing these research gaps,hurricane risk assessments can furnish invaluable insights for national policymakers,facilitating the development of robust hurricane mitigation strategies and the construction of hurricane-resilient communities.To the authors’knowledge,this represents the first literature review specifically dedicated to quantitative hurricane risk assessments,encompassing a comparison of Multi-criteria Decision Making(MCDM),numerical models,and machine learning models.Ultimately,advancements in hurricane risk assessments and modelling stand poised to mitigate potential losses to communities and infrastructure both in the immediate and long-term future.
基金supported by the National Key Research&Development Program of China(grant no.2022YFC3500503)the National Natural Science Foundation of China(grant nos.62227807,12374171,12004034,62402041)+2 种基金the Beijing Institute of Technology Research Fund Program for Young Scholars,Chinathe Fundamental Research Funds for the Central Universities(grant nos.2024CX06060)Beijing Youth Talent Lifting Project.
文摘Due to their high mechanical compliance and excellent biocompatibility,conductive hydrogels exhibit significant potential for applications in flexible electronics.However,as the demand for high sensitivity,superior mechanical properties,and strong adhesion performance continues to grow,many conventional fabrication methods remain complex and costly.Herein,we propose a simple and efficient strategy to construct an entangled network hydrogel through a liquid-metal-induced cross-linking reaction,hydrogel demonstrates outstanding properties,including exceptional stretchability(1643%),high tensile strength(366.54 kPa),toughness(350.2 kJ m^(−3)),and relatively low mechanical hysteresis.The hydrogel exhibits long-term stable reusable adhesion(104 kPa),enabling conformal and stable adhesion to human skin.This capability allows it to effectively capture high-quality epidermal electrophysiological signals with high signal-to-noise ratio(25.2 dB)and low impedance(310 ohms).Furthermore,by integrating advanced machine learning algorithms,achieving an attention classification accuracy of 91.38%,which will significantly impact fields like education,healthcare,and artificial intelligence.
基金The National Key Research and Development Program of China(No.2023YFC3805003)。
文摘To quantify the seismic resilience of buildings,a method for evaluating functional loss from the component level to the overall building is proposed,and the dual-parameter seismic resilience assessment method based on postearthquake loss and recovery time is improved.A threelevel function tree model is established,which can consider the dynamic changes in weight coefficients of different category of components relative to their functional losses.Bayesian networks are utilized to quantify the impact of weather conditions,construction technology levels,and worker skill levels on component repair time.A method for determining the real-time functional recovery curve of buildings based on the component repair process is proposed.Taking a three-story teaching building as an example,the seismic resilience indices under basic earthquakes and rare earthquakes are calculated.The results show that the seismic resilience grade of the teaching building is comprehensively judged as GradeⅢ,and its resilience grade is more significantly affected by postearthquake loss.The proposed method can be used to predict the seismic resilience of buildings prior to earthquakes,identify weak components within buildings,and provide guidance for taking measures to enhance the seismic resilience of buildings.
基金funded by the Technology Project of State Grid Jibei Electric Power Supply Co.,Ltd.(Grant Number:52018F240001).
文摘As the development of new power systems accelerates and the impacts of high renewable energy integration and extreme weather intensify,grid-alternative energy storage is garnering increasing attention for its grid-interaction benefits and clear business models.Consequently,assessing the value of grid-alternative energy storage in the systemtransition has become critically important.Considering the performance characteristics of storage,we propose a value assessment frame-work for grid-alternative energy storage,quantifying its non-wires-alternative effects from both cost and benefit perspectives.Building on this,we developed a collaborative planning model for energy storage and transmission grids,aimed at maximizing the economic benefits of storage systems while balancing investment and operational costs.The model considers regional grid interconnections and their interactions with system operation.By participating in system operations,grid-alternative energy storage not only maximizes its own economic benefits but also generates social welfare transfer effects.Furthermore,based on multi-regional interconnected planning,grid-alternative energy storage can reduce system costs by approximately 35%,with the most significant changes observed in generation costs.Multi-regional coordinated planning significantly enhances the sys-tem’s flexibility in regulation.However,when the load factor of interconnection lines between regions remains constant,system operational flexibility tends to decrease,leading to a roughly 28.9%increase in storage investment.Additionally,under regional coordinated planning,the greater the disparity in wind power integration across interconnected regions,the more noticeable the reduction in system costs.
基金the Higher Education Commission of Pakistan for supporting the study through the CRG-CPEC-130 project。
文摘Climate change and rising temperatures are accelerating the rate of deglaciation in the Hindu Kush Karakoram Himalaya(HKH)ranges,leading to the formation of new glacial lakes and the expansion of existing ones.These lakes are often vulnerable to failure,posing a significant threat to downstream communities and infrastructure.Therefore,a comprehensive assessment of Glacier-Lake Outburst Flood(GLOF)hazards and risk assessment is crucial to evaluate flood runout characteristics and identify settlements and infrastructure that are exposed and vulnerable to floods,aiding in the development and implementation of risk reduction strategies.This study aims to simulate a GLOF event induced by the Shisper glacier lake in northern Pakistan,using the HEC-RAS,and to assess its impact on settlements,infrastructure,and agricultural land.For the hydrometeorological analysis of the GLOF event,topographic data from unmanned aerial vehicles(UAVs),stream profiles,discharge data,Manning's roughness coefficient(n),and land use/land cover(LULC)were analyzed using HEC-RAS and geographic information system(GIS).During the GLOF event on May 7,2022,a maximum water depth of 6.3 m and a maximum velocity of 9.5 m/s were recorded.Based on the runout characteristics of this event,vulnerability and risk assessments have been calculated.The physical,social,and environmental vulnerabilities of the at-risk elements were evaluated using the analytical hierarchy process(AHP)and integrated with the hazard data to develop a risk map.The study identified the areas,infrastructure and settlements susceptible to GLOF hazard to support the development and implementation of targeted and evidence-based mitigation and adaptation strategies.
基金supported by the National Key Research and Development Program of China(No.2023YFC3710000)the National Natural Science Foundation of China(Nos.42277078 and 42307118).
文摘Abandoned mines,especially pyrite-rich ones,release acid mine drainage(AMD)with high acidity and excessive amounts of heavy metals,threatening regional ecosystems.Six samples of mine drainage,nine samples of surface water,and twelve samples of sediment were analyzed in this case study of the Dashu pyrite mine in southwest China.A comprehensive analysis of the pollution levels,pollution sources,and potential hazards of eight metals(Ni,Cd,Cu,Zn,Fe,Al,Pb,and Mn)that exceeded regulatory standardswas conducted bymonitoring 24 conventional and characteristic indicators.Ultimately,this research evaluated the environmental hazards associated with abandonedmine water using the"pressure-response"model,thereby providing valuable insights for the effective protection of the environment in mining regions.The primary pollutants in mine water were determined to be SO_(4)^(2−),Fe,and Mn,with concentrations of 7700,1450,and 6.78mg/L,respectively.A clear"source-sink"dynamic was observed between themine water and the surrounding water system.surface water was primarily polluted by Ni and Mn,while water system sediments were primarily polluted by Cu and Hg.Ion ratio and Pearson correlation analyses indicated heavy metals in surface water and sediments originated from the same AMD source.The"pressureresponse"model was used to assess the environmental hazards of water from abandoned mines.Mines W1,W2,W5,and W6 were classified as high-risk,while W3 and W4 were medium-risk.This study offers a novel approach and valuable reference for identifying and classifying environmental risks in abandoned mines and targeting AMD treatment.
基金supported by the National Natural Science Foundation of China(No.71974162 and No.7231101009).
文摘Objectives This study aimed to develop and preliminarily assess the quality of a Mindfulness Breast Care(MBC)App to reduce body image distress and stigma among breast cancer survivors(BCSs).Methods The development process of the MBC App involved:1)establishing a research group;2)determining of the content of the MBC App based on Mindfulness-Based Cognitive Therapy and 3)technical exploitation and maintenance.A mixed-methods study was conducted.We selected ten BCSs by a convenience sampling method.After using the APP for three months,five assessed the quality using the Mobile App Rating Scale:User Version(uMARS)and another five were interviewed for process evaluation.Results The MBC App was developed with three modules:1)Library to provide health education information on body image,stigma,mindfulness,recovery and etc;2)Mindfulness Yoga to offer 12 Hatha yoga videos for daily practice;and 3)Mindfulness Practices to have 12 sessions of mindfulness videoconferences.Based on the uMARS data,the MBC App received high ratings for functionality(4.10±0.34),aesthetics(3.93±0.55),information quality(4.10±0.72),and perceived impact(4.03±0.96),as well as moderate ratings for engagement(3.72±0.94)and subjective quality(3.87±0.77).Participants indicated that the MBC App provided reliable knowledge,information,and emotional support.Recommendations from participants included categorizing knowledge in the Library Module,recording videoconferences of mindfulness practice,and adding discussion sessions in the videoconference.Afterward,we optimized the MBC App to enhance the user experience accordingly.Conclusions The MBC App offers online mindfulness interventions specifically for BCSs in China.The preliminary quality assessment indicates that the MBC App may be a promising tool for delivering mindfulness interventions to BCSs.
基金supported by the Medical and Health Projects in Zhejiang Province(No.2022PY049)the Basic Scientific Research Project of Hangzhou Medical College(No.YS2021006)Key Discipline of Zhejiang Province in Public Health and Preventive Medicine(First Class,Category A),Hangzhou Medical College.
文摘Ubiquitous contamination of the soil environment with volatile organic compounds(VOCs)has raised considerable concerns.However,there is still limited comprehensive surveying of soil VOCs on a national scale.Herein,65 species of VOCswere simultaneously determined in surface soil samples collected from 63 chemical industrial parks(CIPs)across China.The results showed that the total VOC concentrations ranged from 7.15 to 1842 ng/g with a mean concentration of 326 ng/g(median:179 ng/g).Benzene homologs and halogenated hydrocarbons were identified as the dominant contaminant groups.Positive correlations between many VOC species indicated that these compounds probably originated from similar sources.Spatially,the hotspots of VOC pollution were located in eastern and southern China.Soils with higher clay content and a higher fraction of total organic carbon(TOC)content were significantly associated with higher soil VOC concentrations.Precipitation reduces the levels of highly water-soluble substances in surface soils.Both positive matrix factorization(PMF)and principal component analysis-multiple linear regression(PCA-MLR)identified a high proportion of industrial sources(PMF:59.2%and PCA-MLR:66.5%)and traffic emission sources(PMF:32.3%and PCA-MLR:33.5%).PMF,which had a higher R^(2) value(0.7892)than PCA-MLR(0.7683),was the preferred model for quantitative source analysis of soil VOCs.The health risk assessment indicated that the non-carcinogenic and carcinogenic risks of VOCs were at acceptable levels.Overall,this study provides valuable data on the occurrence of VOCs in soil from Chinese CIPs,which is essential for a comprehensive understanding of their environmental behavior.
基金supported by the grant from the National Natural Science Foundation of China(No.72071019)grant from the Natural Science Foundation of Chongqing(No.cstc2021jcyj-msxmX0185).
文摘Bone age assessment(BAA)aims to determine whether a child’s growth and development are normal concerning their chronological age.To predict bone age more accurately based on radiographs,and for the left-hand X-ray images of different races model can have better adaptability,we propose a neural network in parallel with the quantitative features from the left-hand bone measurements for BAA.In this study,a lightweight feature extractor(LFE)is designed to obtain the featuremaps fromradiographs,and amodule called attention erasermodule(AEM)is proposed to capture the fine-grained features.Meanwhile,the dimensional information of the metacarpal parts in the radiographs is measured to enhance the model’s generalization capability across images fromdifferent races.Ourmodel is trained and validated on the RSNA,RHPE,and digital hand atlas datasets,which include images from various racial groups.The model achieves a mean absolute error(MAE)of 4.42 months on the RSNA dataset and 15.98 months on the RHPE dataset.Compared to ResNet50,InceptionV3,and several state-of-the-art methods,our proposed method shows statistically significant improvements(p<0.05),with a reduction in MAE by 0.2±0.02 years across different racial datasets.Furthermore,t-tests on the features also confirm the statistical significance of our approach(p<0.05).