期刊文献+
共找到332,196篇文章
< 1 2 250 >
每页显示 20 50 100
Recombinant chitinase-3-like protein 1 alleviates learning and memory impairments via M2 microglia polarization in postoperative cognitive dysfunction mice
1
作者 Yujia Liu Xue Han +6 位作者 Yan Su Yiming Zhou Minhui Xu Jiyan Xu Zhengliang Ma Xiaoping Gu Tianjiao Xia 《Neural Regeneration Research》 SCIE CAS 2025年第9期2727-2736,共10页
Postoperative cognitive dysfunction is a seve re complication of the central nervous system that occurs after anesthesia and surgery,and has received attention for its high incidence and effect on the quality of life ... Postoperative cognitive dysfunction is a seve re complication of the central nervous system that occurs after anesthesia and surgery,and has received attention for its high incidence and effect on the quality of life of patients.To date,there are no viable treatment options for postoperative cognitive dysfunction.The identification of postoperative cognitive dysfunction hub genes could provide new research directions and therapeutic targets for future research.To identify the signaling mechanisms contributing to postoperative cognitive dysfunction,we first conducted Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses of the Gene Expression Omnibus GSE95426 dataset,which consists of mRNAs and long non-coding RNAs differentially expressed in mouse hippocampus3 days after tibial fracture.The dataset was enriched in genes associated with the biological process"regulation of immune cells,"of which Chill was identified as a hub gene.Therefore,we investigated the contribution of chitinase-3-like protein 1 protein expression changes to postoperative cognitive dysfunction in the mouse model of tibial fractu re surgery.Mice were intraperitoneally injected with vehicle or recombinant chitinase-3-like protein 124 hours post-surgery,and the injection groups were compared with untreated control mice for learning and memory capacities using the Y-maze and fear conditioning tests.In addition,protein expression levels of proinflammatory factors(interleukin-1βand inducible nitric oxide synthase),M2-type macrophage markers(CD206 and arginase-1),and cognition-related proteins(brain-derived neurotropic factor and phosphorylated NMDA receptor subunit NR2B)were measured in hippocampus by western blotting.Treatment with recombinant chitinase-3-like protein 1 prevented surgery-induced cognitive impairment,downregulated interleukin-1βand nducible nitric oxide synthase expression,and upregulated CD206,arginase-1,pNR2B,and brain-derived neurotropic factor expression compared with vehicle treatment.Intraperitoneal administration of the specific ERK inhibitor PD98059 diminished the effects of recombinant chitinase-3-like protein 1.Collectively,our findings suggest that recombinant chitinase-3-like protein 1 ameliorates surgery-induced cognitive decline by attenuating neuroinflammation via M2 microglial polarization in the hippocampus.Therefore,recombinant chitinase-3-like protein1 may have therapeutic potential fo r postoperative cognitive dysfunction. 展开更多
关键词 Chil1 hippocampus learning and memory M2 microglia NEUROINFLAMMATION postoperative cognitive dysfunction(POCD) recombinant CHI3L1
暂未订购
Robot Cognitive Learning by Considering Physical Properties
2
作者 Fuchun Sun Wenbing Huang +4 位作者 Yu Luo Tianying Ji Huaping Liu He Liu Jianwei Zhang 《Engineering》 2025年第4期168-179,共12页
Humans achieve cognitive development through continuous interaction with their environment,enhancing both perception and behavior.However,current robots lack the capacity for human-like action and evolution,posing a b... Humans achieve cognitive development through continuous interaction with their environment,enhancing both perception and behavior.However,current robots lack the capacity for human-like action and evolution,posing a bottleneck to improving robotic intelligence.Existing research predominantly models robots as one-way,static mappings from observations to actions,neglecting the dynamic processes of perception and behavior.This paper introduces a novel approach to robot cognitive learning by considering physical properties.We propose a theoretical framework wherein a robot is conceptualized as a three-body physical system comprising a perception-body(P-body),a cognition-body(C-body),and a behavior-body(B-body).Each body engages in physical dynamics and operates within a closed-loop interaction.Significantly,three crucial interactions connect these bodies.The C-body relies on the Pbody's extracted states and reciprocally offers long-term rewards,optimizing the P-body's perception policy.In addition,the C-body directs the B-body's actions through sub-goals,and subsequent P-body-derived states facilitate the C-body's cognition dynamics learning.At last,the B-body would follow the sub-goal generated by the C-body and perform actions conditioned on the perceptive state from the P-body,which leads to the next interactive step.These interactions foster the joint evolution of each body,culminating in optimal design.To validate our approach,we employ a navigation task using a four-legged robot,D'Kitty,equipped with a movable global camera.Navigational prowess demands intricate coordination of sensing,planning,and D'Kitty's motion.Leveraging our framework yields superior task performance compared with conventional methodologies.In conclusion,this paper establishes a paradigm shift in robot cognitive learning by integrating physical interactions across the P-body,C-body,and B-body,while considering physical properties.Our framework's successful application to a navigation task underscores its efficacy in enhancing robotic intelligence. 展开更多
关键词 Robot learning Physical basis cognitive learning
在线阅读 下载PDF
FedCognis:An Adaptive Federated Learning Framework for Secure Anomaly Detection in Industrial IoT-Enabled Cognitive Cities
3
作者 Abdulatif Alabdulatif 《Computers, Materials & Continua》 2025年第10期1185-1220,共36页
FedCognis is a secure and scalable federated learning framework designed for continuous anomaly detection in Industrial Internet of Things-enabled Cognitive Cities(IIoTCC).It introduces two key innovations:a Quantum S... FedCognis is a secure and scalable federated learning framework designed for continuous anomaly detection in Industrial Internet of Things-enabled Cognitive Cities(IIoTCC).It introduces two key innovations:a Quantum Secure Authentication(QSA)mechanism for adversarial defense and integrity validation,and a Self-Attention Long Short-Term Memory(SALSTM)model for high-accuracy spatiotemporal anomaly detection.Addressing core challenges in traditional Federated Learning(FL)—such as model poisoning,communication overhead,and concept drift—FedCognis integrates dynamic trust-based aggregation and lightweight cryptographic verification to ensure secure,real-time operation across heterogeneous IIoT domains including utilities,public safety,and traffic systems.Evaluated on the WUSTL-IIoTCC-2021 dataset,FedCognis achieves 94.5%accuracy,0.941 AUC for precision-recall,and 0.896 ROC-AUC,while reducing bandwidth consumption by 72%.The framework demonstrates sublinear computational complexity and a resilience score of 96.56%across six security dimensions.These results confirm FedCognis as a robust and adaptive anomaly detection solution suitable for deployment in large-scale cognitive urban infrastructures. 展开更多
关键词 cognitive cities federated learning industrial IoT anomaly detection trust management smart infrastructure security
在线阅读 下载PDF
Application of Situational Cognitive Learning Theory in College English Teaching
4
作者 Hui Zhang 《Journal of Contemporary Educational Research》 2025年第2期78-83,共6页
College English teaching is a crucial component of higher education.Enhancing college students’English learning outcomes has long been a primary focus for educators.With the continuous evolution of educational philos... College English teaching is a crucial component of higher education.Enhancing college students’English learning outcomes has long been a primary focus for educators.With the continuous evolution of educational philosophies,traditional college English teaching methods no longer meet the learning needs of contemporary students.Situational cognitive learning theory emphasizes learner-centered approaches and highlights the contextual and practical application of knowledge,offering innovative perspectives for reforming college English teaching.When applied effectively,situational cognitive learning theory can optimize teaching methods and significantly improve learning outcomes.This paper explores the connotation and characteristics of situational cognitive learning theory,evaluates its applicability in college English teaching,and discusses its practical implementation in this context.The aim is to provide theoretical and practical references for improving the quality of college English education. 展开更多
关键词 Situational cognitive learning theory College English Teaching application
在线阅读 下载PDF
Role of deep learning in cognitive healthcare:Wearable signal analysis,algorithms,benefits,and challenges
5
作者 Md.Sakib Bin Alam Aiman Lameesa +4 位作者 Senzuti Sharmin Shaila Afrin Shams Forruque Ahmed Mohammad Reza Nikoo Amir H.Gandomi 《Digital Communications and Networks》 2025年第3期642-670,共29页
Deep Learning(DL)offers promising solutions for analyzing wearable signals and gaining valuable insights into cognitive disorders.While previous review studies have explored various aspects of DL in cognitive healthca... Deep Learning(DL)offers promising solutions for analyzing wearable signals and gaining valuable insights into cognitive disorders.While previous review studies have explored various aspects of DL in cognitive healthcare,there remains a lack of comprehensive analysis that integrates wearable signals,data processing techniques,and the broader applications,benefits,and challenges of DL methods.Addressing this limitation,our study provides an extensive review of DL’s role in cognitive healthcare,with a particular emphasis on wearables,data processing,and the inherent challenges in this field.This review also highlights the considerable promise of DL approaches in addressing a broad spectrum of cognitive issues.By enhancing the understanding and analysis of wearable signal modalities,DL models can achieve remarkable accuracy in cognitive healthcare.Convolutional Neural Network(CNN),Recurrent Neural Network(RNN),and Long Short-term Memory(LSTM)networks have demonstrated improved performance and effectiveness in the early diagnosis and progression monitoring of neurological disorders.Beyond cognitive impairment detection,DL has been applied to emotion recognition,sleep analysis,stress monitoring,and neurofeedback.These applications lead to advanced diagnosis,personalized treatment,early intervention,assistive technologies,remote monitoring,and reduced healthcare costs.Nevertheless,the integration of DL and wearable technologies presents several challenges,such as data quality,privacy,interpretability,model generalizability,ethical concerns,and clinical adoption.These challenges emphasize the importance of conducting future research in areas such as multimodal signal analysis and explainable AI.The findings of this review aim to benefit clinicians,healthcare professionals,and society by facilitating better patient outcomes in cognitive healthcare. 展开更多
关键词 cognitive healthcare Deep learning Wearable sensor Convolutional neural network Recurrent neural network
暂未订购
Development of a machine learning-based risk prediction model for mild cognitive impairment with spleen-kidney deficiency syndrome in the elderly
6
作者 Ya-ting Ai Shi Zhou +6 位作者 Ming Wang Tao-yun Zheng Hui Hu Yun-cui Wang Yu-can Li Xiao-tong Wang Peng-jun Zhou 《Journal of Integrative Medicine》 2025年第4期390-397,共8页
Objective:As an age-related neurodegenerative disease,the prevalence of mild cognitive impairment(MCI)increases with age.Within the framework of traditional Chinese medicine,spleen-kidney deficiency syndrome(SKDS)is r... Objective:As an age-related neurodegenerative disease,the prevalence of mild cognitive impairment(MCI)increases with age.Within the framework of traditional Chinese medicine,spleen-kidney deficiency syndrome(SKDS)is recognized as the most frequent MCI subtype.Due to the covert and gradual onset of MCI,in community settings it poses a significant challenge for patients and their families to discern between typical aging and pathological changes.There exists an urgent need to devise a preliminary diagnostic tool designed for community-residing older adults with MCI attributed to SKDS(MCI-SKDS).Methods:This investigation enrolled 312 elderly individuals diagnosed with MCI,who were randomly distributed into training and test datasets at a 3:1 ratio.Five machine learning methods,including logistic regression(LR),decision tree(DT),naive Bayes(NB),support vector machine(SVM),and gradient boosting(GB),were used to build a diagnostic prediction model for MCI-SKDS.Accuracy,sensitivity,specificity,precision,F1 score,and area under the curve were used to evaluate model performance.Furthermore,the clinical applicability of the model was evaluated through decision curve analysis(DCA).Results:The accuracy,precision,specificity and F1 score of the DT model performed best in the training set(test set),with scores of 0.904(0.845),0.875(0.795),0.973(0.875)and 0.973(0.875).The sensitivity of the training set(test set)of the SVM model performed best among the five models with a score of 0.865(0.821).The area under the curve of all five models was greater than 0.9 for the training dataset and greater than 0.8 for the test dataset.The DCA of all models showed good clinical application value.The study identified ten indicators that were significant predictors of MCI-SKDS.Conclusion:The risk prediction index derived from machine learning for the MCI-SKDS prediction model is simple and practical;the model demonstrates good predictive value and clinical applicability,and the DT model had the best performance. 展开更多
关键词 Mild cognitive impairment Machine learning Spleen-kidney deficiency syndrome Traditional Chinese medicine Risk factors
原文传递
玻尔兹曼优化Q-learning的高速铁路越区切换控制算法 被引量:3
7
作者 陈永 康婕 《控制理论与应用》 北大核心 2025年第4期688-694,共7页
针对5G-R高速铁路越区切换使用固定切换阈值,且忽略了同频干扰、乒乓切换等的影响,导致越区切换成功率低的问题,提出了一种玻尔兹曼优化Q-learning的越区切换控制算法.首先,设计了以列车位置–动作为索引的Q表,并综合考虑乒乓切换、误... 针对5G-R高速铁路越区切换使用固定切换阈值,且忽略了同频干扰、乒乓切换等的影响,导致越区切换成功率低的问题,提出了一种玻尔兹曼优化Q-learning的越区切换控制算法.首先,设计了以列车位置–动作为索引的Q表,并综合考虑乒乓切换、误码率等构建Q-learning算法回报函数;然后,提出玻尔兹曼搜索策略优化动作选择,以提高切换算法收敛性能;最后,综合考虑基站同频干扰的影响进行Q表更新,得到切换判决参数,从而控制切换执行.仿真结果表明:改进算法在不同运行速度和不同运行场景下,较传统算法能有效提高切换成功率,且满足无线通信服务质量QoS的要求. 展开更多
关键词 越区切换 5G-R Q-learning算法 玻尔兹曼优化策略
在线阅读 下载PDF
Cognitive interference decision method for air defense missile fuze based on reinforcement learning 被引量:1
8
作者 Dingkun Huang Xiaopeng Yan +2 位作者 Jian Dai Xinwei Wang Yangtian Liu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期393-404,共12页
To solve the problem of the low interference success rate of air defense missile radio fuzes due to the unified interference form of the traditional fuze interference system,an interference decision method based Q-lea... To solve the problem of the low interference success rate of air defense missile radio fuzes due to the unified interference form of the traditional fuze interference system,an interference decision method based Q-learning algorithm is proposed.First,dividing the distance between the missile and the target into multiple states to increase the quantity of state spaces.Second,a multidimensional motion space is utilized,and the search range of which changes with the distance of the projectile,to select parameters and minimize the amount of ineffective interference parameters.The interference effect is determined by detecting whether the fuze signal disappears.Finally,a weighted reward function is used to determine the reward value based on the range state,output power,and parameter quantity information of the interference form.The effectiveness of the proposed method in selecting the range of motion space parameters and designing the discrimination degree of the reward function has been verified through offline experiments involving full-range missile rendezvous.The optimal interference form for each distance state has been obtained.Compared with the single-interference decision method,the proposed decision method can effectively improve the success rate of interference. 展开更多
关键词 cognitive radio Interference decision Radio fuze Reinforcement learning Interference strategy optimization
在线阅读 下载PDF
Resource Allocation for Cognitive Network Slicing in PD-SCMA System Based on Two-Way Deep Reinforcement Learning
9
作者 Zhang Zhenyu Zhang Yong +1 位作者 Yuan Siyu Cheng Zhenjie 《China Communications》 SCIE CSCD 2024年第6期53-68,共16页
In this paper,we propose the Two-way Deep Reinforcement Learning(DRL)-Based resource allocation algorithm,which solves the problem of resource allocation in the cognitive downlink network based on the underlay mode.Se... In this paper,we propose the Two-way Deep Reinforcement Learning(DRL)-Based resource allocation algorithm,which solves the problem of resource allocation in the cognitive downlink network based on the underlay mode.Secondary users(SUs)in the cognitive network are multiplexed by a new Power Domain Sparse Code Multiple Access(PD-SCMA)scheme,and the physical resources of the cognitive base station are virtualized into two types of slices:enhanced mobile broadband(eMBB)slice and ultrareliable low latency communication(URLLC)slice.We design the Double Deep Q Network(DDQN)network output the optimal codebook assignment scheme and simultaneously use the Deep Deterministic Policy Gradient(DDPG)network output the optimal power allocation scheme.The objective is to jointly optimize the spectral efficiency of the system and the Quality of Service(QoS)of SUs.Simulation results show that the proposed algorithm outperforms the CNDDQN algorithm and modified JEERA algorithm in terms of spectral efficiency and QoS satisfaction.Additionally,compared with the Power Domain Non-orthogonal Multiple Access(PD-NOMA)slices and the Sparse Code Multiple Access(SCMA)slices,the PD-SCMA slices can dramatically enhance spectral efficiency and increase the number of accessible users. 展开更多
关键词 cognitive radio deep reinforcement learning network slicing power-domain non-orthogonal multiple access resource allocation
在线阅读 下载PDF
Early identification of stroke through deep learning with multi-modal human speech and movement data 被引量:4
10
作者 Zijun Ou Haitao Wang +9 位作者 Bin Zhang Haobang Liang Bei Hu Longlong Ren Yanjuan Liu Yuhu Zhang Chengbo Dai Hejun Wu Weifeng Li Xin Li 《Neural Regeneration Research》 SCIE CAS 2025年第1期234-241,共8页
Early identification and treatment of stroke can greatly improve patient outcomes and quality of life.Although clinical tests such as the Cincinnati Pre-hospital Stroke Scale(CPSS)and the Face Arm Speech Test(FAST)are... Early identification and treatment of stroke can greatly improve patient outcomes and quality of life.Although clinical tests such as the Cincinnati Pre-hospital Stroke Scale(CPSS)and the Face Arm Speech Test(FAST)are commonly used for stroke screening,accurate administration is dependent on specialized training.In this study,we proposed a novel multimodal deep learning approach,based on the FAST,for assessing suspected stroke patients exhibiting symptoms such as limb weakness,facial paresis,and speech disorders in acute settings.We collected a dataset comprising videos and audio recordings of emergency room patients performing designated limb movements,facial expressions,and speech tests based on the FAST.We compared the constructed deep learning model,which was designed to process multi-modal datasets,with six prior models that achieved good action classification performance,including the I3D,SlowFast,X3D,TPN,TimeSformer,and MViT.We found that the findings of our deep learning model had a higher clinical value compared with the other approaches.Moreover,the multi-modal model outperformed its single-module variants,highlighting the benefit of utilizing multiple types of patient data,such as action videos and speech audio.These results indicate that a multi-modal deep learning model combined with the FAST could greatly improve the accuracy and sensitivity of early stroke identification of stroke,thus providing a practical and powerful tool for assessing stroke patients in an emergency clinical setting. 展开更多
关键词 artificial intelligence deep learning DIAGNOSIS early detection FAST SCREENING STROKE
在线阅读 下载PDF
The Internet of Things under Federated Learning:A Review of the Latest Advances and Applications 被引量:1
11
作者 Jinlong Wang Zhenyu Liu +2 位作者 Xingtao Yang Min Li Zhihan Lyu 《Computers, Materials & Continua》 SCIE EI 2025年第1期1-39,共39页
With the rapid development of artificial intelligence,the Internet of Things(IoT)can deploy various machine learning algorithms for network and application management.In the IoT environment,many sensors and devices ge... With the rapid development of artificial intelligence,the Internet of Things(IoT)can deploy various machine learning algorithms for network and application management.In the IoT environment,many sensors and devices generatemassive data,but data security and privacy protection have become a serious challenge.Federated learning(FL)can achieve many intelligent IoT applications by training models on local devices and allowing AI training on distributed IoT devices without data sharing.This review aims to deeply explore the combination of FL and the IoT,and analyze the application of federated learning in the IoT from the aspects of security and privacy protection.In this paper,we first describe the potential advantages of FL and the challenges faced by current IoT systems in the fields of network burden and privacy security.Next,we focus on exploring and analyzing the advantages of the combination of FL on the Internet,including privacy security,attack detection,efficient communication of the IoT,and enhanced learning quality.We also list various application scenarios of FL on the IoT.Finally,we propose several open research challenges and possible solutions. 展开更多
关键词 Federated learning Internet of Things SENSORS machine learning privacy security
在线阅读 下载PDF
基于MDP和Q-learning的绿色移动边缘计算任务卸载策略
12
作者 赵宏伟 吕盛凱 +2 位作者 庞芷茜 马子涵 李雨 《河南理工大学学报(自然科学版)》 北大核心 2025年第5期9-16,共8页
目的为了在汽车、空调等制造类工业互联网企业中实现碳中和,利用边缘计算任务卸载技术处理生产设备的任务卸载问题,以减少服务器的中心负载,减少数据中心的能源消耗和碳排放。方法提出一种基于马尔可夫决策过程(Markov decision process... 目的为了在汽车、空调等制造类工业互联网企业中实现碳中和,利用边缘计算任务卸载技术处理生产设备的任务卸载问题,以减少服务器的中心负载,减少数据中心的能源消耗和碳排放。方法提出一种基于马尔可夫决策过程(Markov decision process,MDP)和Q-learning的绿色边缘计算任务卸载策略,该策略考虑了计算频率、传输功率、碳排放等约束,基于云边端协同计算模型,将碳排放优化问题转化为混合整数线性规划模型,通过MDP和Q-learning求解模型,并对比随机分配算法、Q-learning算法、SARSA(state action reward state action)算法的收敛性能、碳排放与总时延。结果与已有的计算卸载策略相比,新策略对应的任务调度算法收敛比SARSA算法、Q-learning算法分别提高了5%,2%,收敛性更好;系统碳排放成本比Q-learning算法、SARSA算法分别减少了8%,22%;考虑终端数量多少,新策略比Q-learning算法、SARSA算法终端数量分别减少了6%,7%;系统总计算时延上,新策略明显低于其他算法,比随机分配算法、Q-learning算法、SARSA算法分别减少了27%,14%,22%。结论该策略能够合理优化卸载计算任务和资源分配,权衡时延、能耗,减少系统碳排放量。 展开更多
关键词 碳排放 边缘计算 强化学习 马尔可夫决策过程 任务卸载
在线阅读 下载PDF
SensFL:Privacy-Preserving Vertical Federated Learning with Sensitive Regularization 被引量:1
13
作者 Chongzhen Zhang Zhichen Liu +4 位作者 Xiangrui Xu Fuqiang Hu Jiao Dai Baigen Cai Wei Wang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期385-404,共20页
In the realm of Intelligent Railway Transportation Systems,effective multi-party collaboration is crucial due to concerns over privacy and data silos.Vertical Federated Learning(VFL)has emerged as a promising approach... In the realm of Intelligent Railway Transportation Systems,effective multi-party collaboration is crucial due to concerns over privacy and data silos.Vertical Federated Learning(VFL)has emerged as a promising approach to facilitate such collaboration,allowing diverse entities to collectively enhance machine learning models without the need to share sensitive training data.However,existing works have highlighted VFL’s susceptibility to privacy inference attacks,where an honest but curious server could potentially reconstruct a client’s raw data from embeddings uploaded by the client.This vulnerability poses a significant threat to VFL-based intelligent railway transportation systems.In this paper,we introduce SensFL,a novel privacy-enhancing method to against privacy inference attacks in VFL.Specifically,SensFL integrates regularization of the sensitivity of embeddings to the original data into the model training process,effectively limiting the information contained in shared embeddings.By reducing the sensitivity of embeddings to the original data,SensFL can effectively resist reverse privacy attacks and prevent the reconstruction of the original data from the embeddings.Extensive experiments were conducted on four distinct datasets and three different models to demonstrate the efficacy of SensFL.Experiment results show that SensFL can effectively mitigate privacy inference attacks while maintaining the accuracy of the primary learning task.These results underscore SensFL’s potential to advance privacy protection technologies within VFL-based intelligent railway systems,addressing critical security concerns in collaborative learning environments. 展开更多
关键词 Vertical federated learning PRIVACY DEFENSES
在线阅读 下载PDF
Effects of exercise-cognitive dual-task training on elderly patients with cognitive frailty and depression 被引量:2
14
作者 Ying Zhou Xiao-Ming Miao +4 位作者 Kai-Lian Zhou Cheng-Ji Yu Ping Lu Yin Lu Juan Zhao 《World Journal of Psychiatry》 2025年第4期149-159,共11页
BACKGROUND Cognitive frailty and depression are prevalent among the elderly,significantly impairing physical and cognitive functions,psychological well-being,and quality of life.Effective interventions are essential t... BACKGROUND Cognitive frailty and depression are prevalent among the elderly,significantly impairing physical and cognitive functions,psychological well-being,and quality of life.Effective interventions are essential to mitigate these adverse effects and enhance overall health outcomes in this population.AIM To evaluate the effects of exercise-cognitive dual-task training on frailty,cognitive function,psychological status,and quality of life in elderly patients with cognitive frailty and depression.METHODS A retrospective study was conducted on 130 patients with cognitive frailty and depression admitted between December 2021 and December 2023.Patients were divided into a control group receiving routine intervention and an observation group undergoing exercise-cognitive dual-task training in addition to routine care.Frailty,cognitive function,balance and gait,psychological status,and quality of life were assessed before and after the intervention.RESULTS After the intervention,the frailty score of the observation group was(5.32±0.69),lower than that of the control group(5.71±0.55).The Montreal cognitive assessment basic scale score in the observation group was(24.06±0.99),higher than the control group(23.43±1.40).The performance oriented mobility assessment score in the observation group was(21.81±1.24),higher than the control group(21.15±1.26).The self-efficacy in the observation group was(28.27±2.66),higher than the control group(30.05±2.66).The anxiety score in the hospital anxiety and depression scale(HADS)for the observation group was(5.86±0.68),lower than the control group(6.21±0.64).The depression score in the HADS for the observation group was(5.67±0.75),lower than the control group(6.27±0.92).Additionally,the scores for each dimension of the 36-item short form survey in the observation group were higher than those in the control group,with statistically significant differences(P<0.05).CONCLUSION Exercise-cognitive dual-task training is beneficial for improving frailty,enhancing cognitive function,and improving psychological status and quality of life in elderly patients with cognitive frailty and depression. 展开更多
关键词 Exercise-cognitive dual-task training Elderly patients cognitive frailty Depression patients Frailty score cognitive function
暂未订购
A Comprehensive Survey on Federated Learning Applications in Computational Mental Healthcare 被引量:1
15
作者 Vajratiya Vajrobol Geetika Jain Saxena +6 位作者 Amit Pundir Sanjeev Singh Akshat Gaurav Savi Bansal Razaz Waheeb Attar Mosiur Rahman Brij B.Gupta 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期49-90,共42页
Mental health is a significant issue worldwide,and the utilization of technology to assist mental health has seen a growing trend.This aims to alleviate the workload on healthcare professionals and aid individuals.Num... Mental health is a significant issue worldwide,and the utilization of technology to assist mental health has seen a growing trend.This aims to alleviate the workload on healthcare professionals and aid individuals.Numerous applications have been developed to support the challenges in intelligent healthcare systems.However,because mental health data is sensitive,privacy concerns have emerged.Federated learning has gotten some attention.This research reviews the studies on federated learning and mental health related to solving the issue of intelligent healthcare systems.It explores various dimensions of federated learning in mental health,such as datasets(their types and sources),applications categorized based on mental health symptoms,federated mental health frameworks,federated machine learning,federated deep learning,and the benefits of federated learning in mental health applications.This research conducts surveys to evaluate the current state of mental health applications,mainly focusing on the role of Federated Learning(FL)and related privacy and data security concerns.The survey provides valuable insights into how these applications are emerging and evolving,specifically emphasizing FL’s impact. 展开更多
关键词 DEPRESSION emotional recognition intelligent healthcare systems mental health federated learning stress detection sleep behaviour
在线阅读 下载PDF
Gut microbiota-astrocyte axis: new insights into age-related cognitive decline 被引量:1
16
作者 Lan Zhang Jingge Wei +5 位作者 Xilei Liu Dai Li Xiaoqi Pang Fanglian Chen Hailong Cao Ping Lei 《Neural Regeneration Research》 SCIE CAS 2025年第4期990-1008,共19页
With the rapidly aging human population,age-related cognitive decline and dementia are becoming increasingly prevalent worldwide.Aging is considered the main risk factor for cognitive decline and acts through alterati... With the rapidly aging human population,age-related cognitive decline and dementia are becoming increasingly prevalent worldwide.Aging is considered the main risk factor for cognitive decline and acts through alterations in the composition of the gut microbiota,microbial metabolites,and the functions of astrocytes.The microbiota–gut–brain axis has been the focus of multiple studies and is closely associated with cognitive function.This article provides a comprehensive review of the specific changes that occur in the composition of the gut microbiota and microbial metabolites in older individuals and discusses how the aging of astrocytes and reactive astrocytosis are closely related to age-related cognitive decline and neurodegenerative diseases.This article also summarizes the gut microbiota components that affect astrocyte function,mainly through the vagus nerve,immune responses,circadian rhythms,and microbial metabolites.Finally,this article summarizes the mechanism by which the gut microbiota–astrocyte axis plays a role in Alzheimer’s and Parkinson’s diseases.Our findings have revealed the critical role of the microbiota–astrocyte axis in age-related cognitive decline,aiding in a deeper understanding of potential gut microbiome-based adjuvant therapy strategies for this condition. 展开更多
关键词 age aging Alzheimer’s disease ASTROCYTES cognitive decline dementia gut microbiota gut–brain axis microbial metabolites NEUROINFLAMMATION Parkinson’s disease
暂未订购
A Novel Self-Supervised Learning Network for Binocular Disparity Estimation 被引量:1
17
作者 Jiawei Tian Yu Zhou +5 位作者 Xiaobing Chen Salman A.AlQahtani Hongrong Chen Bo Yang Siyu Lu Wenfeng Zheng 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期209-229,共21页
Two-dimensional endoscopic images are susceptible to interferences such as specular reflections and monotonous texture illumination,hindering accurate three-dimensional lesion reconstruction by surgical robots.This st... Two-dimensional endoscopic images are susceptible to interferences such as specular reflections and monotonous texture illumination,hindering accurate three-dimensional lesion reconstruction by surgical robots.This study proposes a novel end-to-end disparity estimation model to address these challenges.Our approach combines a Pseudo-Siamese neural network architecture with pyramid dilated convolutions,integrating multi-scale image information to enhance robustness against lighting interferences.This study introduces a Pseudo-Siamese structure-based disparity regression model that simplifies left-right image comparison,improving accuracy and efficiency.The model was evaluated using a dataset of stereo endoscopic videos captured by the Da Vinci surgical robot,comprising simulated silicone heart sequences and real heart video data.Experimental results demonstrate significant improvement in the network’s resistance to lighting interference without substantially increasing parameters.Moreover,the model exhibited faster convergence during training,contributing to overall performance enhancement.This study advances endoscopic image processing accuracy and has potential implications for surgical robot applications in complex environments. 展开更多
关键词 Parallax estimation parallax regression model self-supervised learning Pseudo-Siamese neural network pyramid dilated convolution binocular disparity estimation
在线阅读 下载PDF
无监督环境下改进Q-learning算法在网络异常诊断中的应用
18
作者 梁西陈 《六盘水师范学院学报》 2025年第3期89-97,共9页
针对无监督环境下传统网络异常诊断算法存在异常点定位和异常数据分类准确率低等不足,通过设计一种基于改进Q-learning算法的无线网络异常诊断方法:首先基于ADU(Asynchronous Data Unit异步数据单元)单元采集无线网络的数据流,并提取数... 针对无监督环境下传统网络异常诊断算法存在异常点定位和异常数据分类准确率低等不足,通过设计一种基于改进Q-learning算法的无线网络异常诊断方法:首先基于ADU(Asynchronous Data Unit异步数据单元)单元采集无线网络的数据流,并提取数据包特征;然后构建Q-learning算法模型探索状态值和奖励值的平衡点,利用SA(Simulated Annealing模拟退火)算法从全局视角对下一时刻状态进行精确识别;最后确定训练样本的联合分布概率,提升输出值的逼近性能以达到平衡探索与代价之间的均衡。测试结果显示:改进Q-learning算法的网络异常定位准确率均值达99.4%,在不同类型网络异常的分类精度和分类效率等方面,也优于三种传统网络异常诊断方法。 展开更多
关键词 无监督 改进Q-learning ADU单元 状态值 联合分布概率
在线阅读 下载PDF
DEEP NEURAL NETWORKS COMBINING MULTI-TASK LEARNING FOR SOLVING DELAY INTEGRO-DIFFERENTIAL EQUATIONS 被引量:1
19
作者 WANG Chen-yao SHI Feng 《数学杂志》 2025年第1期13-38,共26页
Deep neural networks(DNNs)are effective in solving both forward and inverse problems for nonlinear partial differential equations(PDEs).However,conventional DNNs are not effective in handling problems such as delay di... Deep neural networks(DNNs)are effective in solving both forward and inverse problems for nonlinear partial differential equations(PDEs).However,conventional DNNs are not effective in handling problems such as delay differential equations(DDEs)and delay integrodifferential equations(DIDEs)with constant delays,primarily due to their low regularity at delayinduced breaking points.In this paper,a DNN method that combines multi-task learning(MTL)which is proposed to solve both the forward and inverse problems of DIDEs.The core idea of this approach is to divide the original equation into multiple tasks based on the delay,using auxiliary outputs to represent the integral terms,followed by the use of MTL to seamlessly incorporate the properties at the breaking points into the loss function.Furthermore,given the increased training dificulty associated with multiple tasks and outputs,we employ a sequential training scheme to reduce training complexity and provide reference solutions for subsequent tasks.This approach significantly enhances the approximation accuracy of solving DIDEs with DNNs,as demonstrated by comparisons with traditional DNN methods.We validate the effectiveness of this method through several numerical experiments,test various parameter sharing structures in MTL and compare the testing results of these structures.Finally,this method is implemented to solve the inverse problem of nonlinear DIDE and the results show that the unknown parameters of DIDE can be discovered with sparse or noisy data. 展开更多
关键词 Delay integro-differential equation Multi-task learning parameter sharing structure deep neural network sequential training scheme
在线阅读 下载PDF
Factors associated with poor prognosis in elderly patients with congestive heart failure with comorbid cognitive impairment: impact of life circumstances 被引量:1
20
作者 Tomoko Tomioka Ryoya Sato +2 位作者 Yosuke Ikumi Shuhei Tanaka Hiroki Shioiri 《Journal of Geriatric Cardiology》 2025年第6期603-608,共6页
According to the Japanese Ministry of Health,Labour,and Welfare,14.2%of people were aged>75 years in Japan in 2018,and this number continues to rise.With population aging,the incidence of congestive heart failure(C... According to the Japanese Ministry of Health,Labour,and Welfare,14.2%of people were aged>75 years in Japan in 2018,and this number continues to rise.With population aging,the incidence of congestive heart failure(CHF)is also increasing.[1–3]Reports have shown that the presence of cognitive impairment(CI)in patients with CHF is associated with poor prognosis,[4–6]and the degree of CI is related to CHF severity. 展开更多
关键词 congestive heart failure life circumstances cognitive impairment poor prognosis ELDERLY cognitive impairment ci congestive heart failure chf
暂未订购
上一页 1 2 250 下一页 到第
使用帮助 返回顶部