期刊文献+
共找到292,658篇文章
< 1 2 250 >
每页显示 20 50 100
Regulator of G protein signaling 6 mediates exercise-induced recovery of hippocampal neurogenesis,learning,and memory in a mouse model of Alzheimer’s disease 被引量:1
1
作者 Mackenzie M.Spicer Jianqi Yang +5 位作者 Daniel Fu Alison N.DeVore Marisol Lauffer Nilufer S.Atasoy Deniz Atasoy Rory A.Fisher 《Neural Regeneration Research》 SCIE CAS 2025年第10期2969-2981,共13页
Hippocampal neuronal loss causes cognitive dysfunction in Alzheimer’s disease.Adult hippocampal neurogenesis is reduced in patients with Alzheimer’s disease.Exercise stimulates adult hippocampal neurogenesis in rode... Hippocampal neuronal loss causes cognitive dysfunction in Alzheimer’s disease.Adult hippocampal neurogenesis is reduced in patients with Alzheimer’s disease.Exercise stimulates adult hippocampal neurogenesis in rodents and improves memory and slows cognitive decline in patients with Alzheimer’s disease.However,the molecular pathways for exercise-induced adult hippocampal neurogenesis and improved cognition in Alzheimer’s disease are poorly understood.Recently,regulator of G protein signaling 6(RGS6)was identified as the mediator of voluntary running-induced adult hippocampal neurogenesis in mice.Here,we generated novel RGS6fl/fl;APP_(SWE) mice and used retroviral approaches to examine the impact of RGS6 deletion from dentate gyrus neuronal progenitor cells on voluntary running-induced adult hippocampal neurogenesis and cognition in an amyloid-based Alzheimer’s disease mouse model.We found that voluntary running in APP_(SWE) mice restored their hippocampal cognitive impairments to that of control mice.This cognitive rescue was abolished by RGS6 deletion in dentate gyrus neuronal progenitor cells,which also abolished running-mediated increases in adult hippocampal neurogenesis.Adult hippocampal neurogenesis was reduced in sedentary APP_(SWE) mice versus control mice,with basal adult hippocampal neurogenesis reduced by RGS6 deletion in dentate gyrus neural precursor cells.RGS6 was expressed in neurons within the dentate gyrus of patients with Alzheimer’s disease with significant loss of these RGS6-expressing neurons.Thus,RGS6 mediated voluntary running-induced rescue of impaired cognition and adult hippocampal neurogenesis in APP_(SWE) mice,identifying RGS6 in dentate gyrus neural precursor cells as a possible therapeutic target in Alzheimer’s disease. 展开更多
关键词 adult hippocampal neurogenesis Alzheimer’s disease dentate gyrus EXERCISE learning/memory neural precursor cells regulator of G protein signaling 6(RGS6)
暂未订购
Predicting lymph node metastasis in colorectal cancer using caselevel multiple instance learning
2
作者 Ling-Feng Zou Xuan-Bing Wang +4 位作者 Jing-Wen Li Xin Ouyang Yi-Ying Luo Yan Luo Cheng-Long Wang 《World Journal of Gastroenterology》 2026年第1期110-125,共16页
BACKGROUND The accurate prediction of lymph node metastasis(LNM)is crucial for managing locally advanced(T3/T4)colorectal cancer(CRC).However,both traditional histopathology and standard slide-level deep learning ofte... BACKGROUND The accurate prediction of lymph node metastasis(LNM)is crucial for managing locally advanced(T3/T4)colorectal cancer(CRC).However,both traditional histopathology and standard slide-level deep learning often fail to capture the sparse and diagnostically critical features of metastatic potential.AIM To develop and validate a case-level multiple-instance learning(MIL)framework mimicking a pathologist's comprehensive review and improve T3/T4 CRC LNM prediction.METHODS The whole-slide images of 130 patients with T3/T4 CRC were retrospectively collected.A case-level MIL framework utilising the CONCH v1.5 and UNI2-h deep learning models was trained on features from all haematoxylin and eosinstained primary tumour slides for each patient.These pathological features were subsequently integrated with clinical data,and model performance was evaluated using the area under the curve(AUC).RESULTS The case-level framework demonstrated superior LNM prediction over slide-level training,with the CONCH v1.5 model achieving a mean AUC(±SD)of 0.899±0.033 vs 0.814±0.083,respectively.Integrating pathology features with clinical data further enhanced performance,yielding a top model with a mean AUC of 0.904±0.047,in sharp contrast to a clinical-only model(mean AUC 0.584±0.084).Crucially,a pathologist’s review confirmed that the model-identified high-attention regions correspond to known high-risk histopathological features.CONCLUSION A case-level MIL framework provides a superior approach for predicting LNM in advanced CRC.This method shows promise for risk stratification and therapy decisions,requiring further validation. 展开更多
关键词 Colorectal cancer Lymph node metastasis Deep learning Multiple instance learning HISTOPATHOLOGY
暂未订购
An Iterated Greedy Algorithm with Memory and Learning Mechanisms for the Distributed Permutation Flow Shop Scheduling Problem
3
作者 Binhui Wang Hongfeng Wang 《Computers, Materials & Continua》 SCIE EI 2025年第1期371-388,共18页
The distributed permutation flow shop scheduling problem(DPFSP)has received increasing attention in recent years.The iterated greedy algorithm(IGA)serves as a powerful optimizer for addressing such a problem because o... The distributed permutation flow shop scheduling problem(DPFSP)has received increasing attention in recent years.The iterated greedy algorithm(IGA)serves as a powerful optimizer for addressing such a problem because of its straightforward,single-solution evolution framework.However,a potential draw-back of IGA is the lack of utilization of historical information,which could lead to an imbalance between exploration and exploitation,especially in large-scale DPFSPs.As a consequence,this paper develops an IGA with memory and learning mechanisms(MLIGA)to efficiently solve the DPFSP targeted at the mini-malmakespan.InMLIGA,we incorporate a memory mechanism to make a more informed selection of the initial solution at each stage of the search,by extending,reconstructing,and reinforcing the information from previous solutions.In addition,we design a twolayer cooperative reinforcement learning approach to intelligently determine the key parameters of IGA and the operations of the memory mechanism.Meanwhile,to ensure that the experience generated by each perturbation operator is fully learned and to reduce the prior parameters of MLIGA,a probability curve-based acceptance criterion is proposed by combining a cube root function with custom rules.At last,a discrete adaptive learning rate is employed to enhance the stability of the memory and learningmechanisms.Complete ablation experiments are utilized to verify the effectiveness of the memory mechanism,and the results show that this mechanism is capable of improving the performance of IGA to a large extent.Furthermore,through comparative experiments involving MLIGA and five state-of-the-art algorithms on 720 benchmarks,we have discovered that MLI-GA demonstrates significant potential for solving large-scale DPFSPs.This indicates that MLIGA is well-suited for real-world distributed flow shop scheduling. 展开更多
关键词 Distributed permutation flow shop scheduling MAKESPAN iterated greedy algorithm memory mechanism cooperative reinforcement learning
在线阅读 下载PDF
Recombinant chitinase-3-like protein 1 alleviates learning and memory impairments via M2 microglia polarization in postoperative cognitive dysfunction mice
4
作者 Yujia Liu Xue Han +6 位作者 Yan Su Yiming Zhou Minhui Xu Jiyan Xu Zhengliang Ma Xiaoping Gu Tianjiao Xia 《Neural Regeneration Research》 SCIE CAS 2025年第9期2727-2736,共10页
Postoperative cognitive dysfunction is a seve re complication of the central nervous system that occurs after anesthesia and surgery,and has received attention for its high incidence and effect on the quality of life ... Postoperative cognitive dysfunction is a seve re complication of the central nervous system that occurs after anesthesia and surgery,and has received attention for its high incidence and effect on the quality of life of patients.To date,there are no viable treatment options for postoperative cognitive dysfunction.The identification of postoperative cognitive dysfunction hub genes could provide new research directions and therapeutic targets for future research.To identify the signaling mechanisms contributing to postoperative cognitive dysfunction,we first conducted Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses of the Gene Expression Omnibus GSE95426 dataset,which consists of mRNAs and long non-coding RNAs differentially expressed in mouse hippocampus3 days after tibial fracture.The dataset was enriched in genes associated with the biological process"regulation of immune cells,"of which Chill was identified as a hub gene.Therefore,we investigated the contribution of chitinase-3-like protein 1 protein expression changes to postoperative cognitive dysfunction in the mouse model of tibial fractu re surgery.Mice were intraperitoneally injected with vehicle or recombinant chitinase-3-like protein 124 hours post-surgery,and the injection groups were compared with untreated control mice for learning and memory capacities using the Y-maze and fear conditioning tests.In addition,protein expression levels of proinflammatory factors(interleukin-1βand inducible nitric oxide synthase),M2-type macrophage markers(CD206 and arginase-1),and cognition-related proteins(brain-derived neurotropic factor and phosphorylated NMDA receptor subunit NR2B)were measured in hippocampus by western blotting.Treatment with recombinant chitinase-3-like protein 1 prevented surgery-induced cognitive impairment,downregulated interleukin-1βand nducible nitric oxide synthase expression,and upregulated CD206,arginase-1,pNR2B,and brain-derived neurotropic factor expression compared with vehicle treatment.Intraperitoneal administration of the specific ERK inhibitor PD98059 diminished the effects of recombinant chitinase-3-like protein 1.Collectively,our findings suggest that recombinant chitinase-3-like protein 1 ameliorates surgery-induced cognitive decline by attenuating neuroinflammation via M2 microglial polarization in the hippocampus.Therefore,recombinant chitinase-3-like protein1 may have therapeutic potential fo r postoperative cognitive dysfunction. 展开更多
关键词 Chil1 hippocampus learning and memory M2 microglia NEUROINFLAMMATION postoperative cognitive dysfunction(POCD) recombinant CHI3L1
暂未订购
RankXLAN:An explainable ensemble-based machine learning framework for biomarker detection,therapeutic target identification,and classification using transcriptomic and epigenomic stomach cancer data
5
作者 Kasmika Borah Himanish Shekhar Das +1 位作者 Mudassir Khan Saurav Mallik 《Medical Data Mining》 2026年第1期13-31,共19页
Background:Stomach cancer(SC)is one of the most lethal malignancies worldwide due to late-stage diagnosis and limited treatment.The transcriptomic,epigenomic,and proteomic,etc.,omics datasets generated by high-through... Background:Stomach cancer(SC)is one of the most lethal malignancies worldwide due to late-stage diagnosis and limited treatment.The transcriptomic,epigenomic,and proteomic,etc.,omics datasets generated by high-throughput sequencing technology have become prominent in biomedical research,and they reveal molecular aspects of cancer diagnosis and therapy.Despite the development of advanced sequencing technology,the presence of high-dimensionality in multi-omics data makes it challenging to interpret the data.Methods:In this study,we introduce RankXLAN,an explainable ensemble-based multi-omics framework that integrates feature selection(FS),ensemble learning,bioinformatics,and in-silico validation for robust biomarker detection,potential therapeutic drug-repurposing candidates’identification,and classification of SC.To enhance the interpretability of the model,we incorporated explainable artificial intelligence(SHapley Additive exPlanations analysis),as well as accuracy,precision,F1-score,recall,cross-validation,specificity,likelihood ratio(LR)+,LR−,and Youden index results.Results:The experimental results showed that the top four FS algorithms achieved improved results when applied to the ensemble learning classification model.The proposed ensemble model produced an area under the curve(AUC)score of 0.994 for gene expression,0.97 for methylation,and 0.96 for miRNA expression data.Through the integration of bioinformatics and ML approach of the transcriptomic and epigenomic multi-omics dataset,we identified potential marker genes,namely,UBE2D2,HPCAL4,IGHA1,DPT,and FN3K.In-silico molecular docking revealed a strong binding affinity between ANKRD13C and the FDA-approved drug Everolimus(binding affinity−10.1 kcal/mol),identifying ANKRD13C as a potential therapeutic drug-repurposing target for SC.Conclusion:The proposed framework RankXLAN outperforms other existing frameworks for serum biomarker identification,therapeutic target identification,and SC classification with multi-omics datasets. 展开更多
关键词 stomach cancer BIOINFORMATICS ensemble learning classifier BIOMARKER targets
在线阅读 下载PDF
Deep Learning-Assisted Organogel Pressure Sensor for Alphabet Recognition and Bio-Mechanical Motion Monitoring
6
作者 Kusum Sharma Kousik Bhunia +5 位作者 Subhajit Chatterjee Muthukumar Perumalsamy Anandhan Ayyappan Saj Theophilus Bhatti Yung‑Cheol Byun Sang-Jae Kim 《Nano-Micro Letters》 2026年第2期644-663,共20页
Wearable sensors integrated with deep learning techniques have the potential to revolutionize seamless human-machine interfaces for real-time health monitoring,clinical diagnosis,and robotic applications.Nevertheless,... Wearable sensors integrated with deep learning techniques have the potential to revolutionize seamless human-machine interfaces for real-time health monitoring,clinical diagnosis,and robotic applications.Nevertheless,it remains a critical challenge to simultaneously achieve desirable mechanical and electrical performance along with biocompatibility,adhesion,self-healing,and environmental robustness with excellent sensing metrics.Herein,we report a multifunctional,anti-freezing,selfadhesive,and self-healable organogel pressure sensor composed of cobalt nanoparticle encapsulated nitrogen-doped carbon nanotubes(CoN CNT)embedded in a polyvinyl alcohol-gelatin(PVA/GLE)matrix.Fabricated using a binary solvent system of water and ethylene glycol(EG),the CoN CNT/PVA/GLE organogel exhibits excellent flexibility,biocompatibility,and temperature tolerance with remarkable environmental stability.Electrochemical impedance spectroscopy confirms near-stable performance across a broad humidity range(40%-95%RH).Freeze-tolerant conductivity under sub-zero conditions(-20℃)is attributed to the synergistic role of CoN CNT and EG,preserving mobility and network integrity.The Co N CNT/PVA/GLE organogel sensor exhibits high sensitivity of 5.75 k Pa^(-1)in the detection range from 0 to 20 k Pa,ideal for subtle biomechanical motion detection.A smart human-machine interface for English letter recognition using deep learning achieved 98%accuracy.The organogel sensor utility was extended to detect human gestures like finger bending,wrist motion,and throat vibration during speech. 展开更多
关键词 Wearable ORGANOGEL Deep learning Pressure sensor Bio-mechanical motion
在线阅读 下载PDF
Artificial intelligence and machine learning-driven advancements in gastrointestinal cancer:Paving the way for precision medicine
7
作者 Chahat Suri Yashwant K Ratre +2 位作者 Babita Pande LVKS Bhaskar Henu K Verma 《World Journal of Gastroenterology》 2026年第1期14-36,共23页
Gastrointestinal(GI)cancers remain a leading cause of cancer-related morbidity and mortality worldwide.Artificial intelligence(AI),particularly machine learning and deep learning(DL),has shown promise in enhancing can... Gastrointestinal(GI)cancers remain a leading cause of cancer-related morbidity and mortality worldwide.Artificial intelligence(AI),particularly machine learning and deep learning(DL),has shown promise in enhancing cancer detection,diagnosis,and prognostication.A narrative review of literature published from January 2015 to march 2025 was conducted using PubMed,Web of Science,and Scopus.Search terms included"gastrointestinal cancer","artificial intelligence","machine learning","deep learning","radiomics","multimodal detection"and"predictive modeling".Studies were included if they focused on clinically relevant AI applications in GI oncology.AI algorithms for GI cancer detection have achieved high performance across imaging modalities,with endoscopic DL systems reporting accuracies of 85%-97%for polyp detection and segmentation.Radiomics-based models have predicted molecular biomarkers such as programmed cell death ligand 2 expression with area under the curves up to 0.92.Large language models applied to radiology reports demonstrated diagnostic accuracy comparable to junior radiologists(78.9%vs 80.0%),though without incremental value when combined with human interpretation.Multimodal AI approaches integrating imaging,pathology,and clinical data show emerging potential for precision oncology.AI in GI oncology has reached clinically relevant accuracy levels in multiple diagnostic tasks,with multimodal approaches and predictive biomarker modeling offering new opportunities for personalized care.However,broader validation,integration into clinical workflows,and attention to ethical,legal,and social implications remain critical for widespread adoption. 展开更多
关键词 Artificial intelligence Gastrointestinal cancer Precision medicine Multimodal detection Machine learning
在线阅读 下载PDF
Evaluation of Reinforcement Learning-Based Adaptive Modulation in Shallow Sea Acoustic Communication
8
作者 Yifan Qiu Xiaoyu Yang +1 位作者 Feng Tong Dongsheng Chen 《哈尔滨工程大学学报(英文版)》 2026年第1期292-299,共8页
While reinforcement learning-based underwater acoustic adaptive modulation shows promise for enabling environment-adaptive communication as supported by extensive simulation-based research,its practical performance re... While reinforcement learning-based underwater acoustic adaptive modulation shows promise for enabling environment-adaptive communication as supported by extensive simulation-based research,its practical performance remains underexplored in field investigations.To evaluate the practical applicability of this emerging technique in adverse shallow sea channels,a field experiment was conducted using three communication modes:orthogonal frequency division multiplexing(OFDM),M-ary frequency-shift keying(MFSK),and direct sequence spread spectrum(DSSS)for reinforcement learning-driven adaptive modulation.Specifically,a Q-learning method is used to select the optimal modulation mode according to the channel quality quantified by signal-to-noise ratio,multipath spread length,and Doppler frequency offset.Experimental results demonstrate that the reinforcement learning-based adaptive modulation scheme outperformed fixed threshold detection in terms of total throughput and average bit error rate,surpassing conventional adaptive modulation strategies. 展开更多
关键词 Adaptive modulation Shallow sea underwater acoustic modulation Reinforcement learning
在线阅读 下载PDF
Enhanced semi-supervised learning for top gas flow state classification to optimize emission and production in blast ironmaking furnaces
9
作者 Song Liu Qiqi Li +3 位作者 Qing Ye Zhiwei Zhao Dianyu E Shibo Kuang 《International Journal of Minerals,Metallurgy and Materials》 2026年第1期204-216,共13页
Automated classification of gas flow states in blast furnaces using top-camera imagery typically demands a large volume of labeled data,whose manual annotation is both labor-intensive and cost-prohibitive.To mitigate ... Automated classification of gas flow states in blast furnaces using top-camera imagery typically demands a large volume of labeled data,whose manual annotation is both labor-intensive and cost-prohibitive.To mitigate this challenge,we present an enhanced semi-supervised learning approach based on the Mean Teacher framework,incorporating a novel feature loss module to maximize classification performance with limited labeled samples.The model studies show that the proposed model surpasses both the baseline Mean Teacher model and fully supervised method in accuracy.Specifically,for datasets with 20%,30%,and 40%label ratios,using a single training iteration,the model yields accuracies of 78.61%,82.21%,and 85.2%,respectively,while multiple-cycle training iterations achieves 82.09%,81.97%,and 81.59%,respectively.Furthermore,scenario-specific training schemes are introduced to support diverse deployment need.These findings highlight the potential of the proposed technique in minimizing labeling requirements and advancing intelligent blast furnace diagnostics. 展开更多
关键词 blast furnace gas flow state semi-supervised learning mean teacher feature loss
在线阅读 下载PDF
A novel deep learning-based framework for forecasting
10
作者 Congqi Cao Ze Sun +2 位作者 Lanshu Hu Liujie Pan Yanning Zhang 《Atmospheric and Oceanic Science Letters》 2026年第1期22-26,共5页
Deep learning-based methods have become alternatives to traditional numerical weather prediction systems,offering faster computation and the ability to utilize large historical datasets.However,the application of deep... Deep learning-based methods have become alternatives to traditional numerical weather prediction systems,offering faster computation and the ability to utilize large historical datasets.However,the application of deep learning to medium-range regional weather forecasting with limited data remains a significant challenge.In this work,three key solutions are proposed:(1)motivated by the need to improve model performance in data-scarce regional forecasting scenarios,the authors innovatively apply semantic segmentation models,to better capture spatiotemporal features and improve prediction accuracy;(2)recognizing the challenge of overfitting and the inability of traditional noise-based data augmentation methods to effectively enhance model robustness,a novel learnable Gaussian noise mechanism is introduced that allows the model to adaptively optimize perturbations for different locations,ensuring more effective learning;and(3)to address the issue of error accumulation in autoregressive prediction,as well as the challenge of learning difficulty and the lack of intermediate data utilization in one-shot prediction,the authors propose a cascade prediction approach that effectively resolves these problems while significantly improving model forecasting performance.The method achieves a competitive result in The East China Regional AI Medium Range Weather Forecasting Competition.Ablation experiments further validate the effectiveness of each component,highlighting their contributions to enhancing prediction performance. 展开更多
关键词 Weather forecasting Deep learning Semantic segmentation models learnable Gaussian noise Cascade prediction
在线阅读 下载PDF
Automated Pipe Defect Identification in Underwater Robot Imagery with Deep Learning
11
作者 Mansour Taheri Andani Farhad Ameri 《哈尔滨工程大学学报(英文版)》 2026年第1期197-215,共19页
Underwater pipeline inspection plays a vital role in the proactive maintenance and management of critical marine infrastructure and subaquatic systems.However,the inspection of underwater pipelines presents a challeng... Underwater pipeline inspection plays a vital role in the proactive maintenance and management of critical marine infrastructure and subaquatic systems.However,the inspection of underwater pipelines presents a challenge due to factors such as light scattering,absorption,restricted visibility,and ambient noise.The advancement of deep learning has introduced powerful techniques for processing large amounts of unstructured and imperfect data collected from underwater environments.This study evaluated the efficacy of the You Only Look Once(YOLO)algorithm,a real-time object detection and localization model based on convolutional neural networks,in identifying and classifying various types of pipeline defects in underwater settings.YOLOv8,the latest evolution in the YOLO family,integrates advanced capabilities,such as anchor-free detection,a cross-stage partial network backbone for efficient feature extraction,and a feature pyramid network+path aggregation network neck for robust multi-scale object detection,which make it particularly well-suited for complex underwater environments.Due to the lack of suitable open-access datasets for underwater pipeline defects,a custom dataset was captured using a remotely operated vehicle in a controlled environment.This application has the following assets available for use.Extensive experimentation demonstrated that YOLOv8 X-Large consistently outperformed other models in terms of pipe defect detection and classification and achieved a strong balance between precision and recall in identifying pipeline cracks,rust,corners,defective welds,flanges,tapes,and holes.This research establishes the baseline performance of YOLOv8 for underwater defect detection and showcases its potential to enhance the reliability and efficiency of pipeline inspection tasks in challenging underwater environments. 展开更多
关键词 YOLO8 Underwater robot Object detection Underwater pipelines Remotely operated vehicle Deep learning
在线阅读 下载PDF
Machine learning approaches to early detection of delayed wound healing following gastric cancer surgery
12
作者 Duygu Kirkik Huseyin Murat Ozadenc Sevgi Kalkanli Tas 《World Journal of Gastrointestinal Oncology》 2026年第1期287-290,共4页
Delayed wound healing following radical gastrectomy remains an important yet underappreciated complication that prolongs hospitalization,increases costs,and undermines patient recovery.In An et al’s recent study,the ... Delayed wound healing following radical gastrectomy remains an important yet underappreciated complication that prolongs hospitalization,increases costs,and undermines patient recovery.In An et al’s recent study,the authors present a machine learning-based risk prediction approach using routinely available clinical and laboratory parameters.Among the evaluated algorithms,a decision tree model demonstrated excellent discrimination,achieving an area under the curve of 0.951 in the validation set and notably identifying all true cases of delayed wound healing at the Youden index threshold.The inclusion of variables such as drainage duration,preoperative white blood cell and neutrophil counts,alongside age and sex,highlights the pragmatic appeal of the model for early postoperative monitoring.Nevertheless,several aspects warrant critical reflection,including the reliance on a postoperative variable(drainage duration),internal validation only,and certain reporting inconsistencies.This letter underscores both the promise and the limitations of adopting interpretable machine learning models in perioperative care.We advocate for transparent reporting,external validation,and careful consideration of clinically actionable timepoints before integration into practice.Ultimately,this work represents a valuable step toward precision risk stratification in gastric cancer surgery,and sets the stage for multicenter,prospective evaluations. 展开更多
关键词 Gastric cancer Radical gastrectomy Delayed wound healing Machine learning Decision tree Risk prediction
暂未订购
Processing map for oxide dispersion strengthening Cu alloys based on experimental results and machine learning modelling
13
作者 Le Zong Lingxin Li +8 位作者 Lantian Zhang Xuecheng Jin Yong Zhang Wenfeng Yang Pengfei Liu Bin Gan Liujie Xu Yuanshen Qi Wenwen Sun 《International Journal of Minerals,Metallurgy and Materials》 2026年第1期292-305,共14页
Oxide dispersion strengthened(ODS)alloys are extensively used owing to high thermostability and creep strength contributed from uniformly dispersed fine oxides particles.However,the existence of these strengthening pa... Oxide dispersion strengthened(ODS)alloys are extensively used owing to high thermostability and creep strength contributed from uniformly dispersed fine oxides particles.However,the existence of these strengthening particles also deteriorates the processability and it is of great importance to establish accurate processing maps to guide the thermomechanical processes to enhance the formability.In this study,we performed particle swarm optimization-based back propagation artificial neural network model to predict the high temperature flow behavior of 0.25wt%Al2O3 particle-reinforced Cu alloys,and compared the accuracy with that of derived by Arrhenius-type constitutive model and back propagation artificial neural network model.To train these models,we obtained the raw data by fabricating ODS Cu alloys using the internal oxidation and reduction method,and conducting systematic hot compression tests between 400 and800℃with strain rates of 10^(-2)-10 S^(-1).At last,processing maps for ODS Cu alloys were proposed by combining processing parameters,mechanical behavior,microstructure characterization,and the modeling results achieved a coefficient of determination higher than>99%. 展开更多
关键词 oxide dispersion strengthened Cu alloys constitutive model machine learning hot deformation processing maps
在线阅读 下载PDF
Research on the visualization method of lithology intelligent recognition based on deep learning using mine tunnel images
14
作者 Aiai Wang Shuai Cao +1 位作者 Erol Yilmaz Hui Cao 《International Journal of Minerals,Metallurgy and Materials》 2026年第1期141-152,共12页
An image processing and deep learning method for identifying different types of rock images was proposed.Preprocessing,such as rock image acquisition,gray scaling,Gaussian blurring,and feature dimensionality reduction... An image processing and deep learning method for identifying different types of rock images was proposed.Preprocessing,such as rock image acquisition,gray scaling,Gaussian blurring,and feature dimensionality reduction,was conducted to extract useful feature information and recognize and classify rock images using Tensor Flow-based convolutional neural network(CNN)and Py Qt5.A rock image dataset was established and separated into workouts,confirmation sets,and test sets.The framework was subsequently compiled and trained.The categorization approach was evaluated using image data from the validation and test datasets,and key metrics,such as accuracy,precision,and recall,were analyzed.Finally,the classification model conducted a probabilistic analysis of the measured data to determine the equivalent lithological type for each image.The experimental results indicated that the method combining deep learning,Tensor Flow-based CNN,and Py Qt5 to recognize and classify rock images has an accuracy rate of up to 98.8%,and can be successfully utilized for rock image recognition.The system can be extended to geological exploration,mine engineering,and other rock and mineral resource development to more efficiently and accurately recognize rock samples.Moreover,it can match them with the intelligent support design system to effectively improve the reliability and economy of the support scheme.The system can serve as a reference for supporting the design of other mining and underground space projects. 展开更多
关键词 rock picture recognition convolutional neural network intelligent support for roadways deep learning lithology determination
在线阅读 下载PDF
Harnessing deep learning for the discovery of latent patterns in multi-omics medical data
15
作者 Okechukwu Paul-Chima Ugwu Fabian COgenyi +8 位作者 Chinyere Nkemjika Anyanwu Melvin Nnaemeka Ugwu Esther Ugo Alum Mariam Basajja Joseph Obiezu Chukwujekwu Ezeonwumelu Daniel Ejim Uti Ibe Michael Usman Chukwuebuka Gabriel Eze Simeon Ikechukwu Egba 《Medical Data Mining》 2026年第1期32-45,共14页
The rapid growth of biomedical data,particularly multi-omics data including genomes,transcriptomics,proteomics,metabolomics,and epigenomics,medical research and clinical decision-making confront both new opportunities... The rapid growth of biomedical data,particularly multi-omics data including genomes,transcriptomics,proteomics,metabolomics,and epigenomics,medical research and clinical decision-making confront both new opportunities and obstacles.The huge and diversified nature of these datasets cannot always be managed using traditional data analysis methods.As a consequence,deep learning has emerged as a strong tool for analysing numerous omics data due to its ability to handle complex and non-linear relationships.This paper explores the fundamental concepts of deep learning and how they are used in multi-omics medical data mining.We demonstrate how autoencoders,variational autoencoders,multimodal models,attention mechanisms,transformers,and graph neural networks enable pattern analysis and recognition across all omics data.Deep learning has been found to be effective in illness classification,biomarker identification,gene network learning,and therapeutic efficacy prediction.We also consider critical problems like as data quality,model explainability,whether findings can be repeated,and computational power requirements.We now consider future elements of combining omics with clinical and imaging data,explainable AI,federated learning,and real-time diagnostics.Overall,this study emphasises the need of collaborating across disciplines to advance deep learning-based multi-omics research for precision medicine and comprehending complicated disorders. 展开更多
关键词 deep learning multi-omics integration biomedical data mining precision medicine graph neural networks autoencoders and transformers
在线阅读 下载PDF
Application of machine learning in the research progress of postkidney transplant rejection
16
作者 Yun-Peng Guo Quan Wen +2 位作者 Yu-Yang Wang Gai Hang Bo Chen 《World Journal of Transplantation》 2026年第1期129-144,共16页
Post-kidney transplant rejection is a critical factor influencing transplant success rates and the survival of transplanted organs.With the rapid advancement of artificial intelligence technologies,machine learning(ML... Post-kidney transplant rejection is a critical factor influencing transplant success rates and the survival of transplanted organs.With the rapid advancement of artificial intelligence technologies,machine learning(ML)has emerged as a powerful data analysis tool,widely applied in the prediction,diagnosis,and mechanistic study of kidney transplant rejection.This mini-review systematically summarizes the recent applications of ML techniques in post-kidney transplant rejection,covering areas such as the construction of predictive models,identification of biomarkers,analysis of pathological images,assessment of immune cell infiltration,and formulation of personalized treatment strategies.By integrating multi-omics data and clinical information,ML has significantly enhanced the accuracy of early rejection diagnosis and the capability for prognostic evaluation,driving the development of precision medicine in the field of kidney transplantation.Furthermore,this article discusses the challenges faced in existing research and potential future directions,providing a theoretical basis and technical references for related studies. 展开更多
关键词 Machine learning Kidney transplant REJECTION Predictive models Biomarkers Pathological image analysis Immune cell infiltration Precision medicine
暂未订购
Pseudogene Lamr1-ps1 Aggravates Early Spatial Learning Memory Deficits in Alzheimer’s Disease Model Mice
17
作者 Zhuoze Wu Xiaojie Liu +3 位作者 Yuntai Wang Zimeng Zeng Wei Chen Hao Li 《Neuroscience Bulletin》 2025年第4期600-614,共15页
Alzheimer's disease(AD),a neurodegenera-tive disorder with complex etiologies,manifests through a cascade of pathological changes before clinical symptoms become apparent.Among these early changes,alterations in t... Alzheimer's disease(AD),a neurodegenera-tive disorder with complex etiologies,manifests through a cascade of pathological changes before clinical symptoms become apparent.Among these early changes,alterations in the expression of non-coding RNAs(ncRNAs)have emerged as pivotal events.In this study,we focused on the aber-rant expression of ncRNAs and revealed that Lamrl-ps1,a pseudogene of the laminin receptor,significantly exac-erbates early spatial learning and memory deficits in APP/PS1 mice.Through a combination of bioinformatics pre-diction and experimental validation,we identified the miR-29c/Bacel pathway as a potential regulatory mechanism by which Lamrl-ps1 influences AD pathology.Importantly,augmenting the miR-29c-3p levels in mice ameliorated memory deficits,underscoring the therapeutic potential of targeting miR-29c-3p in early AD intervention.This study not only provides new insights into the role of pseudogenes in AD but also consolidates a foundational basis for consid-ering miR-29c as a viable therapeutic target,offering a novel avenue for AD research and treatment strategies. 展开更多
关键词 Alzheimer's disease Lamrl-ps1 PSEUDOGENE LncRNA learning and memory MiR-29c-3p
原文传递
Long short‑term memory networks in learning memory inconsistencies of stock markets
18
作者 Jaemoo Hong Yoon Min Hwang 《Financial Innovation》 2025年第1期3824-3873,共50页
Deep learning enables neural networks to improve prediction performance through data supplementation.In financial time series forecasting,however,such data-driven approaches can encounter limitations where additional ... Deep learning enables neural networks to improve prediction performance through data supplementation.In financial time series forecasting,however,such data-driven approaches can encounter limitations where additional data degrade performance,contrary to common expectations.While more data can still be beneficial,it may introduce systemic concept drift due to the complex nonstationarities of stock price index time series,thereby exacerbating overfitting.One such drift is memory inconsistency:locally measured long memories fluctuate over time,alternately approaching and deviating from the random walk condition.We address this problem by typifying memory inconsistencies into two simplified forms:long-term dependentto-independent(D2I)and long-term independent-to-dependent(I2D)inconsistencies.The first experiment,which uses U.S.stock price indices,suggests that additional training examples may lead to performance deterioration of long short-term memory(LSTM)networks,especially when memory inconsistencies are prominent.Since stock markets are influenced by numerous unknown dynamics,the second experiment,which uses simulated mean-reverting time series derived from the fractional Ornstein–Uhlenbeck(fOU)process,is conducted to focus solely on challenges arising from memory inconsistencies.The experimental results demonstrate that memory inconsistencies disrupt the performance of LSTM networks.Theoretically,additional errors from D2I and I2D inconsistencies increase as the time lag increases.Since LSTM networks are inherently recurrent,causing information from distant steps to attenuate,they fail to effectively capture memory inconsistencies in practical offline learning schemes.Nonetheless,transplanting pretrained memory-consistent gate parameters into the LSTM model partially mitigates the performance deterioration caused by memory inconsistencies,suggesting that memory augmentation strategies have the potential to overcome this problem.As such a memory augmentation method,we propose the Gate-of-Gates(GoG)model,which extends the capacity of LSTM gates and demonstrates that it can mitigate additional errors arising from memory inconsistencies. 展开更多
关键词 Long short-term memory(LSTM) Fractional Ornstein-Uhlenbeck process(fOU) Limits of deep learning Stock market prediction Financial time series forecasting
在线阅读 下载PDF
Associative Learning-Induced Synaptic Potentiation at the Two Major Hippocampal CA1 Inputs for Cued Memory Acquisition
19
作者 Bing-Ying Wang Bo Wang +6 位作者 Bo Cao Ling-Ling Gu Jiayu Chen Hua He Zheng Zhao Fujun Chen Zhiru Wang 《Neuroscience Bulletin》 2025年第4期649-664,共16页
Learning-associated functional plasticity at hippocampal synapses remains largely unexplored. Here, in a single session of reward-based trace conditioning, we examine learning-induced synaptic plasticity in the dorsal... Learning-associated functional plasticity at hippocampal synapses remains largely unexplored. Here, in a single session of reward-based trace conditioning, we examine learning-induced synaptic plasticity in the dorsal CA1 hippocampus (dCA1). Local field-potential recording combined with selective optogenetic inhibition first revealed an increase of dCA1 synaptic responses to the conditioned stimulus (CS) induced during conditioning at both Schaffer collaterals to the stratum radiatum (Rad) and temporoammonic input to the lacunosum moleculare (LMol). At these dCA1 inputs, synaptic potentiation of CS-responding excitatory synapses was further demonstrated by locally blocking NMDA receptors during conditioning and whole-cell recording sensory-evoked synaptic responses in dCA1 neurons from naive animals. An overall similar time course of the induction of synaptic potentiation was found in the Rad and LMol by multiple-site recording;this emerged later and saturated earlier than conditioned behavioral responses. Our experiments demonstrate a cued memory-associated dCA1 synaptic plasticity induced at both Schaffer collaterals and temporoammonic pathways. 展开更多
关键词 HIPPOCAMPUS Synaptic plasticity Long-term potentiation Associative learning Trace conditioning Schaffer collateral Temporoammonic
原文传递
Tree shrew models:A chronic social defeat model of depression and a one-trial captive conditioning model of learning and memory 被引量:23
20
作者 王静 周启心 +2 位作者 田孟 杨跃雄 徐林 《Zoological Research》 CAS CSCD 北大核心 2011年第1期24-30,共7页
Recent genome studies indicate that tree shrew is in the order or a closest sister of primates,and thus may be one of the best animals to model human diseases.In this paper,we report on a social defeat model of depres... Recent genome studies indicate that tree shrew is in the order or a closest sister of primates,and thus may be one of the best animals to model human diseases.In this paper,we report on a social defeat model of depression in tree shrew(Tupaia belangeri chinensis).Two male tree shrews were housed in a pair-cage consisting of two independent cages separated by a wire mesh partition with a door connecting the two cages.After one week adaptation,the connecting door was opened and a brief fighting occurs between the two male tree shrews and this social conflict session consisted of 1 h direct conflict(fighting) and 23 h indirect influence(e.g.smell,visual cues) per day for 21 days.The defeated tree shrew was considered the subordinate.Compared with na?ve animals,subordinate tree shrews at the final week of social conflict session showed alterations in body weight,locomotion,avoidance behavior and urinary cortisol levels.Remarkably,these alterations persisted for over two weeks.We also report on a novel captive conditioning model of learning and memory in tree shrew.An automatic trapping cage was placed in a small closed room with a freely-moving tree shrew.For the first four trials,the tree shrew was not trapped when it entered the cage and ate the bait apple,but it was trapped and kept in the cage for 1 h on the fifth trial.Latency was defined as the time between release of the tree shrew and when it entered the captive cage.Latencies during the five trials indicated adaptation.A test trial 24 h later was used to measure whether the one-trial trapping during the fifth trial could form captive memory.Tree shrews showed much longer trapping latencies in the test trial than the adaptation trials.The N-methyl-d-aspartate(NMDA) receptor antagonist MK-801(0.2 mg/kg,i.p.),known to prevent the formation of memory,did not affect latencies in the adaptation trails,but did block captive memory as it led to much shorter trapping latencies compared to saline treatment in the test trial.These results demonstrate a chronic social defeat model of depression and a novel one-trial captive conditioning model for learning and memory in tree shrews,which are important for mechanism studies of depression,learning,memory,and preclinical evaluation for new antidepressants. 展开更多
关键词 Social defeat DEPRESSION Captive conditioning learning and memory Tree shrew
暂未订购
上一页 1 2 250 下一页 到第
使用帮助 返回顶部